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Abstract: Köprüağzı evaporites mainly consist of primary (selenite and gypsarenite) and secondary
(massive, laminated and satin-spar) gypsum lithofacies, as well as minor anhydrite, and are interbed-
ded with clastic and carbonate units. Sedimentological-mineralogical and geochemical findings reveal
that the depositional basin extends from a lagoon to the hinterland. These data confirm that too much
detrital input was transported into the basin with multiple salinity and pH value fluctuations, organic
matter activity and reducing conditions. Geochemical data point out the shallow environment and
the mixing of hydrothermal fluids and fresh waters. The investigated evaporites were exposed to
diagenesis and alteration under the influence of a hot—dry and minor humid climate, tectonism and
pressure. The 87Sr/86Sr, δ34S and δ18O isotope values of Köprüağzı evaporites reveal that they are of
Miocene marine sulfate origin.

Keywords: Eastern Anatolia; Başkale; Van; Köprüağzı evaporite; marine origin

1. Introduction

Evaporites are one of the most important rock groups used to explain the paleoenvi-
ronmental conditions of the basins. Evaporites give important clues about the temperature,
climate and water chemistry of ancient marine (such as lagoons and coastal sabkha) and
terrestrial (salt lakes, salt pan and continental sabkha) environments [1,2].

The Eastern Anatolia region has a complicated tectonic structure that developed as
a result of the collision of the Eurasian and Arabian plates (Figure 1a) [3,4]. Therefore,
the region contains E–W trending and pull-apart basins originating from N–S trending
compression [5]. In the Van-Başkale Basin, which is one of these basins formed by the effect
of compression, the older units were folded and superimposed on each other, and then
faulted by strike-slip faults and thrusts (Figure 1b) [6,7].

Many stratigraphic, mapping, oil exploration and tectonic studies have been carried
out in the Başkale Basin and its surroundings, e.g., [6,8–13]. However, there has been no
previous study on the Köprüağzı evaporites, which are located in the southwest of this
basin and constitute the main subject of this study (Figure 1b,c). Therefore, this study is
important as it will contribute to the correlation and identification of formations of similar
origin both in the Eastern Anatolia region and globally.

The aim of this study is to determine the origin of the evaporites of the Başkale
Basin and reveal the paleoenvironmental conditions by sedimentological, petrographical—
mineralogical and geochemical data.
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Figure 1. (a) Location of the study area in Eastern Anatolia, (b) location of the study area in the 
Başkale Basin (modified from [13]). (c) Geological map and stratigraphy of the study area. 
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tethys along the Bitlis–Zagros Suture Zone (BZSZ) after the collision of the Arabian and 
Eurasian plates before or during the Early Miocene [14,15] (Figure 1a). The region contains 
extensive accretionary units and large crystalline massifs [16]. The Eastern Anatolian plat-
eau is located at the intersection of several continental blocks: the Eastern Pontides in the 
north, the Bitlis Massif and the Arabian Platform in the south, the Menderes-Taurus block 
in the west and the northwest Iranian block in the east [17]. The Bitlis Massif is the equiv-
alent of the Central Iranian Massif metamorphics continuing eastward towards Iran’s 
Sanandaj–Sirjan region, forming the southern continental margin of the Anatolian–Iranian 
platform [18,19]. The Başkale Basin is located in the southeast of the Lake Van Basin in 

Figure 1. (a) Location of the study area in Eastern Anatolia, (b) location of the study area in the
Başkale Basin (modified from [13]). (c) Geological map and stratigraphy of the study area.

2. Geological Settings

The Eastern Anatolia region is formed by the closure of the southern branch of
Neotethys along the Bitlis–Zagros Suture Zone (BZSZ) after the collision of the Arabian
and Eurasian plates before or during the Early Miocene [14,15] (Figure 1a). The region con-
tains extensive accretionary units and large crystalline massifs [16]. The Eastern Anatolian
plateau is located at the intersection of several continental blocks: the Eastern Pontides in
the north, the Bitlis Massif and the Arabian Platform in the south, the Menderes-Taurus
block in the west and the northwest Iranian block in the east [17]. The Bitlis Massif is the
equivalent of the Central Iranian Massif metamorphics continuing eastward towards Iran’s
Sanandaj–Sirjan region, forming the southern continental margin of the Anatolian–Iranian
platform [18,19]. The Başkale Basin is located in the southeast of the Lake Van Basin in
Eastern Anatolia in the eastern section of the southeast Taurus orogenic belt and on the
Turkish–Iranian border (Figure 1a,b). Köprüağzı evaporites in the study area outcrop
in Gönen, Köprüağzı, Örenkale and Erkonağı villages and surroundings located nearly
15 km southwest in the Başkale Basin (Figure 1c). The study area contains the southwest
of the Başkale Basin, which comprises allochthonous and autochthonous units [9]. These
units were thrusted on each other from north to south after or during the Miocene due
to intense tectonic movements [9,10] (Figure 2a). The Başkale Basin was a marine envi-
ronment in the Paleozoic, while the continental environment developed in the Triassic,
Jurassic and Early Cretaceous [20]. After this regression, the environment became marine
in the Late Cretaceous. The basement of the study area comprises an allochthonous unit
of the Paleozoic (Precambrian–Early Paleozoic) Bitlis Massif [12,21,22] (Figures 1c and 2a).
References [23,24] suggest that these rocks were deposited, deformed and metamorphosed
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in the Paleozoic (Figure 2a). In most parts of the study area, these metamorphic rocks were
folded (Figure 2c). These units consist of phyllites, schist, amphibolite, metaquartzite and
recrystallized limestone to the southwest of the Köprüağzı village (Figure 2a,c,d). The
Köprüağzı evaporites were observed as mixed with Bitlis Massif metamorphics, and the
lower levels of these evaporites contained metamorphic blocks (Figures 1c and 2a,c,d).
Lithologies of both the Bitlis Massif and Köprüağzı evaporites were affected by regional
tectonism. These evaporites were generally observed as intercalating with carbonate—rich
(black dolomitic limestones and yellow limestone) and clastic material—rich (claystone,
sandstone, red mudstone and conglomerate) units. These evaporites were overlain by
Yüksekova Ophiolitic Complex (Figures 1c and 2a,b,e). The upper parts of these evaporites
contained blocks belonging to the Yüksekova complex (Figure 2a,b). These ophiolitic units
outcrop in a broad area between the Köprüağzı, Örenkale and Gönen villages and mainly
contain serpentinite, radiolarite and peridotite rocks (Figures 1c and 2b,e). Along with
this, these allochthonous units were covered by Neogene autochthonous units in the field
(Figure 1c). These units include claystones, siltstones and conglomerates of the Pliocene
Büyükçay Formation. The youngest unit in the study area was the recent Holocene formed
by the Köprüağzı Stream, which unconformably overlies all these units (Figure 1c).Minerals 2023, 13, x FOR PEER REVIEW 4 of 23 
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metamorphics; (e) Yüksekova Complex, tectonically overlying the evaporates (The letters shown in 
the box in the section indicate the figures corresponding to the same letter on the cross section). 
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primary and secondary gypsum samples were collected around the Köprüağzı (K), 
Örenkale (O), Örencik (B) and Gönen (OBK) villages. 

