# Mineralization Regularities of the Bainiuchang Ag Polymetallic Deposit in Yunnan Province, China

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Geological Background

_{2}t) unit (Figure 1b). The faults in the mining area are NW–SE-trending and include F

_{2}, F

_{3}, F

_{4}, F

_{5}, F

_{6}, F

_{7}and F

_{8}, which are all normal faults (Figure 1c). F

_{3}is the main ore-controlling fault, and the main ore bodies occur in the footwall of the fault. Deep prospecting in the southeast of the mine area has identified a fine- to coarse-grained biotite monzogranite that yields a zircon U–Pb age of 85.26 ± 0.54 Ma [6,22].

_{1}accounts for >90% of the total ore reserves. Ore body V

_{1}strikes 100° and dips 190° to the SW (with an angle of 15–20°), and has a strike length of 4.8 km, depth of dip up to 2.5 km (average = 1.31 km) and maximum thickness of 33.62 m (average = 5.65 m). The ore body occurs in the upper part of the middle Cambrian Tianpeng Formation near the F

_{3}fault (Figure 2). The main ore minerals are sphalerite, galena, Ag-bearing sulphides, chalcopyrite and cassiterite. The gangue minerals are quartz, calcite, dolomite and chlorite. The ore mainly has massive, laminated and vein-like forms. The ore has aggregate, mosaic and diffuse textures (Figure 3).

## 3. Raw Data and Methodology

#### 3.1. Database and Ore Body Model

#### 3.2. Correlation and Cluster Analysis

_{xy}denotes the sample correlation coefficient, S

_{xy}denotes the sample covariance, S

_{x}denotes the sample standard deviation of x and S

_{y}denotes the sample standard deviation of y.

#### 3.3. Factor Analysis

#### 3.4. Geological Significance of Zn/Pb Values

#### 3.5. Semivariogram

_{i}) is the value of property Z in position x

_{i}and Z(x

_{i}+ h) is the value of property Z in position x

_{i}+ h.

#### 3.6. Trend Surface Analysis

_{0}+ a

_{1}x +a

_{2}y and the second-order trend surface formula is f(x,y) = a

_{0}+ a

_{1}x + a

_{2}y + a

_{3}x

^{2}+ a

_{4}xy + a

_{5}y

^{2}.

^{2}; the closer to 1 the better), root-mean-square error (RMSE; the smaller the better), coefficient of variation (CoeffVar; the smaller the better) and the independence of the residuals (Durbin–Watson D; the closer to 2 the better) of the trend analysis results.

## 4. Results

#### 4.1. Correlation and Cluster Analysis

#### 4.2. Factor Analysis

_{1}and FAC

_{2}, are used in contours and trend surface analysis.

#### 4.3. Analysis of the Semivariogram of Zn/Pb Values

#### 4.4. Ore Grade Model and Distribution of Mineralization

_{1}and FAC

_{2}scores from factor analysis, the grades of each unit block were estimated by ordinary kriging to obtain an ore grade model for the ore body. A horizontal projection of the ore grade was constructed based on the element grades, Zn/Pb values and FAC

_{1}and FAC

_{2}scores of each unit block (Figure 10).

_{1}is the combination of Ag, Pb, and Zn, and the high-temperature factor score FAC

_{2}commonly overlaps those of the Sn and Zn/Pb values.

#### 4.5. Mineralization Trend Surface Analysis

^{2}, RMSE, CoeffVar and Durbin–Watson D values for each analysis result (Table 6). A first-order mineralization trend plane is plotted in Figure 11.

_{1}being weak in the south and strong in the north, and Sn, Zn/Pb values and FAC

_{2}being high in the south and low in the north. In general, the mineralization is enriched in Sn (high-temperature mineralization) in the south, Cu (medium-temperature mineralization) in the center, and Ag–Pb–Zn (medium-temperature mineralization) in the north.

## 5. Discussion

_{1}are weak in the south and strong in the north, while the mineralization intensity of Sn and high temperature factor score FAC

_{2}are strong in the south and weak in the north. We hypothesize that the high-Zn/Pb zone in the south represents the source of the ore-forming fluid, which precipitated the high-temperature element Sn in the south, Cu in the center and the medium-temperature elements Ag–Pb–Zn in the north, as the ore-forming fluid migrated from south to north.

