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Abstract: A new approach to batch grinding kinetics was established based on the conventional popu-
lation balance model, with magnetite as the experimental object. The distribution function commonly
used in the population balance model is a sum of two power functions, i.e.,
Bi1 = ϕ( xi−1

x1
+ (1 − ϕ)( xi−1

x1
)

β. Based on the new finding that the cumulative mass fraction coarser
than the size class of the discharge is consistent with the first-order grinding kinetic, the gi function
of the new approach is only a single power function, i.e., = +k1xa

i , which will greatly reduce the
parameter error and make the fit more accurate. The maximum error between simulation calculations
and the actual experiment using the two methods did not exceed 1%, indicating that both models
can accurately predict the fracture characteristics of magnetite. Because the new approach has fewer
derived parameters, it addresses the conventional population balance model’s problems of large
computational effort and poor fitting accuracy, making it more applicable to the study of the impact
of parameters on the grinding status, with a simpler process and higher accuracy. In addition, this
new method is applicable to minerals other than magnetite. Further research is required to verify its
applicability to wide size ranges and continuous grinding.

Keywords: grinding simulation; PBM; narrow size; grinding kinetic

1. Introduction

With advances in comminution technology, the research into and the application
of mathematical models of grinding kinetics have received increasing attention from re-
searchers [1]. Among those models, population balance modeling (PBM), based on the
principle of mass balance in the grinding process, is widely recognized [2]. PBM can be
traced back to 1948, when Epstein [3] introduced the two basic comminution functions—the
breakage rate function (S) and the cumulative breakage distribution function (Bij). In 1953,
Sedlatschek and Bass [4] proposed a set of differential equations based on the two functions
to describe batch grinding. However, these equations have been criticized because of
Sedlatschek and Bass’s misconception that the breakage rate is not related to particle size.

In the following years, through extensive experiments, Bass derived an integrodiffer-
ential equation from the fundamental mass balance for batch grinding. Amid research for
the solution of the equation, a matrix representation of breakage was published in 1956 by
Broadbent and Calltt [5], which was of great significance in describing the breakage process.
Thereafter, Gardner and Austin used an isotope tracer to trace the particle fragmentation
characteristics, and in 1962, they introduced computer operation into the calculation of
integrodifferential equations. In 1965, Reid [6] found the analytical solution of the integrod-
ifferential equation, unraveling a period of rapid growth in PBM research. The details are
set out in Section 2.1 of this article.

In order to obtain the grinding kinetic equation, researchers explored ways to acquire
the result of function S and function Bij, including the G–H solution [7], the BII method [8],
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the zero-order production [9], and the empirical formulation solution [10], and introduced
relevant functions to supplement PBM under special circumstances, such as the mass
density distribution function (M) [11] and the energy split function (K) [12]. PBM has
become the dominant model for the grinding kinetics of minerals [13] or cement [14],
batch [15] or continuous grinding [16], and single [17] or mixed fractions [18].

The breakage rate function and the cumulative breakage distribution function are the
core functions of PBM, and the analytical solution of the final model can be obtained by
calculating their parameters [19]. However, the calculations of these two key functions are
extremely complicated, especially the calculation of the cumulative breakage distribution
function, which requires a large number of feature parameters. The details are provided
in Section 2.1 of this article. These complicated computations make it exceedingly incon-
venient for researchers to use PBM to study the interactions of the grinding behavior of
multi-component ores [20–25] and to expose ball-mill amplification characteristics [26–34].
Worse still, the excessive number of feature parameters leads to large errors in the calcula-
tions [15].

Therefore, this paper provides a new calculation method based on the study of the
grinding kinetics of narrow-size magnetite. Based on the PBM, this method incorporates
the zero-order production of the fines and requires only the simulation of the cumulative
yield characteristics on the sieve (the mass fraction of particulate solids coarser than the
sieve), as discussed in Section 2.2. Generally, compared with the conventional population
balance model, this method has three advantages. First, it demands less effort to calculate
the value of the cumulative breakage distribution function (Bij), which greatly reduces the
overall computational process and workload and, thus, generates higher fitting accuracy.
Second, there are fewer derived parameters, which means that the number and degree
of error for each parameter are limited. Third, given the previous two advantages, this
method could be applied in studying the impact of parameters such as rotational speed
and diameter on grinding status, with a simpler process and higher accuracy.