Non-fractured and unaltered samples were chosen for geochemical analyses. Petro-
graphical—mineralogical studies were performed by using a polarizing microscope 

Figure 2. (a) The cross section showing stratigraphic relationships of the units in the study area;
(b) Evaporitic units containing blocks belonging to the Yüksekova Complex; (c) Evaporitic units
containing folded schist blocks belonging to the Bitlis massif; (d) Evaporites mixed with Bitlis Massif
metamorphics; (e) Yüksekova Complex, tectonically overlying the evaporates (The letters shown in
the box in the section indicate the figures corresponding to the same letter on the cross section).
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3. Methodology

During the fieldwork, a total of 60 clay, mud, sand and carbonate intercalating with pri-
mary and secondary gypsum samples were collected around the Köprüağzı (K), Örenkale
(O), Örencik (B) and Gönen (OBK) villages.

Non-fractured and unaltered samples were chosen for geochemical analyses.
Petrographical–mineralogical studies were performed by using a polarizing microscope
(Dokuz Eylül University Thin Section Laboratory, İzmir, Turkey and a scanning electron
microscope (SEM-EDS) (Scientific Research and Application Center, Van Yüzüncü Yıl Uni-
versity, Van, Turkey). The prepared natural surface fracture type and polished section
samples were covered with Au-Pd for 90 s, examined with a ZEISS Sigma 300 model SEM
microscope and photographed with an SE2 detector. X-ray Diffraction (XRD) whole-rock
analysis was conducted in the Earth Sciences Research and Application Center of Ankara
University (Ankara, Turkey). The results of these analyses are shown in graphs.

The element analysis (major and trace elements) of 10 evaporite samples was made in
the Earth Science Research Center of Ankara University (Ankara, Turkey). These samples
were measured in X-ray Fluorescence (XRF) spectroscopy. This spectrometer performs
quantitative analysis of elements with atomic numbers between 9 and 92. It cannot study
elements with atomic numbers less than 9 and is not sensitive enough in the degree of
chemical bonding. The XRF generally operates at 50 kV and 50 mA. Using an X-ray
Fluorescence Spectrometer, the major element oxides such as Si, Al, Ti, Mn and Mg in
percent by weight (%), trace elements such as Rb, Ba and Sr and transition elements such
as Zr, Ni, Co, Cu and Zn were analyzed at the ppm level (Table 1). The powdered samples
were compressed into disks with a variety of binding materials in a hydraulic press and
prepared for analysis. Loss on ignition (LOI) was calculated as recommended by [25]
and element concentrations were calculated according to STD DS11, STD GS 311–1, STD
OREAS262 and STD SO 19 standards.

Table 1. Major (%) and trace element (ppm) values of the different evaporite rock samples intercalated
with clastic and carbonate.