## 6. Conclusions

_{1}and Sn–Zn/Pb–FAC

_{2}mineralization, which is highly correlated and indicates the reliability of the statistical results.

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Wang, J.; Zhou, Y.Z.; Xiao, F. Identification of multi-element geochemical anomalies using unsupervised machine learning algorithms: A case study from Ag–Pb–Zn deposits in north-western Zhejiang, China. Appl. Geochem.
**2020**, 120, 104679. [Google Scholar] [CrossRef] - Liu, J.S.; Zhang, H.P.; Ouyang, Y.F.; Zhang, C.H. Bainiuchang super-large silver-polymetallic ore deposit related to granitic magmatism in Mengzi, Yunnan. J. Cent. South Univ. Technol.
**2007**, 14, 568–574. [Google Scholar] [CrossRef] - Zhou, Y.Z.; Chen, C.; Zhang, Q.; Wang, G.W.; Xiao, F.; Shen, W.J.; Bian, J.; Wang, Y.; Yang, W.; Jiao, S.T.; et al. Introduction of tools for geological big data mining and their applications. Geotecton. Metallog.
**2020**, 44, 173–182. [Google Scholar] [CrossRef] - Shirazi, A.; Hezarkhani, A.; Pour, A.B. Fusion of lineament factor (Lf) map analysis and multifractal technique for massive sulfide copper exploration: The Sahlabad area, East Iran. Minerals
**2022**, 12, 549. [Google Scholar] [CrossRef] - Aali, A.A.; Shirazy, A.; Shirazi, A.; Pour, A.B.; Hezarkhani, A.; Maghsoudi, A.; Hashim, M.; Khakmardan, S. Fusion of Remote Sensing, Magnetometric, and Geological Data to Identify Polymetallic Mineral Potential Zones in Chakchak Region, Yazd, Iran. Remote Sens.
**2022**, 14, 6018. [Google Scholar] [CrossRef] - Zhang, H.P.; Liu, J.S.; Li, X.B.; Zhang, X.L. Relationship of granites to tin, silver, copper, lead, zinc, polymetallic deposits in southeastern Yunnan, China. Contrib. Geol. Miner. Resour. Res.
**2006**, 21, 87–90. [Google Scholar] - Du, S.J.; Wen, H.J.; Liu, S.R.; Qin, C.J.; Yan, Y.F.; Yang, G.S.; Feng, P.Y. Mineralogy and Metallogenesis of the Sanbao Mn–Ag (Zn-Pb) Deposit in the Laojunshan Ore District, SE Yunnan Province, China. Minerals
**2020**, 10, 650. [Google Scholar] [CrossRef] - Alizadeh, A.A.; Guliyev, I.S.; Kadirov, F.A.; Eppelbaum, L.V. Economic Minerals of Azerbaijan. In Geosciences of Azerbaijan: Volume II: Economic Geology and Applied Geophysics; Springer: Cham, Switzerland, 2017; pp. 25–106. Available online: https://www.researchgate.net/publication/306092265 (accessed on 2 February 2023).
- U.S. Geological Survey. Mineral Commodity Summaries 2022: U.S. Department of the Interior and U.S. Geological Survey. 200p. Available online: https://pubs.er.usgs.gov/publication/mcs2022 (accessed on 14 October 2022).
- Jiang, X.P. A probe into features of mineral deposits and mineralization on Ag-polymetal ore, Bainiuchang area, Mengzi county. Yunnan Geol.