2. Theoretical Background
2.1. Method I

For batch grinding, minerals are discharged after grinding time t in the ball mill,
during which no minerals are added and discharged. The fractions (particle size classes)
of feed are named Feed fraction 1 (Feed fra.1), Feed fraction 2 (Feed fra.2), etc., from
coarse to fine; the fractions of discharge are named Daughter fractions (Broken products),
also from coarse to fine. As Figure 1 shows, if the feed and the discharge fractions are
divided into five fractions, Daughter fraction i represents the residual of Feed fraction
i after being ground, and ∑5

i Daughter fra.i + 1 represents the breakage amount of Feed
fraction i. Taking Daughter fra.3 as an example, the mass of fraction 3 in discharge equals
the addition generated from Feed fra.1 and Feed fra.2 plus the residual of Feed fra.3. Using
this approach as a modeling basis, a time-continuous and size-discrete population balance
model is developed [4]:

dmi(t)
dt

= −Si(t)× mi(t) + ∑i−1
j=1 bijSj(t)mj(t) (1)

where:

mi(t) is the mass fraction in size class i at grinding time t;
Si(t) is the breakage rate function of the size class i at grinding time t;
bij is the breakage distribution function that describes the Daughter fraction in size i formed
when the unit mass of size j is broken (j = i).

For ease of calculation, the breakage distribution function (bij) is often denoted by
cumulative breakage distribution function (Bij):

Bij = ∑i
k=n bkj (2)



Minerals 2023, 13, 424 3 of 16

Transform the Equation (1) into matrix form [5]:

d
dt


m1(t)
m2(t)

. . .
mn(t)

 =


−S1 0 . . . 0
b21S1 −S2 · · · 0

...
...

...
...

bn1S1 bn2S2 · · · −Sn

×


m1(t)
m2(t)

. . .
mn(t)

 (3)

Figure 1. The logic diagram of the population balance model.

As shown in Figure 2, given that the narrow-size mineral grinding only involves the
first fraction, Feed fra.1 is divided into five fractions. For Daughter fra.1, the yield is the
residual of Feed fra.1; for other fractions, the yield is the addition from Feed fra.1. Hence,
the matrix can be simplified as follows:

d
dt


m1(t)
m2(t)

. . .
mn(t)

 =


−S1 0 . . . 0
b21S1 0 · · · 0

...
...

...
...

bn1S1 0 · · · 0

×


m1(t)
m2(t)

. . .
mn(t)

 (4)

S1(t) and Bi1 are required to solve Equation (1), and the former can be obtained using
the following equation:

dm1(t)
dt

= −S1(t)× m1(t) (5)

S1(t) is the breakage rate of the first fraction at time t when the grinding process of the
minerals conforms to the first-order linear grinding dynamics model, that is, the breakage
rate function S1 is grinding-time-invariant. For the narrow-size feed, m1(0) =1, and the
integral for Equation (5) can be solved as follows:

ln[m1(t)/m1(0)] = −S1t (6)

Bi1 can be estimated in two ways, using
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(1) The G–H algorithm created by Kapur [7]:

lnMi(t)
lnM1(t)

= Bi1 −
Hi

2S1
t (7)

where Mi(t) is the oversize cumulative yield of the ith size at time t. The G–H algorithm
transferred the population balance model into functions G and H, making it readily com-
putable through iteration.

Figure 2. The logic diagram of the population balance model for narrow-size minerals.

(2) The BII algorithm created by Austin [35]:

Bi1 =
ln
[

1−pi(t)
1−pi(0)

]
ln
[

1−p2(t)
1−p2(0)

] (8)

where pi(t) is the undersize cumulative yield of the ith size at time t. The BII algorithm,
whose premise is that there is no repeated fragmentation, can be seen as a special form of
the G–H algorithm.