Lithology Anhydrite-Bearing
Laminated Gypsum

Massive
Gypsum Satin-Spar Gypsarenite Selenite Massive

Gypsarenite-
Bearing

Claystone

Laminated
Gypsum-
Bearing

Claystone

Selenite-
Bearing

Mudstone

Satin-
Spar Gypsum-

Bearing
Carbonate

Sample
No B–11 B–7 K–12 K–8 K–5 O–6 OBK–3 OBK–7 OBK–6 OBK–4

MgO 0.7 3.6 1.1 7.4 1.6 7.5 1.4 2.2 4.5 0.6
Al2O3 0.7 1.9 0.08 0.008 0.09 2.9 8.3 3.3 3.4 4.9
SiO2 3.5 9.8 3.8 6.5 2.2 20 11.5 11 13.9 10.3
P2O5 0.003 0.09 0.11 0.02 0.08 0.05 0.38 0.08 0.18 0.14
SO3 0.1 23.4 38.2 15.6 38.5 2.7 33.8 30.1 24.2 36.3
K2O 0.4 0.5 0.007 0.005 0.006 0.9 0.3 0.1 0.3 1.2
CaO 55 24.4 31.2 29.5 31 32 3.5 25.1 13.5 22.1
TiO2 0.07 0.14 0.12 0.03 0.13 0.10 0.61 0.22 0.4 0.24
MnO 0.03 0.02 0.003 0.06 0.004 0.07 0.06 1.8 0.83 0.1
Fe2O3 0.5 0.9 0.07 1.2 0.05 1.9 9.8 6.9 17.2 6.9
Na2O 0.04 0.08 0.13 0.07 0.13 0.05 0.09 0.1 0.09 0.11
LOI 39 36 26 40 27 32 31 20 22 17
Co 13 23 6.5 14 2.4 38.1 92 468 367 52
Ni 1.9 5.5 0.9 7.1 2.2 17.2 991 3267 2278 297
Cu 0.9 0.7 0.8 2.9 0.8 51 461 31.1 19.8 74
Zn 1.7 5 0.4 2.6 0.5 29.1 43 231 336 72
Sr 375 1508 1182 149 175 306 32 719 251 325
Y 1.8 0.6 0.4 0.4 0.4 2 3.1 37 76 8.9
Zr 16.2 24 10 5.6 7.1 11 55.5 16.2 34 26
Pb 4.6 2.1 1.7 1.6 1.6 7.2 3.6 5.6 1.6 3.8
Mo 3.4 2.5 3 5.6 2.7 3.1 2.9 3.3 3.5 3.1
Ba 28.4 285 38 15.9 52.8 97 152 171.2 206 352
U 9.9 7.2 8.4 7.8 7.9 11.2 7.5 10 10 9.5

Sulfur and oxygen stable isotope analyses were performed for samples containing
evaporate at the Environmental Isotope Laboratory, Department of Earth Sciences of the
University of Arizona. For sulfur isotopes, the Vienna Canon Diablo Troilite (V-CDT)
standard was used (absolute isotope ratio (44360 ± 40) × 10–6) according to [26]. For δ34S
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isotope analysis, 15 samples were weighed twice to 1 mg in 6 × 4 mm tin capsules, and
0.5 mg vanadium pentoxide was added to them. After this process, the single quartz packed
with tungstic oxide and pure copper wires were placed in a Eurovector furnace tube at
102 ◦C, and the burnt gases were analyzed in an IsoPrime isotope ratio mass spectrometer.
The δ18O isotope was measured on CO gas in a continuous-flow gas-ratio mass spectrometer
(Thermo Electron Delta V). A total of seven samples were combusted with excess C at
1350 ◦C using a thermal combustion elemental analyzer (ThermoQuest Finnigan) coupled
to the mass spectrometer. The δ18O isotope results are presented in this study using the
Vienna Standard Mean Ocean Water (V-SMOW) standard with an absolute isotope ratio
(2005.20 ± 0.45) × 10–6, according to [27].

Strontium isotope geochemical experiments were completed on 15 gypsum and anhy-
drite samples in the Central Laboratory of the Middle East Technical University (METU)
(Ankara, Turkey) by applying the Sr isotope ratio analysis experimental instructions
adapted from methods with details and conditions given by [28]. The measurements
were performed with multiple-collection using a Triton Thermal Ionization Mass Spec-
trometer (Thermo Fisher Scientific, Waltham, MA, USA). Analytical uncertainty was at
2 sigma level. Samples were first placed in deionized water and dried to almost evaporation
after dissolution. Later, the samples were left in 4 mL 14 N HNO3 for one day and were
fully dissolved on a heating table. These samples were dried again almost to evaporation
on the heating table, then placed in 1 mL 2.5 N HCl and prepared for chromatography.
Strontium was separated in a Teflon column using Bio Rad AG50 W-X8 100–200 mesh resin
with 2 mL volume of 2.5 N HCl acid. Strontium was loaded using a Ta-activator on a single
Re filament and 0.005 N H3PO4 and measured in static mode. The 87Sr/86Sr data were
normalized to 86Sr/88Sr = 0.1194.

4. Results
4.1. Sedimentological Aspects of the Köprüağzı Evaporites

The Köprüağzı evaporites are composed of Ca-sulphate minerals (gypsum and anhy-
drite). These are occasionally alternated with gray and yellow–beige limestones, gray–black,
rough-textured and layered dolomitic limestones, red sandstone and mudstone, and con-
glomerate and greenish claystone levels (Figure 3a). The evaporitic unit consists of primary
selenitic gypsum, gypsarenite, anhydrite, and secondary gypsum formed due to the anhy-
dritization of primary gypsum, and then the hydration of these anhydrites (Figure 3a–l).
Secondary gypsums were classified according to their sedimentary structures as massive,
satin-spar and laminated (Figure 4a–l).