**1990**, 9, 291–307. [Google Scholar] - Liu, J.S.; Zhang, H.P.; Fang, W.X.; Guo, J.; Zhang, X.L. Problems pertaining to Bainiuchang silver, polymetallic deposit in Mengzi country, Yunan. China
**2005**, 7, 238–244. [Google Scholar] - Li, K.W.; Geng, J.Z.; Liu, H.; Zhang, Q.; Wang, D.P.; Cai, Y. Polymetallic mineralization related to late Yanshanian magmatism in southeast Yunnan. Acta Mineral. Sin.
**2011**, 31, 607–608. (In Chinese) [Google Scholar] [CrossRef] - Li, K.W.; Zhang, Q.; Wang, D.P.; Cai, Y.; Liu, Y.P. LA-ICP-MS U-Pb zircon dating of the Bozhushan granite in Southeast Yunnan. Chin. J. Geochem.
**2013**, 32, 170–180. [Google Scholar] [CrossRef] - Zhang, Y.H.; Zhang, S.T.; Liu, H.W. A Comparative Study on Ore- Controlling Factors of Large- Scale Polymetallic Ore Deposits in Bozhushan Area of Southeast Yunnan. J. Kunming Univ. Sci. Technol. Sci. Technol.
**2012**, 37, 1–7. [Google Scholar] - Zhou, J.P.; Xu, K.Q.; Hua, R.M.; Zhao, Y.Y. A discussion on genesis of the tin polymetallic sulfide deposits of southeastern Yunnan. Yunnan Geol.
**1997**, 16, 309–349. [Google Scholar] - Chen, X.M.; Deng, J.; Bai, J.G.; Shen, C.H. Mineralization fluid system of Palaeozoic sedimentary basin at Bainiuchang, Yunnan Province. GeoScience
**2000**, 14, 175–178. [Google Scholar] - Zhu, C.H.; Zhang, Q.; He, Y.L. The characteristics of mineralizing elements of the Bainiuchang silver Polymetallic deposit in southeastern Yunnan. Bull. Mineral. Petrol. Geochem.
**2005**, 24, 327–332. [Google Scholar] - Chen, X.C.; Hu, R.Z.; Bi, X.W.; Zhong, H.; Lan, J.B.; Zhao, C.H.; Zhu, J.J. Zircon U–Pb ages and Hf–O isotopes, and whole-rock Sr–Nd isotopes of the Bozhushan granite, Yunnan province, SW China: Constraints on petrogenesis and tectonic setting. J. Asian Earth Sci.
**2015**, 99, 57–71. [Google Scholar] [CrossRef] - Jian, L. Superimposed Mineralization System and Metallogenic Model of Bainiuchang Super Large Polymetallic Deposits, Southeastern Yunnan, China. Ph.D. Dissertation, Kunming University of Science and Technology, Kunming, China, 2016. Available online: https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CDFDLAST2017&filename=1016197509.nh (accessed on 11 October 2022).
- Cheng, Y.B.; Mao, J.W.; Chen, X.L.; Li, W. LA-ICP-MS zircon U-Pb dating of the Bozhushan granite in southeastern Yunnan Province and its significance. J. Jilin Univ. Earth Sci. Ed.
**2010**, 40, 869–878. [Google Scholar] [CrossRef] - Wang, Q.; Li, J.W.; Jian, P.; Zhao, Z.H.; Xiong, X.L.; Bao, Z.W.; Xu, J.F.; Li, C.F.; Ma, J.L. Alkaline syenites in eastern Cathaysia (South China): Link to Permian–Triassic transtension. Earth Planet. Sci. Lett.
**2005**, 230, 339–354. [Google Scholar] [CrossRef] - Yang, G.S.; Wang, K.; Yan, Y.F.; Jia, F.J.; Li, P.Y.; Mao, Z.B.; Zhou, Y. Genesis of the ore-bearing skarns in Laojunshan Sn-W-Zn-In polymetallic ore district, southeastern Yunnan Province, China. Acta Petrol. Sin.
**2019**, 35, 3333–3354. [Google Scholar] [CrossRef] - Shiker, M.A.K. Multivariate statistical analysis. Br. J. Sci.
**2012**, 6, 55–66. Available online: https://www.researchgate.net/publication/319808256_Multivariate_Statistical_Analysis (accessed on 15 October 2022). - Zhou, S.G.; Zhou, K.F.; Wang, J.L.; Yang, G.F.; Wang, S.S. Application of cluster analysis to geochemical compositional data for identifying ore-related geochemical anomalies. Front. Earth Sci.
**2018**, 12, 491–505. [Google Scholar] [CrossRef] - Cheng, Q.; Agterberg, F.P.; Ballantyne, S.B. The separation of geochemical anomalies from background by fractal methods. J. Geochem. Explor.