Since the Austin empirical formula is the most widely used, the results for Bi1 are
expressed using the following formula [10]:

Bi1 = ϕ(
xi−1

x1
+ (1 − ϕ)(

xi−1

x1
)

β
(9)

where ϕ, γ, and β are constant parameters.
ϕ: the fraction of the relatively coarser that are produced in a single fracture step,

dependent on the mineral used and ranging from 0 to 1 [36];
γ: the characteristic of the mineral used;
β: mineral-dependent parameter, the values of which are typically found to be greater

than 0.6. It can be seen from Equation (9) that the Austin empirical formula is a sum of
two power functions, which increases the uncertainty of the fit and leads to a large error in
its parameters.
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The grinding kinetics model can be derived by combining Matrix (3), Equation (6),
and Equation (9): {

mi(t) = e−S1t; (i = 1)

mi(t) = e−S1[ϕ(
xi−1

x1
)

γ
+(1−ϕ)(

xi−1
x1

)β ]t; (i > 1)
(10)

2.2. Method II

Before introducing Method II, there are some parameters that need to be defined: mi(t)
is the mass fraction of the size class i at time t in the discharge. If there are a total number
of n size classes in the discharge, m1(t) is the coarsest size class, mn(t) is the finest size class,
and Mi(t) is the cumulative mass fraction coarser than the size class i at time t, which can
be derived as follows:

∑i
1 mi(t) = Mi(t) (11)

where Yi(t) is the cumulative mass fraction finer than the size class i at time t, which can be
derived as follows:

∑n
i−1 mi(t) = Yi(t) (12)

For the narrow-size fraction of minerals with a constant breakage rate function and the
loss of the coarsest size class no more than 65%, a fairly significant zero-order production
of fines is characterized by [9,37]

dYi(t)
dt

= Ki (13)

where Ki is the zero-order rate constant for the production of fines smaller than size class
i. Since the breakage characteristics of the coarsest size class (m1(t)) are consistent with
the first-order grinding kinetics, and the fine size class (mn(t)) has a significant zero-order
production relationship, after the cumulative mass fraction coarser than size class i (Mi(t))
in the discharge is analyzed, it is found to follow the significant first-order grinding kinetics
as well [38]:

dMi(t)
dt

= −gi × Mi(t) (14)

where gi is the rate constant for the size class i at time t. Meanwhile, gi is also a function of
size i:

gi = k0 + k1xa
i (15)

where xi is size I; k1 is a parameter related to the condition of grinding; a is the constant for
particle size distribution; and k0 is a parameter for experimental chance error whose value
is negligible if the experiment operation is proper. Compared with the Austin empirical
formula of Method I, Equation (15) is only a single power function, which will greatly
reduce the parameter error and make the fit more accurate. Integrating Equation (14) into
Equation (15), we have:

Mi(t) = e−(k0+k1xa
i )t (16)

The grinding kinetics model can be derived as follows:

mi(t) = Mi(t)− Mi−1(t), (i > 1) (17)

This is also known as:{
mi(t) = e−S1t; (i = 1)

mi(t) =
[
e(k1xa

i ) − e(k1xa
i−1)

]
e−k0t; (i > 1)

(18)

3. Material and Experimental Method
3.1. Material

The pure magnetite used in this study came from Guangdong Province, China. The
bulk density of the magnetite was 2980 kg/m3, measured using the helium replacement
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method. Large magnetite rocks were crushed with a laboratory jaw crusher, and because
Gupta [24] warned against jaw crushing in preparation for batch testing, this was followed
by a second process using a laboratory grinding roller (a mini high-pressure grinding roller
used in the laboratory) to ensure that particles did not have internal cracks that would
weaken them and thus bias the results. Subsequently, the feed was wet-classified using
a sieve shaker, and the fractions of feeds for the experiment were −0.600 + 0.425 mm,
−0.425 + 0.300 mm, −0.300 + 0.212 mm, −0.212 + 0.150 mm, and −0.150 + 0.106 mm.

3.2. Experimental Method

In this study, a batch wet ball mill was used. The tests were carried out in an XBM ball
mill with a speed of 85 r/min and a cylinder volume of 2 L (Φ 120 mm × 175 mm). The
weight of the feed was obtained using the following equation:

W = V × J × 0.38 ×∅m × δ (19)

where W is the weight of the feed, kg; V is the effective volume, L; J is the filling rate
of the mill, 20%; 0.38 is the porosity of the grinding media; ∅m is the ratio of the feed
volume to the clearance volume of steel balls, which were the media, 60%; δ is the bulk
density of the feed, t/m3. The mass concentration of the slurry was 67%. The parameters
of the ball mill were kept unchanged, and the feed was ground for 2 min, 4 min, 6 min,
8 min, and 10 min. The particle size distribution of the grinding products was measured
using standard sieves, and the interval was 2−1/2, the most satisfactory for the first-order
grinding kinetics [35]. Table 1 shows the particle size range of the grinding products, and
Table 2 shows the operating conditions.