Massive secondary gypsum can be observed at some levels in cream-yellow, bedded,
laminated, undulated and folded, alternating with claystone, sandstone and carbonates
levels (Figure 3a,b). These gypsums are homogeneous, white or milky-white in color, very
fine-grained alabastrine (Figure 3c), medium to coarse-grained porphyroblastic texture
and chicken-wire structures (Figure 3a). These were derived from the re-hydration of
anhydrite and contained occasional anhydrite relicts. The satin-spar gypsum observed
in fractures and cracks generally develop parallel or semi-parallel to the vein walls and
contain fibers varying from a few mm to cm (Figure 3d). There are enterolitic and undulated
structures in laminated gypsums and the thicknesses of the laminae vary between 1 mm
and 5 mm. (Figure 3e). Selenitic gypsums are between 1 and 15 cm in size, transparent,
shiny, white and brown in color and in lensoidal are prismatic, radial and fibrous-fan
crystal shapes (Figure 3f–h). Selenitic gypsums are partially anhydritized in some areas
(Figure 3g). These are observed in the cracks and cavities of the rocks and as interbands in
the rocks (Figure 3i–k). Selenites are altered into anhydrite, then into secondary gypsums
during the early–late diagenetic stages. In these selenites, diagenetic alteration intermediate
bands Fe-rich intermediate bands are encountered in places (Figure 3k). Gypsarenites are
creamy-white, very fine-grained, with ripples, laminated, Fe-oxidized, interbanded and
carbonate intercalated (Figure 3l).
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matic-lensoidal selenitic gypsums filling the limestone cracks; (g) euhedral gypsum and partially 
anhydritized radial selenitic gypsum; (h) fibrous and fibrous-fan shaped selenitic gypsums (some 
parts partially and completely anhydritized); (i) fibrous selenite within the dolomitic limestone cav-
ities; (j) partly anhydritized selenite interbands in the carbonate rock; (k) selenite interbands con-
taining Fe-oxide and sulfur alteration; (l) gypsarenites anhydritized in some places, containing rip-
ple mark structures. 
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fractures and cracks generally develop parallel or semi-parallel to the vein walls and con-
tain fibers varying from a few mm to cm (Figure 3d). There are enterolitic and undulated 
structures in laminated gypsums and the thicknesses of the laminae vary between 1 mm 
and 5 mm. (Figure 3e). Selenitic gypsums are between 1 and 15 cm in size, transparent, 
shiny, white and brown in color and in lensoidal are prismatic, radial and fibrous-fan 
crystal shapes (Figure 3f–h). Selenitic gypsums are partially anhydritized in some areas 
(Figure 3g). These are observed in the cracks and cavities of the rocks and as interbands 
in the rocks (Figure 3i–k). Selenites are altered into anhydrite, then into secondary gyp-
sums during the early–late diagenetic stages. In these selenites, diagenetic alteration in-

Figure 3. Sedimentologic aspects of the Köprüağzı evaporites. (a) Massive-bedded secondary
gypsums with interbedded clay and carbonated and chicken-wire structures; (b) clay laminated-
undulated massive secondary gypsum; (c) milky-white color alabastrine massive gypsum in the
red–brown mudstone; (d) satin-spar gypsum developing perpendicularly to the vein wall, fill-
ing the limestone cracks; (e) undulated-laminated secondary gypsums and enterolithic structures;
(f) prismatic-lensoidal selenitic gypsums filling the limestone cracks; (g) euhedral gypsum and par-
tially anhydritized radial selenitic gypsum; (h) fibrous and fibrous-fan shaped selenitic gypsums
(some parts partially and completely anhydritized); (i) fibrous selenite within the dolomitic limestone
cavities; (j) partly anhydritized selenite interbands in the carbonate rock; (k) selenite interbands
containing Fe-oxide and sulfur alteration; (l) gypsarenites anhydritized in some places, containing
ripple mark structures.
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subhedral-anhedral anhydrite grains in (P) (OBK-21-Gönen); (f) primary anhydrite laths within the 
dolomitic mud (Plane light) (K-4 Köprüağzı); (g) satin-spar gypsum (S) filling cracks within the mi-
critic carbonate (Mic) (B-10 Örencik); (h) muscovite minerals (Mu) observed along the (S) veinlets 
(K-4 Köprüağzı); (i) subhedral and euhedral secondary calcite minerals (C) replacing tabular gyp-
sum (Tg) and (P) (OBK-21 Gönen); (j) organic matter relicts (Or) and rhombohedral dolomite (D) 
(Plane light) (OBK-18 Gönen); (k) detritic (Dq) and polycrystalline quartz (Pq) grains within the (P) 
(OBK-21 Gönen); (l) gypsarenite (Ga), the cavities of which are filled with quartz (Qu) grains and 
carbonates (Ca) (OBK-18 Gönen). 
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The massive gypsums have porphyroblastic (moderate to coarse grained), alabas-
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g). Alabastrine and porphyroblastic secondary gypsum textures are observed together in 
some samples (Figure 4a). While porphyroblastic texture has clear boundaries, alabastrine 

Figure 4. Petrographic images of the evaporitic rock samples. (a) Alabastrine (Al) textured secondary
gypsum replacing porphyroblastic (P) gypsum texture (OBK-6-Gönen); (b) spindle-shaped acicular
(ssa) crystalline textured secondary gypsums (OBK-18-Gönen sample); (c,d) (ssp) and anhydrite relict
(Ar), a specific orientation and carbonation (dolomicritic textured) (K-10 Köprüağzı); (e) subhedral-
anhedral anhydrite grains in (P) (OBK-21-Gönen); (f) primary anhydrite laths within the dolomitic
mud (Plane light) (K-4 Köprüağzı); (g) satin-spar gypsum (S) filling cracks within the micritic
carbonate (Mic) (B-10 Örencik); (h) muscovite minerals (Mu) observed along the (S) veinlets (K-4
Köprüağzı); (i) subhedral and euhedral secondary calcite minerals (C) replacing tabular gypsum
(Tg) and (P) (OBK-21 Gönen); (j) organic matter relicts (Or) and rhombohedral dolomite (D) (Plane
light) (OBK-18 Gönen); (k) detritic (Dq) and polycrystalline quartz (Pq) grains within the (P) (OBK-21
Gönen); (l) gypsarenite (Ga), the cavities of which are filled with quartz (Qu) grains and carbonates
(Ca) (OBK-18 Gönen).

4.2. Petrography

The massive gypsums have porphyroblastic (moderate to coarse grained), alabastrine
(fine grained), micritic (calcite grains < 4 µm) and dolomicritic textures (Figure 4a–g).
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Alabastrine and porphyroblastic secondary gypsum textures are observed together in
some samples (Figure 4a). While porphyroblastic texture has clear boundaries, alabastrine
texture has no clear boundaries (Figure 4a). These porphyroblastic gypsums exhibit spindle-
shaped acicular crystalline and spindle-shaped parallel crystalline textures as they undergo
alteration along their cleavage surface during the late stages of diagenesis (Figure 4b–d).
In addition, a certain orientation and folding is observed in the porphyroblastic gypsum,
which are affected by tectonism in the environment (Figure 4d). This gypsum is exposed to
carbonatization along its long axis, and dolomite and quartz crystals replace these gypsums
during the late diagenetic stage. Additionally, they contain anhydrite relicts (Figure 4e).
These anhydrite crystals are sometimes observed growing displaced, between 0.3 mm and
4 mm in size and primarily prismatic lath-shaped within the dolomitic mud (Figure 4f).