**1994**, 51, 109–130. [Google Scholar] [CrossRef] - Afzal, P.; Mirzaei, M.; Yousefi, M.; Adib, A.; Khalajmasoumi, M.; Zarifi, A.Z.; Foster, P.; Yasrebi, A.B. Delineation of geochemical anomalies based on stream sediment data utilizing fractal modeling and staged factor analysis. J. Afr. Earth Sci.
**2016**, 119, 139–149. [Google Scholar] [CrossRef] - Krumbein, W.C.; Graybill, F.A. An Introduction to Statistical Models in Geology; McGraw-Hill: New York, NY, USA, 1965. [Google Scholar]
- Johnson, R.A.; Wichern, D.W. Applied Multivariate Statistical Data Analysis, 6th ed.; Pearson: London, UK, 2007. [Google Scholar]
- Ouchchen, M.; Boutaleb, S.; Abia, E.H.; El Azzab, D.; Miftah, A.; Dadi, B.; Echogdali, F.Z.; Mamouch, Y.; Pradhan, B.; Santosh, M.; et al. Exploration targeting of copper deposits using staged factor analysis, geochemical mineralization prospectivity index, and fractal model (Western Anti-Atlas, Morocco). Ore Geol. Rev.
**2022**, 143, 104762. [Google Scholar] [CrossRef] - Li, J.Z. Separation polymerization of lead and zinc and its mineralization significance endogenous process-Source of metallogenic material in lead-zinc deposit in Wubu, Zhejiang. J. Guilin Inst. Metall. Geol.
**1984**, 1, 39–48, (In Chinese with English abstract). [Google Scholar] - Liu, Y.J. Element Geochemistry; Geological Publishing House: Beijing, China, 1984; 548p. (In Chinese) [Google Scholar]
- Zhai, Y.S.; Lin, X.D. Study of Orefield Structure; Geological Publishing House: Beijing, China, 1993; pp. 1–214. (In Chinese) [Google Scholar]
- Zeng, Q.F. On Hydrothermal Metallogenic Conditions; Science Press: Beijing, China, 1986; pp. 1–286. (In Chinese) [Google Scholar]
- Kyle, J.R.; Li, N. Jinding: A giant Tertiary sandstone-hosted Zn-Pb deposit, Yunnan, China. SEG Discov.
**2002**, 50, 1–16. [Google Scholar] [CrossRef] - Xue, C.J.; Zeng, R.; Liu, S.W.; Chi, G.X.; Qing, H.R.; Chen, Y.C.; Yang, J.M.; Wang, D.H. Geologic, fluid inclusion and isotopic characteristics of the Jinding Zn–Pb deposit, western Yunnan, South China: A review. Ore Geol. Rev.
**2007**, 31, 337–359. [Google Scholar] [CrossRef] - Cressie, N.A.C. Statistics for Spatial Data, Revised Edition. Biometrics
**1994**, 50, 319. [Google Scholar] [CrossRef] - Niemietz, K.; Wagner, A.; Gründig-Wendrock, B.; Stoyan, D.; Niklas, J.R. Variogram analysis of charge-carrier effective lifetime topograms in mc-Si materials. Sol. Energy Mater. Sol. Cells
**2010**, 94, 164–170. [Google Scholar] [CrossRef] - Cambardella, C.A.; Moorman, T.B.; Novak, J.M.; Parkin, T.B.; Karlen, D.L.; Turco, F.F.; Konopka, A.E. Field-Scale variability of soil properties in Central Iowa Soil. Soil Sci. Soc. Am. J.
**1994**, 58, 1501–1511. [Google Scholar] [CrossRef] - Agterberg, F.P. Geomathematics; Elsevier: Amsterdam, The Netherlands, 1974; 596p. [Google Scholar]
- Davis, J.C.; Sampson, R.J. Statistics and Data Analysis in Geology; Wiley: New York, NY, USA, 1986; p. 646. [Google Scholar]
- Unwin, D.J. Trend Surface Models. International Encyclopedia of Human Geography; Elsevier: Oxford, UK, 2009; pp. 484–488. [Google Scholar]
- Kaiser, H.F. The application of electronic computers to factor analysis. Educ. Psychol. Meas.
**1960**, 20, 141–151. [Google Scholar] [CrossRef]