Table 1. Particle size range of the grinding products.

Fractions Size Class (mm)

Fraction 1 −0.600 + 0.425
Fraction 2 −0.425 + 0.300
Fraction 3 −0.300 + 0.212
Fraction 4 −0.212 + 0.150
Fraction 5 −0.150 + 0.106
Fraction 6 −0.106 + 0.075
Fraction 7 −0.075 + 0.053
Fraction 8 −0.053 + 0.045
Fraction 9 −0.045 + 0.038

Table 2. The operating conditions of the grinding products.

Conditions Value

Media Steel ball
Weight of the media (g) 1940
Size of the media (mm) 25

Bulk density of the media (t/m3) 4.85
Filling rate of the media (%) 20

Slurry concentration by mass (%) 67
Cylinder diameter (cm) 15

Speed (r/min) 85
Volume (L) 2

In this experiment, we used the wet-sieving method, which is sieving in a basin with
water. Particles smaller than the sieve hole will pass through the sieve into the water
basin and make it cloudy. Water in the basin is replaced every 2–3 min until it is clear
after sieving, which means the end of the operation. Grinding experiment data is listed in
Supplementary Materials.
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4. Results and Discussion
4.1. Method I

The test results obtained from Equation (6) are shown in Figure 3. In the range of
the feed fractions, magnetite met the first-order linear grinding kinetics, and the slope of
the straight line was the breakage rate function of magnetite in this feed fraction. Table 3
shows the linear fitting equation for each fraction and its linear correlation. As can be
seen, the value of the breakage rate function dropped from 0.25 min−1 to 0.15 min−1 as the
particle size decreased. The reason for this phenomenon is that the compressive strength of
mineral particles increased as the particle size decreased, which directly caused difficulty
in grinding the mineral, also known as the size effect of the particle. Theoretically, the fitted
curves of each fraction should pass through the origin of the coordinate axes; however, the
fitted curves of the five feed fractions in this test all had vertical intercepts, and the sieving
error was the main reason for this problem. Nevertheless, this can be introduced into the
breakage parameter correction and has no influence on the calculation of the breakage
rate function.

Figure 3. Breakage behavior of magnetite for various feed fractions.

Table 3. The operating conditions of the discharge.

Feed Fractions (mm) Fitting Equation Adj.R2

−0.600 + 0.425 Y = −0.25t − 0.02 0.9954
−0.425 + 0.300 Y = −0.23t − 0.09 0.9771
−0.300 + 0.212 Y = − 0.22t − 0.01 0.9927
−0.212 + 0.150 Y = − 0.16t − 0.04 0.9920
−0.150 + 0.106 Y = − 0.15t − 0.09 0.9915

Note: Y = Ln[mi(t)/m1(0)].

In this study, the G–H and BII algorithms were used to calculate the values of the
cumulative breakage distribution function Bi1. When the grinding kinetic model is a first-
order linear type, in the G–H algorithm, [lnMi(t)]/[lnM1(t)] is a function of grinding time t,
and Bi1 is the vertical coordinate intercept when t = 0.

Figure 4 shows the result of the G–H algorithm. For a feed fraction of −0.600 + 0.425 mm,
the value of Bi1 was between 0 and 0.4, and the smaller the particle size, the finer the
value of Bi1 was. Furthermore, because the breakage characteristic was abrasion, it was
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outstandingly characterized by a low yield of intermediate daughter fractions, resulting in
a more convergent value of Bi1 within a certain particle size range. Generally, as the feed
fraction becomes finer, the decrease in the number of daughter fractions leads to an increase
in the Bi1 value of each daughter fraction.

Figure 4. G–H algorithm plot for magnetite wet-grinding experiment.

When using the BII algorithm to calculate the cumulative breakage distribution func-
tion, a relatively short grinding time was chosen, and the appropriate grinding time was
generally no more than 65% of the breakage rate of the feed fractions. When the grinding
time of the magnetite ore was 2 min, only 45.75% of −0.600 + 0.425 mm magnetite was
crushed, which was in line with the range of the BII algorithm.