Satin-spar gypsums form as parallel fibers and are perpendicular to the long axes of
fractures and cracks of micritic textured rocks (Figure 4g). In some thin sections, severed
muscovite and sericite minerals of the Bitlis metamorphics are observed along the satin-spar
gypsum veinlets (Figure 4h). These minerals generally extend in orientation with satin-
spar gypsum. Sometimes, the grains of these metamorphics are scattered in the gypsum.
Euhedral and anhedral calcite crystals are observed within these secondary gypsums
(Figure 4i). Organic matter relicts, rhombohedral dolomite mineral, Fe-oxide alteration
(Figure 4j), sometimes as detrital or syn-sedimentary polycrystalline quartz grains, are
observed in some samples (Figure 4k). These dolomite minerals replaced porphyroblastic
gypsum in the late diagenetic phase.

Selenitic gypsum shows first order interference colors with a grain size of up to
4 mm, with distinct unidirectional cleavage traces (Figure 4i). Simple twinning and fractures
are frequently observed and are replaced by late diagenetic calcite minerals. Additionally,
tabular gypsums have anhydrite relicts (Figure 4i). The gypsarenites have grains the size
of sand and the spaces between the grains are observed to be filled with carbonate or clay
cement and detrital material (Figure 4l).

4.3. Mineralogy

According to XRD analysis, the main mineral in Köprüağzı (K), Örenkale (O), Örencik
(B) and Gönen (OBK) evaporitic samples is gypsum, and other accompanying minerals
are anhydrite, calcite, dolomite, quartz, chlorite, kutnohorite and plagioclase (Figure 5a–f).
Gypsum (CaSO4·2H2O), anhydrite (CaSO4), celestine (SrSO4), calcite (CaCO3), dolomite
(Ca-Mg carbonate) and some iron, clay and siliciclastic minerals were determined in the
SEM analysis.

Calcite and dolomite exhibit prismatic or rhombohedral morphologies (Figure 6a).
Anhydrite laths and celestine are encountered in the secondary gypsum (6b). In gypsum
samples, high rates of hematite or magnetite type Fe oxidation zones, sulfidation and
microbial-derived framboidal pyritization are common (Figure 6c,d). The grain size of
framboidal pyrites are generally smaller than one micron and contain equidimensional,
spherical to semi-spherical or polyframboidal morphology and clusters of microcrystals
(Figure 6c). The Mg-rich clay minerals (sepiolite, saponite and palygorskite), quartz and
potassium feldspar are emplaced along fractures of tabular and hemi prismatic gypsums
(Figure 6d). These clay minerals have a fine-grained, plated and occasionally honeycomb
appearance with grain size up to 10 microns (Figure 6c,d). We observed good cleavage
in prismatic-tabular gypsum crystals, though occasional deformation structures were ob-
served (Figure 6d). Additionally, orthorhombic anhydrite, K-feldspar and quartz minerals
were detected (Figure 6e,f).
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Figure 6. SEM images of the evaporitic rock samples. (a) Euhedral semi-euhedral rhombohedral
dolomite minerals in massive-laminated gypsum (K-11 Köprüağzı); (b) the nodular-shaped celestine
(C) replacing secondary gypsum (G) (OBK-5 Gönen); (c) microbial pyrite (Mp) formations and Fe-
oxidation in the gypsum (Gyp) (K-5 Köprüağzı); (d) the plate-like formed Mg-rich clay minerals, Fe-
oxide and carbonatization (Ca.) areas in the prismatic gypsum (Pg) (O-6 Örenkale); (e) orthorhombic
prismatic anhydrite (Anh) crystal; (f) Mg-rich clay, quartz (Qu) and potassium feldspar (K Fel.)
minerals in gypsum (O-6 Örenkale).

4.4. Element Geochemistry

In gypsum samples, positive correlations between SiO2 with Al2O3 were observed
(r = +0.91 for B, K and O samples), MnO (r = +0.26), Fe2O3 (r = 0.91 for B, K and O samples;
r = +0.98 for OBK samples), MgO (r = +0.53), TiO2 (r = +0.35 for OBK samples) and P2O5
(r = +0.30 for OBK samples) (Figure 7). While the SiO2, Al2O3 and CaO values were observed
to be very high in all samples, the Na2O, MgO, P2O5, K2O, MnO and TiO2 concentrations
were very low compared with these (Table 1). There were negative correlations between SiO2
and CaO (r = −0.27 for B, K and O samples; r = −0.40 for OBK samples) and SO3 (r = −0.52
for B, K and O samples; r = −0.89 for OBK samples) (Figure 7). There were negative and
positive trends between Na2O–Al2O3 (r = −0.53), Na2O–K2O (r = −0.67) and Na2O–TiO2
(r = +0.53) (B, K and O samples), respectively (Figure 7). Most gypsums contained very high
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concentrations of trace elements (such as Co, Ni, Cu, Zn, As, Rb, Zr and Y) (Table 1). Ba
(up to nearly 350 ppm) and Sr (up to 1508 ppm) trace element concentrations were high in
gypsum samples. The OBK-3 sample of the Gönen section was differentiated from other
samples by low Sr trace element content (32 ppm) (Table 1). There was a positive trend
(r = 0.98) between Ni and Co elements, while Sr/Ba had a negative trend (−0.58) with Al2O3
(Figure 7). Gypsum samples presented high values for Fe2O3/MnO (mean 37), Zr/Al2O3
(mean 94), Sr/CaO (mean 20), Ni/Co (up to 11), Co/Zn (up to 16), Sr/Ba (up to 32) and
Cu/Zn ratios (up to 11) (Table 1). Additionally, a high positive correlation (Figure 7) between
Ni with Co (r = +0.91 for B, K and O samples; r = +0.98 for OBK samples), Ba with Sr
(r = +0.70 for B, K and O samples) and Cu with Zn (r = +0.98 for B, K and O samples)
(Figure 7) was observed.
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4.5. Isotope Geochemistry