**Figure 1.**Geological maps of the Bainiuchang deposit. (

**a**) Simplified map of Eastern Asia showing major tectonic units (modified using Ref. [21]). (

**b**) Regional geological map (modified using Ref. [22]). (

**c**) Geological map of the Bainiuchang mine area: 1. Devonian strata; 2. middle Cambrian Longha Formation; 3. middle Cambrian Tianpeng Formation; 4. middle Cambrian Dayakou Formation; 5. lower Cambrian Chongzhuang Formation; 6. Yanshanian granite and granitic porphyry (γπ); 7. diabase; 8. ore body; 9. fault; and 10. exploration line and drill hole.

**Figure 2.**Cross-section along exploration line 66 (Figure 1c): 1. Devonian strata; 2. Middle Cambrian Longha Formation; 3. Middle Cambrian Tianpeng Formation; 4. Fault; 5. Geological boundary; 6. Ore body; and 7. drill hole.

**Figure 3.**Photographs of the ores and their microscopic features. (

**a**) Massive ore; (

**b**) laminated ore; (

**c**) veined ore; (

**d**) galena replacing pyrrhotite; (

**e**) sphalerite and freibergite replacing pyrrhotite; (

**f**) galena and sphalerite replacing pyrrhotite; (

**g**) chalcopyrite replacing sphalerite and galena; (

**h**) sphalerite and pyrite enclosing automorphic cassiterite, with a mosaic texture; and (

**i**) chalcopyrite and pyrrhotite enclosing automorphic cassiterite, with a mosaic texture. Cp = chalcopyrite; Ct = cassiterite; Fr = freibergite; Gn = galena; Po = pyrrhotite; Py = pyrite; and Sp = sphalerite.

**Figure 7.**Factor analysis results. (

**a**) Scree plot; (

**b**) Factor score plot of samples (FAC

_{1}–FAC

_{2}) and component arrows of elements.

**Figure 9.**Semivariogram map of lg(Zn/Pb) values. (

**a**) Omnidirectional semivariogram distribution map; (

**b**) 100° direction semivariogram; (

**c**) 10° direction semivariogram.

**Figure 10.**Horizontal projection of the ore grades and distribution of mineralization: (

**a**) Ag; (

**b**) Pb; (

**c**) Zn; (

**d**) Sn; (

**e**) Cu; (

**f**) Zn/Pb; (

**g**) FAC

_{1}= medium-temperature factor score; (

**h**) FAC

_{2}= high-temperature factor score.

**Figure 11.**Horizontal projection of the ore body and the first-order trend surface of the mineralization: (

**a**) Ag; (

**b**) Pb; (

**c**) Zn; (

**d**) Sn; (

**e**) Cu; (

**f**) Zn/Pb; (

**g**) FAC

_{1}= medium-temperature factor score; (

**h**) FAC

_{2}= high-temperature factor score.

Projects | Quantities | Total Length | No. of Samples | Samples of the Ore |
---|---|---|---|---|

Drill hole | 408 | 164,631 m | 5967 | 1314 |

tunnel | 992 | 40,400 m | 9079 | 2776 |

Total | 1400 | 205,031 m | 15,046 | 4090 |

Ag | Pb | Zn | Sn | Cu | Zn/Pb | ||
---|---|---|---|---|---|---|---|

Ag | Pearson Correlation Sig.(2-tailed) | 1.000 | |||||

Pb | Pearson Correlation Sig.(2-tailed) | 0.802 ** 0.000 | 1.000 | ||||

Zn | Pearson Correlation Sig.(2-tailed) | 0.563 ** 0.000 | 0.638 ** 0.000 | 1.000 | |||

Sn | Pearson Correlation Sig.(2-tailed) | 0.094 ** 0.000 | 0.070 ** 0.000 | 0.167 ** 0.000 | 1.000 | ||

Cu | Pearson Correlation Sig.(2-tailed) | 0.004 0.782 | −0.127 ** 0.000 | −0.107 ** 0.000 | −0.032 * 0.042 | 1.000 | |

Zn/Pb | Pearson Correlation Sig.(2-tailed) | −0.095 ** 0.000 | −0.102 ** 0.000 | 0.319 ** 0.000 | 0.110 ** 0.000 | −0.007 0.667 | 1.000 |

Elements | Factor 1 | Factor 2 |
---|---|---|

Ag | 0.879 | −0.261 |

Pb | 0.914 | −0.242 |

Zn | 0.836 | 0.307 |

Sn | 0.217 | 0.480 |

Cu | −0.151 | −0.110 |

Zn/Pb | 0.083 | 0.876 |

Percent of variance (%) | 39.726 | 20.489 |

Cumulative loading (%) | 39.726 | 60.215 |

Number of Samples | Minimum | Maximum | Mean | Variance | Standard Deviation | Coefficient of Variation | |
---|---|---|---|---|---|---|---|