The calculation results of the two algorithms were brought into the Austin empir-
ical formula, and the fitting results are shown in Figure 5. The curves fitted using the
two methods were relatively similar, and the values of the fragmentation parameters ϕ,
γ, and β for the magnetite produced with the fit are summarized in Table 4 for a better
comparison of the two algorithms. The parameter values obtained using the two methods
showed very little variation and were within the error of the calculation results. Taking the
−0.600 + 0.425 mm grain size as an example, the maximum calculation error was only 0.03,
and hence it can be concluded that the calculation of Bi1 was relatively accurate. However,
when it came to the finest feed fraction −0.150 + 0.106 mm, the fitting results were far
from the results of other coarser feed fractions. One possible reason for the difference is
that fewer data points were used for fitting, resulting in larger fitting errors, and another
possible reason is that it was more difficult to determine the endpoint of sieving in the finer
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fractions, leaving a larger experimental error. It was critical to have sufficient data points in
the fit, and the number of data points should preferably be more than five.

Figure 5. Austin empirical formula for magnetite wet-grinding experiment.

Table 4. Breakage distribution function parameters for magnetite.

Feed Fractions (mm) Algorithm ϕ γ β

−0.600 + 0.425
G–H algorithm 0.67 5.18 0.93
BII algorithm 0.64 5.16 0.95

−0.425 + 0.300
G–H algorithm 0.66 5.26 0.81
BII algorithm 0.67 5.26 0.80

−0.300 + 0.212
G–H algorithm 0.60 5.92 0.59
BII algorithm 0.60 5.92 0.69

−0.212 + 0.150
G–H algorithm 0.52 6.27 0.80
BII algorithm 0.56 6.27 0.78

−0.150 + 0.106
G–H algorithm 0.63 3.51 0.60
BII algorithm 0.65 3.51 0.59

γ is a parameter indicating the magnitude of the mechanical strength. As the feed size
decreased, the γ value gradually increased, which was another manifestation of the size
effect of the particles.

4.2. Method II

It was found that the variation in t would not affect the change rate of the cumulative
mass fraction coarser than size class i at time t; Mi(t) also followed the first-order grinding
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kinetics. Taking −0.600 + 0.425 mm as an example, Figure 6 shows that ln[Mi(t)]/M1(0)]
changed in characteristics after grinding time t, suggesting a high linear fit correlation
between ln[Mi(t)]/M1(0)] and t. Additionally, the fitting equation and linear fit correlation
coefficient R2 are shown in Table 5. The R2 of the last two size classes decreased because of
their lower yields, the fitting results of which would be greatly affected by experimental
chance errors. The gi value gradually decreased as the particle size became finer, indicating
that the generation rate of the fine particle size was significantly lower than that of the
coarse particle size.

Figure 6. Variation characteristics of cumulative yield oversize in discharge.

Table 5. The fitting equation and linear fit correlation coefficient R2 of ln[Mi(t)]/M1(0)] − t.

Size Classes (mm) Fitting Equation R2

−0.600 + 0.425 Y = −0.23t − 0.09 0.9982
−0.425 + 0.300 Y = −0.14t + 0.09 0.9955
−0.300 + 0.212 Y = −0.08t + 0.06 0.9950
−0.212 + 0.150 Y = −0.06t + 0.05 0.9940
−0.150 + 0.106 Y = −0.04t + 0.03 0.9960
−0.106 + 0.075 Y = −0.03t + 0.02 0.9940
−0.075 + 0.053 Y = −0.02t + 0.02 0.9931
−0.053 + 0.045 Y = −0.02t + 0.02 0.9914
−0.045 + 0.038 Y = −0.02t + 0.02 0.9884

Note: Y = Ln[Mi(t)/M1(0)].

Figure 7 shows the variation in the gi value with different particle sizes. Additionally,
taking the value of −0.600 + 0.425 mm as an example, the values of k0, k1, and a were 0.007,
0.786, and 1.666, respectively, by fitting the gi function, and the R2 value was 0.9978. The
parameters calculated with regression were plugged into Equation (15):

gi = 0.007 + 0.786x1.666
i (20)
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Figure 7. Variation characteristics of gi in daughter fractions.