A total of fifteen evaporite samples were selected for 87Sr/86Sr and δ34S isotope
analyses (Table 2). The 87/86Sr, δ18O (seven samples) and δ34S isotope values vary between
0.707769 and 0.709098, 12.1 to 14.7‰ and 5.8 to 34.5‰, respectively (Table 2).

Table 2. Isotope values (δ34S, δ18O and 87Sr/86Sr) of different evaporite rock samples intercalated
with clay-carbonate.

Sulfate Samples Sample No δ34S
(CDT) δ18O (SMOW) 87Sr/86Sr

Alabastrine gypsum K-3 34.5 13.8 0.7087
Anhydritized selenite K–5 34.2 14.1 0.7088

Anhydritized gypsarenite K–8 31.6 0.7085
Undulted-laminated K-9 30.3 14.7 0.7084

Porphyroblastic gypsum K-11 30.5 13.6 0.7086
Lensoidal gypsum B–4 30.6 0.7089

Massive-laminated gypsum B–7 30,4 12.1 0.7088
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Table 2. Cont.

Sulfate Samples Sample No δ34S
(CDT) δ18O (SMOW) 87Sr/86Sr

Anhydrite B-12 30.1 0.7089
Porphyroblastic gypsum B-15 29.9 13.1 0.7087

Anhydritized tabular gypsum O-1 28.1 0.7090
Massive O–6 26.6 0.7091

Anhydrite O-13 27.8 14.8 0.7089
Satin-spar gypsum included

carbonate OBK–4 6.9 0.7078

Laminated gypsum included
clayey carbonate OBK–7 5.8 0.7078

Laminated gypsarenite OBK-15 30.3 0.7086

5. Discussion
5.1. Paleoenvironmental Conditions
5.1.1. Sedimentological—Petrographical Interpretation

The paleo depositional conditions and sedimentary model for gypsum-rich succession
in the Başkale Basin was interpreted based on element concentrations, sedimentologi-
cal, petrographical—mineralogical and elemental analyses parameters. Some gypsum
lithofacies and sedimentary structures in the basin may provide evidence about paleo
depositional environment. The observation of massive gypsum lithofacies in the study
area, which contain laminations, reflects a saline depositional environment with shallow
or moderate depths, e.g., [29,30]. Massive secondary gypsums are formed by primary
gypsum (selenitic and gypsum arenitic) losing water due to the increase in salinity during
the early diagenetic stages to become anhydrite (see Figure 4i,l). During the late diagenetic
phase, the secondary gypsums (alabastrine and porphyroblastic) (see Figure 4a–e) are
formed as a result of the reaction of anhydrite, which uplifts with the effect of tectonism
or lithostatic pressure, with meteoric or groundwater. The observation of these two sec-
ondary gypsums together indicate that the dissolution–recrystallization processes were
developed (see Figure 4a). Since these porphyroblastic and alabastrine textured gypsums
were altered along the cleavage surfaces during the late diagenesis, they showed spindle-
shaped acicular crystal and spindle-shaped parallel crystal textures (see Figure 4c,d). The
folds and orientations were sometimes observed in these, due to the effect of tectonism
in the region. Additionally, the presence of fine-grained primary gypsums (lensoidal,
tabular, etc.) crystallizing in the cracks and cavities of the rocks support these processes.
These freely-growing and crack-filling gypsums were formed by the rise of the humic acid
and/or sulfate-rich groundwater level and the increase in the evaporation rate. Since their
crystallization is quite rapid, they are observed as relatively smaller crystals in cracks [31].
These type of gypsums reflect coastal areas where lake water retreats. Anhydrite relicts in
secondary gypsums prove that the mineral formed before these during the early–late dia-
genesis was anhydrite (see Figure 4c,e). Additionally, the anhydrite relicts in the secondary
gypsums were formed by preserving the tabular gypsum frame, indicating that these
secondary gypsums were derived from primary gypsum (Figure 5i). Calcite and dolomite
minerals replaced secondary gypsums during the late diagenetic stage with the input of
carbonate-rich groundwater (see Figure 4d,i). These massive secondary gypsums that
generally alternated with dolomitic limestone levels indicate the lagoon environment and
increased salinity [32,33]. The presence of anhydrite laths in dolomitic mud in the samples
taken from the Köprüağzı (K) and Örencik (B) sections confirms that these anhydrites were
formed during the sedimentation (Figure 4f), e.g., [34]. No microscopic or macroscopic
evidence was found that secondary gypsum was derived from these primary anhydrites in
the study area (e.g., nodular gypsum/anhydrite).

The greenish claystones alternating with some gypsum lithofacies (satin-spar and
anhydritized gypsum, etc.) show short-term playa waters after the lagoon [29] and low-
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energy depositional conditions [35,36]. Further proof of this is the limited lateral continuity
of the laminated gypsum in the field. Volume changes as a result of regional tectonics or
during the gypsum–anhydrite transformation formed enterolitic folds (see Figure 4e) in
the laminated gypsum [37]. Likewise, secondary satin-spar gypsums were formed in the
cracks caused by the volume changes created by these mineral transformations during the
late diagenesis (Figures 3d and 4g). These structures also document the existence of the
coastal sabkha mud flats environments, which are further inland [38,39]. Additionally, the
gypsarenite and selenitic gypsum lithofacies in this study area also support the shallow-
water depositional environment [40].