Zn/Pb | 15,294 | 0.001 | 356.980 | 4.281 | 217.585 | 14.751 | 3.446 |

lg(Zn/Pb) | 15,294 | −2.000 | 2.553 | 0.247 | 0.194 | 0.440 | 1.786 |

Direction | Nugget | Sill | Range | Nugget/Sill | ME | RMSE | MSE | RMSS |
---|---|---|---|---|---|---|---|---|

100° | 0.706 | 0.959 | 91.061 | 0.736 | 0.000 | 0.296 | 0.000 | 1.009 |

10° | 0.698 | 0.938 | 50.480 | 0.744 | 0.000 | 0.297 | 0.001 | 1.007 |

**Table 6.**General ANOVA for significance of increasing degree of trend surfaces from first to third degree.

Degree | P | R^{2} | RMSE | CoeffVar | Durbin– WatsonD | |
---|---|---|---|---|---|---|

Ag | First | <0.0001 | 0.00200 | 59.32018 | 62.48622 | 0.00000 |

Second | 0.0012 | 0.00299 | 59.29733 | 62.46215 | 0.01000 | |

Third | 0.0012 | 0.00299 | 59.29733 | 62.46215 | 0.01000 | |

Pb | First | 0.0002 | 0.00236 | 0.89989 | 81.76063 | 0.00360 |

Second | 0.0007 | 0.00241 | 0.89995 | 81.76569 | 0.00371 | |

Third | 0.0007 | 0.00241 | 0.89995 | 81.76568 | 0.00371 | |

Zn | First | 0.0067 | 0.00005 | 1.75923 | 85.90814 | 0.00005 |

Second | 0.0082 | 0.00006 | 1.75934 | 85.91320 | 0.00011 | |

Third | 0.0082 | 0.00006 | 1.75934 | 85.91320 | 0.00011 | |

Sn | First | <0.0001 | 0.00711 | 0.31191 | 62.15284 | 0.01035 |

Second | 0.0002 | 0.00793 | 0.31185 | 62.14134 | 0.01200 | |

Third | 0.0002 | 0.00793 | 0.31185 | 62.14133 | 0.01200 | |

Cu | First | <0.0001 | 0.02900 | 0.19243 | 37.84532 | 0.04613 |

Second | <0.0001 | 0.02900 | 0.19243 | 37.84532 | 0.04613 | |

Third | <0.0001 | 0.03065 | 0.19232 | 37.82383 | 0.04795 | |

Zn/Pb | First | 0.0178 | 0.00038 | 2.19412 | 105.67910 | 1.11281 |

Second | 0.0234 | 0.00061 | 2.19410 | 105.67820 | 1.11324 | |

Third | 0.0235 | 0.00061 | 2.19410 | 105.67820 | 1.11324 | |

FAC_{1} | First | <0.0001 | 0.04344 | 1.00988 | −2008.32700 | 1.66388 |

Second | <0.0001 | 0.04753 | 0.99009 | −1968.96900 | 1.69927 | |

Third | <0.0001 | 0.04751 | 0.99009 | −1968.98000 | 1.69927 | |

FAC_{2} | First | <0.0001 | 0.09477 | 0.93944 | 24.688.91000 | 1.72459 |

Second | <0.0001 | 0.09537 | 0.90976 | 23.908.80000 | 1.73611 | |

Third | <0.0001 | 0.09538 | 0.90976 | 23.908.77000 | 1.73611 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Jia, F.; Yang, C.; Zheng, G.; Xiang, M.; Liu, X.; Duan, W.; Dao, J.; Su, Z.
Mineralization Regularities of the Bainiuchang Ag Polymetallic Deposit in Yunnan Province, China. *Minerals* **2023**, *13*, 418.
https://doi.org/10.3390/min13030418

**AMA Style**

Jia F, Yang C, Zheng G, Xiang M, Liu X, Duan W, Dao J, Su Z.
Mineralization Regularities of the Bainiuchang Ag Polymetallic Deposit in Yunnan Province, China. *Minerals*. 2023; 13(3):418.
https://doi.org/10.3390/min13030418

**Chicago/Turabian Style**

Jia, Fuju, Ceting Yang, Guolong Zheng, Mingrong Xiang, Xuelong Liu, Wei Duan, Junshan Dao, and Zhihong Su.
2023. "Mineralization Regularities of the Bainiuchang Ag Polymetallic Deposit in Yunnan Province, China" *Minerals* 13, no. 3: 418.
https://doi.org/10.3390/min13030418