Since k0 is a parameter for the experimental chance error, when its value tends to be 0,
it can be neglected, so Equation (20) can be abbreviated as follows:

gi = 0.786x1.666
i (21)

The final grinding kinetic model calculated using Method II was obtained by combin-
ing Equations (18) and (21):{

mi(t) = e−0.23t; (i = 1)
mi(t) =

[
e(0.786x1.666

i ) − e(0.786x1.666
i−1 )

]
e−t; (i > 1)

(22)

The remaining four feed fractions were calculated according to the above method, and
the values of the calculated parameters k1, k2, and a are shown in Table 6.

Table 6. Values of each parameter for different feed fractions.

Feed Fractions (mm) K1 K2 a

−0.600 + 0.425 0.007 0.786 1.666
−0.425 + 0.300 0.005 1.756 2.525
−0.300 + 0.212 0.010 2.409 1.819
−0.212 + 0.150 0.006 3.456 1.870
−0.150 + 0.106 0.053 3.048 1.515

4.3. Simulation and Comparison

While processing the grinding of magnetite, the breakage rate function S1 can be
determined using Equation (6), the cumulative breakage distribution function Bi1 can be
generated using Equation (9), and the rate constant gi can be calculated using Equation (15).
These parameters were input into Equations (10) and (18) for simulation, and the models
derived from the two methods for each of the feed fractions are shown in Table 7 (when
i = 1, the two methods yield the same model, so they are not listed). Because Method II
involves fewer parameters, the final model is simpler than Method I.
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Table 7. The model derived from the two methods for each of the feed fractions (i > 1).

Feed Fractions (mm) Method Model

−0.600 + 0.425
I mi(t) = e−0.25[0.67(

xi−1
x1

)
5.18

+0.33(
xi−1

x1
)0.93]t

II mi(t) =
[
e(0.786x1.666

i ) − e(0.786x1.666
i−1 )

]
e−t

−0.425 + 0.300
I mi(t) = e−0.23[0.66(

xi−1
x1

)
5.26

+0.34(
xi−1

x1
)0.81]t

II mi(t) =
[
e(1.756x2.525

i ) − e(1.756x2.525
i−1 )

]
e−t

−0.300 + 0.212
I mi(t) = e−0.22[0.60(

xi−1
x1

)
5.92

+0.40(
xi−1

x1
)0.59]t

II mi(t) =
[
e(2.409x1.819

i ) − e(2.409x1.819
i−1 )

]
e−t

−0.212 + 0.150
I mi(t) = e−0.16[0.52(

xi−1
x1

)
6.27

+0.48(
xi−1

x1
)0.80]t

II mi(t) =
[
e(3.456x1.870

i ) − e(3.456x1.870
i−1 )

]
e−t

−0.150 + 0.106
I mi(t) = e−0.15[0.63(

xi−1
x1

)
3.51

+0.37(
xi−1

x1
)0.60]t

II mi(t) =
[
e(3.048x1.515

i ) − e(3.048x1.515
i−1 )

]
e−t

Simulation results and their fitting with the experimental data of −0.600 + 0.425 mm
are shown in Figure 8. Both methods obtained satisfactory fitting results, and the experi-
mental data overlapped well with the calculated data from simulations, suggesting that
in general, both methods could be used to describe the size characteristics of the grinding
product. The curve obtained using the model of Method II was smoother than the fit
of Method I because Method I involved iterative fitting, and the error was significantly
magnified in the process of obtaining the two fits. In addition, when the model of Method
I was used to predict the cumulative yield undersize for the fine particle size (less than
40 µm), there was a large relative error in the calculation of the cumulative distribution
function, resulting in a relatively large error in the final fitting results.

Figure 8. Simulations using the two methods in the grinding of −0.600 + 0.425 mm magnetite.

Table 8 demonstrates a comparison between the results of simulation calculations and
the actual experiment for each fraction using the two methods after grinding for 2 min. The
maximum error between the simulation calculations and the experimental results did not
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exceed 1%, indicating that the value of fragmentation parameters of magnetite was correct.
Therefore, it can be assumed that the mathematical models derived from the two methods
can make theoretical predictions and determine the particle size characteristics of narrow-
size magnetite grinding products.

Table 8. The comparison of the simulation by two methods (grinding for 2 min).