5.1.2. Mineralogical Interpretation

The presence of primary gypsum crystals such as prismatic, tabular and lenticular
with smooth surfaces (Figures 4i and 6d), twinning and cleavage surfaces in the field
indicates that environmental conditions such as pH, temperature and salinity are gradually
increasing [41]. However, the presence of kutnohorite mineral in gypsum identified by
XRD (Figure 5d) and observation of framboidal pyrite identified in SEM studies (Figure 6c)
indicate low [42] and neutral pH conditions in the environment [43], respectively. There-
fore, pH conditions were continuously changed in the study area. With these minerals,
dark brown colors in primary gypsum and organic matter relicts (see Figure 4j) in thin
sections indicate the presence of organic matter activity and anoxic conditions [42,44]. The
development of intermediate bands rich in Fe oxide in primary gypsum (in both field
and SEM-EDS analysis) (Figures 3k and 6c,d) shows the effect of hydrothermal solutions
developed due to Neogene—Quaternary volcanism in the region or freshwaters eluviation
from the surrounding basaltic rocks [45]. Celestine is formed by the replacement of Ca in
gypsum by Sr (hydrothermal solution originated). Therefore, in the SEM study, the detected
celestine in gypsums supports the existence of these hydrothermal solutions [46,47].

5.1.3. Elemental Analyses Interpretation

In SiO2 versus major oxides variation diagrams, MnO (r = +0.26), Fe2O3, MgO, TiO2
and P2O5 exhibit positive trends (Figure 7). This indicates that the paleo depositional
environment was shallowed due to evaporation and clay or clastic (especially siliciclastic)
materials were transported into the region from continental sources [48,49]. The very high
SiO2 concentrations in our samples, a negative correlation of SiO2 with CaO and SO3
(Figure 7), high Zr values and Zr/Al2O3 ratio (Table 1) and quartz, feldspar, zircon, chlorite
and smectite group clay minerals identified in mineralogical studies also support the
intense detrital material input into the basin [50]. Interlocked polycrystalline quartz grains
observed, especially in petrographical and mineralogical studies, are characteristic of clastic
quartz from a metamorphic source (Bitlis Massif) and are transported by surface waters [51]
(Figures 4k and 6f). Similarly, plagioclase and K-feldspar minerals were transported into
the basin in this system.

The content of metallic elements such as Ni (up to 3267 ppm), Cu (up to 461 ppm),
Co (up to 468 ppm), Zn (up to 335 ppm) and Pb (up to 7.2 ppm) (Table 1) can also be
attributed to the clastic material input derived from ultramafics of the Yüksekova Complex.
In addition, these clay minerals represent humid climatic and alkaline environmental
conditions [52–56].

It shows negative correlations with Na2O, Al2O3 and K2O and positive correlation with
TiO2. These correlations indicate high chemical weathering and humid climate conditions
in the environment, e.g., [57] (Figure 7). Sr contains values between 1000 and 3000 ppm
in marine environments [58,59] and 50–200 ppm in continental environments [60]. The
studied samples were below these values except for two samples (B-7 and K-12). These
low values (Table 1) reflect the mixing seawater and non-marine fluids and the presence of
dissolution—reprecipitation processes [47,61–63]. Additionally, Sr and Ba contents and the
negative trend of Sr/Ba with Al2O3 (r = −0.48 for B, K and O samples; r = −0.67 for OBK
samples) (Figure 7) and Sr/Ba, Sr/CaO and Fe2O3/MnO ratios show salinity increased
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in the depositional environment [64,65]. Some element contents in the studied gypsum
samples reflect organic matter activity, high salinity and reducing conditions within the
gypsum (U, Mo, Ni, Cu and Zn and Co, Ni/Co, Co/Zn and Cu/Zn ratios), e.g., [66–72].
Moreover, the high positive correlation (Figure 7) between Ni with Co, Ba with Sr and Cu
with Zn emphasizes a continental source [73].

5.2. Origin, Age and Source of the Köprüağzı Evaporites

Investigation of 87Sr/86Sr, δ34S and δ18O ratios undertakes an effective role in un-
derstanding the depositional age, marine or non-marine origin and source of the evapor-
ites [74,75]. In transitional environments (such as coastal sabkha and lagoon), different
contributions (e.g., groundwater, presence of celestine, hydrothermal fluids, diagenetic
solutions and sulfate-reducing bacteria) affect strontium and sulphate isotopes and may
provide different isotopic signals causing confusion in source interpretations [76].

Sr isotope ratios of the Köprüağzı evaporites (0.708444–0.709098) (except OBK-4 and
OBK-7 samples) (Table 2) indicate Cambrian marine sulfates ratios 0.7081–0.7093; [77–80]
(Figure 8a). The sharp decrease in 87Sr/86Sr isotope values in OBK-4 (0.707765) and OBK-7
(0.707769) samples can be attributed to hydrothermal or freshwater inputs, e.g., [79,81–83].
The δ34S ratios ranging from 28‰ to 38‰ indicate the Cambrian age [84–88] and marine
sulfate origin [89,90]. The Köprüağzı evaporites’ δ34S isotope ratios (average 30.3‰) are
compatible with Cambrian marine sulfates, as in Sr isotopes (Figure 8b). In addition,
these values indicate that the source of sulfur dissolved in sulfates in the study area was
the isotope fraction during bacterial sulfate reduction in hypersaline and partial anoxic
environments, e.g., [47,89,91]. Furthermore, the sharp decrease in the sulfur isotope values
of OBK-4 and OBK-7 samples may be due to the mixing of sea water with rivers and
hydrothermal temperatures [47] at these levels of the sequence. The δ18O isotope values
(average 13.89‰) in the studied evaporites were also consistent with the oxygen isotope
values of the Cambrian marine sulfates’ average of 13.74‰ [85].

The Köprüağzı evaporites stratigraphically overlie the metamorphics of the Bitlis
Massif (Precambrian—Paleozoic) [92] and contain blocks belonging to this massif in the
lower parts (Figure 2a). It is overlain by the Yüksekova Complex with tectonic contact
(Figure 2a,e). Blocks of this complex are observed in the upper parts of the evaporites
(Figure 2a,b). Additionally, many Cambrian marine evaporites are known to exist in Iran
along the BZSZ [18,93–99] (Figure 9f).

Considering the stratigraphic position of Köprüağzı evaporites, it seems that these
evaporites were carried over the Bitlis Massif by tectonic movements. The blocks belonging
to the Massif and Complex in the evaporites prove this transportation. Therefore, these
evaporites must be younger than the Bitlis Massif and the Yüksekova Complex. This shows
that the evaporites cannot be of Cambrian age. At the same time, the most of the studies
conducted in Iran discuss the halokinetic phases and remobilization of salt deposits via salt
tectonics. Thus, the evaporites in the study area are genetically different from the Cambrian
evaporites in Iran. This supports that the Köprüağzı evaporites cannot be Cambrian.

Some studies have been carried out on the existence of Triassic “Marble Rosetta” in
the Bitlis Massif of the Alanya-Bitlis block [100–102]. They stated that Rosetta Marble was
formed after large primary selenite crystals underwent high-pressure low-temperature
metamorphism and represented carbonate pseudomorphs. It can be thought that the
evaporites in the study area are similar in origin to these evaporites. However, isotope
values, sedimentological, petrographic and mineralogical findings show that Köprüağzı
evaporites did not undergo metamorphism (no metamorphic texture or mineral could be
detected), but only underwent early–late diagenesis processes, and therefore they are not
similar with Triassic Rosette Marbles. There are many Miocene evaporite successions in
Eastern Anatolia and Iran [103–123] (Figure 9a–e,g–j).
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the bacterial sulfate reduction [127–130]. Additionally, evaporites are located in a very 
tectonically active region. Therefore, the units have lost their original stratigraphic posi-
tion. If the Köprüağzı evaporites are Miocene in age, their stratigraphic position can be 
explained by the collision (Arabian—Anatolian plates) that took place in the region during 
the Miocene. These evaporites may have been pushed over the Bitlis Massif with the 
movement of the Yüksekova Complex and gained their recent position. The Massif and 
Complex blocks in the Köprüağzı evaporites suggest such a scenario (see Figure 2a–e). 
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Figure 9. Relief map showing (a–e) Miocene evaporite fields in eastern Turkey, (f) Cambrian evaporite
fields deposited along the Bitlis–Zagros Suture Zone (south–southeast Iran) and (g–j) Miocene
evaporate fields in Iran. The boxes and the letters inside of them show the previous work in that
area. (a): [103,113,115,116,119], (b): [123], (c): [106,107,117,122], (d): [109–111,118–120], (e): [121],
(f): [18,93–99], (g): [104], (h): [114], (i): [108], (j): [105].
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The 87Sr/86Sr values between 0.7084 and 0.7089 [78,124] and the δ18O values between
13‰ and 14‰ [125] indicate Miocene marine sulfates. While the 87Sr/86Sr values (0.7088)
and the δ18O isotope values (13.74‰) in the Köprüağzı evaporites are within Miocene
marine sulfate values (Figure 10a,b), the δ34S isotope ratios (average 30.3‰) are higher
than Miocene marine sulfate values 20‰ [126]. These high sulfur isotope ratios may be
due to the bacterial sulfate reduction [127–130]. Additionally, evaporites are located in a
very tectonically active region. Therefore, the units have lost their original stratigraphic
position. If the Köprüağzı evaporites are Miocene in age, their stratigraphic position can
be explained by the collision (Arabian—Anatolian plates) that took place in the region
during the Miocene. These evaporites may have been pushed over the Bitlis Massif with
the movement of the Yüksekova Complex and gained their recent position. The Massif
and Complex blocks in the Köprüağzı evaporites suggest such a scenario (see Figure 2a–e).
Additionally, both some mineral orientations in thin sections and folds and undulation
structures in the field support this tectonic transport (deformation).
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6. Conclusions

The 87Sr/86Sr isotopic ratios and δ34S-CDT and δ18O values for the Köprüağzı evap-
orites indicate that these evaporites formed in a Miocene marine origin. The evaporites
were deposited in an area extending from lagoon to its hinterland. Sedimentological
and petrographical-mineralogical findings indicated that these evaporites were composed
of primary and secondary gypsum, and secondary gypsum (alabastrine massive, lami-
nated gypsum, satin spar gypsum, etc.) was derived from primary gypsum (selenite and
gysarenite) during the early and late diagenetic processes. Additionally, sedimentological,
mineralogical and geochemical studies revealed increased salinity, reduction conditions,
fluctuations in pH values, fluvial and hydrothermal effects and associated dense clastic ma-
terial inflows and organic matter activity in a basin under a dry–humid climate, tectonism
and diagenetic effects. Author Contributions: Methodology and field studies, P.G.Y. and O.B.;
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8. Acarlar, M.; Türkecan, A. Başkale (Van) Batı-Kuzeybatısının Jeolojisi, 1st ed.; Min. Res. Exp.: Ankara, Turkey, 1986; 87p.
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