Size/mm Experimental Method I Method II Error I Error II

0.425 45.75 45.12 45.12 −0.63 −0.63
0.300 20.21 20.23 20.19 0.02 −0.02
0.212 11.94 11.75 12.42 −0.19 0.48
0.150 8.17 8.15 7.75 −0.02 −0.42
0.106 5.42 5.07 5.01 −0.35 −0.41
0.075 4.19 3.92 3.44 −0.27 −0.75
0.053 3.12 2.96 2.54 −0.16 −0.57
0.045 2.66 2.47 2.27 −0.19 −0.39
0.038 2.27 2.18 2.06 −0.09 −0.21

Standard error - - -

The comparison results for when the grinding time was 4 min are summarized in
Table 9. The error of each size using Method II was basically below 2% mass fraction,
but the error of Method I was around 3% mass fraction, especially for 0.300 mm with the
error reaching 4.49% mass fraction. Overall, the fit of Method II was significantly better
than that of Method I, and the prediction of the grinding product’s size characteristics was
more accurate.

Table 9. The comparison of the simulation using the two methods (grinding for 4 min).

Size/mm Experimental Method I Method II Error I Error II

0.425 61.50 65.35 60.01 3.86 −1.49
0.300 35.22 39.71 36.30 4.49 1.08
0.212 22.20 24.80 23.30 2.60 1.09
0.150 15.13 18.54 14.90 3.40 −0.24
0.106 11.33 12.37 9.77 1.04 −1.56
0.075 8.46 9.52 6.76 1.06 −1.69
0.053 6.03 6.76 5.03 0.73 −1.01
0.045 5.23 6.29 4.49 1.07 −0.74
0.038 4.42 6.01 4.07 1.59 −0.35

In general, compared with Method I, this method demonstrates two merits. First, it
demands less effort to calculate the value of the cumulative breakage distribution function
(Bij), which greatly reduces the overall computational process and workload and thus
generates higher fitting accuracy.

Second, the three parameters ϕ, γ, and β in Method I had some errors in the fitting
calculation, which caused a prediction bias [15]. To reduce these errors, some scholars
suggested that while calculating these parameters, the value of β could be first fixed
according to the results generated by peer researchers, so that the other two parameters
could be calculated. However, this effect is not obvious. Therefore, there are fewer derived
parameters in Method II for batch grinding, which means the number and degree of the
error for each parameter are limited, and thus there would be less negative effect on the
research of grinding characteristics. Additionally, it is worth mentioning that our recent
studies have confirmed that Method II is also more accurate for the case of wide-size
grinding.

Third, given the previous two advantages, this method could be applied in studying
the impact of parameters, such as rotational speed, diameter, etc., on the grinding status
with a simpler process and higher accuracy.
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However, as a new approach to grinding kinetics, Method II has only proven its
accuracy in batch grinding so far. Extensive work is still needed to verify its applicability
in continuous grinding.

5. Conclusions

Through the study of the breakage characteristics of five feed fractions taking the
simulation of −0.600 + 0.425 mm as an example (−0.600 + 0.425 mm, −0.425 + 0.300 mm,
−0.300 + 0.212 mm, −0.212 + 0.150 mm, and −0.150 + 0.106 mm), it was found that the
cumulative mass fraction coarser than the size class of the discharge was also consistent
with the first-order grinding kinetic model, and thus a new method of calculating grinding
kinetics was proposed on this basis. The maximum error between simulation calculations
and the actual experiment for each fraction using the two methods did not exceed 1%,
indicating that the value of the fragmentation parameters of magnetite were both correct.
The distribution function commonly used in the population balance model is a sum of
two power functions: Bi1 = ϕ(

xi−1
x1

+ (1 − ϕ)(
xi−1
x1

)
β. The gi function of the new approach

is only a single power function = +k1xa
i , which will greatly reduce the parameter error

and make the fit more accurate. Compared with the analytical solution derived from the
population balance model, the new approach solves the following two shortcomings of the
conventional method:

1. The huge amount of computation due to the calculation of Bi1;
2. The Non-negligible fitting error due to more derived parameters.
This new method is also applicable to minerals other than magnetite. Hence, the

new method could be applied in studying the impact of parameters, such as rotational
speed, diameter, etc., on the grinding status with a simpler process and higher accuracy.
Nevertheless, as a new approach to grinding kinetics, Method II has only proven its
accuracy in batch grinding so far. Further research is needed to verify its applicability in a
wide size range and continuous grinding.
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