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Abstract: Developing dry separation methods to replace the commonly used water-based separation
has become crucial due to increasing water shortages. One of the candidates for dry processing is
gas–solid fluidized beds. The bed behavior and solid motion in fluidized beds have been investigated
using various visual and numerical methods for decades. However, there are not enough studies
focused on the separation behavior of the fine particles. This work details the investigation of particle
motion through a fluidized bed using the positron emission particle tracking (PEPT) technique.
Single-particle tracking is a powerful mechanism providing knowledge about separation mechanisms
through direct visualization of the particle trajectory determined from recording the particle position
over time. In this study, the movements of different-sized beds were characterized by tracking
an activated single quartz particle and then by tracking an activated single hematite particle. The
separation behavior of a heavy particle was determined for different-sized fractions.

Keywords: fluidized bed; gravity concentration; particle motion; positron emission particle tracking
(PEPT)

1. Introduction

Water shortage has become a worldwide problem [1–4]. As many mining areas are
located in cold, arid, or water-scarce regions, such as Canada, Australia, Chile, India,
South Africa, and China, developing dry separation methods to replace commonly used
water-based techniques has become more and more important [5–10]. In addition, because
of the enormous amounts of water being used, wet processes require wastewater treatment
and water recovery processes such as filters, centrifuges, and thickeners, which increase the
capital and operating costs. Dry processes have been applied in various ore beneficiations,
such as coal [11–21], iron [22–26], copper [27,28], and tungsten [29,30], as well as solid
waste separation [31–36], to solve these problems associated with treatment and storage
of wastewater. Even though the separation efficiency of dry processing is considered
lower than wet processing, the overall economic benefits of dry processing are becoming
increasingly relevant [16,17,19,22,24–26].

Apart from being concerned with water issues, mineral processing plants consume
around 5% of the generated global electricity annually. Approximately 80% of this would
be spent in the comminution units [37]. The development of more energy efficient and
dry comminution technologies has been an important focus of academia and industry.
Novel technologies, such as high-pressure grinding rolls (HPGR) and conjugate anvil
hammer mill (CAHM), are designed and developed to fulfil the goal. Their potential
to improve energy efficiency in the comminution process as dry grinding alternatives
to replace conventional crushers and semi-autogenous grinding (SAG) mills has been
indicated [38–40]. As mineral deposits are becoming increasingly more finely disseminated,
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and water scarcity has become a global issue, investigation of dry separation in fine sizes is
of great importance.

One of the candidates for dry processing is gas–solid fluidized beds. Fluidized bed
technology has been used since the 1920s. Due to its features such as excellent heat transfer,
ease of solid handling, ease of particle processing and efficient solid mixing, it has been
widely used in the chemical and petrochemical, energy, environmental, pharmaceutical,
food processing, and biochemical industries [41–43]. The various applications of fluidized
beds are the gasification and combustion of coal [44,45], ash separation and carbon cap-
ture [46,47], fluid catalytic cracking, Fischer–Tropsch synthesis, drying [48,49], cooling, heat
transfer [50,51], size enlargement, size reduction, coating [52,53], solid mixing [54], mass
transfer [55], fuel cleaning [56], and classification [41,42,57,58].

Fluidization is a process in which a fluid, either a gas or a liquid, passes through a
packed bed of solid particles at a velocity that is sufficient to lift the particles. These lifted
beds of solid particles obtain fluidlike properties such as apparent density and viscosity,
and because of these properties, the fluidized particles can be used as the dense separation
media [25,41,57]. There are two major types of separation in gas–solid fluidized systems,
which are float–sink and segregation. When objects enter a fluidized bed, a float–sink
process occurs; objects with lower density than the apparent density of the fluidized bed
float, while objects with larger density sink into the fluidized bed. Moreover, controlling
the apparent density of the fluidized bed, by changing the air velocity for fluidization or
the density of the solid bed with mixing two types of particles with different densities,
makes the separation of objects with different densities possible [25,32,59]. When a mixture
of particles is fluidized, a segregation process occurs; heavier and/or larger particles start
to move to the bottom, while lighter and/or smaller particles start to move to the top of
the fluidized bed. Based on the density or size differences, the process is termed as density
segregation or size segregation, respectively [16,60,61].

Previous research has investigated the behavior of bed and solid motion in fluidized
beds using various techniques, including: optical probes [62], the laser sheet system [63],
high-speed cameras [64], digital image analysis [54]; particle tracking velocimetry [49,65],
radioactive particle tracking (RPT) [66], and numerical methods such as computational
fluid dynamics (CFD) [45,67,68], the discrete element method (DEM) [69–71], and other
numerical and mathematical models [27,43,72,73]. Dry separation technologies are increas-
ingly being used, especially in China’s coal preparation, covering a limited size range down
to about 0.5 mm [74]. However, for dense minerals such as iron ore, separations are limited
to particles larger than 11 mm [24]. There are relatively few studies that have focused on
the separation behavior of fine particles (<0.5 mm). For these reasons, this research focused
on the investigation of bed and fine particle motions to gain better understanding of pos-
sible fine particle separation in a gas–solid fluidized bed. Moreover, the visual systems
have their own limitations for investigating opaque media, mixtures with high particle
concentrations, or non-transparent systems. Positron emission particle tracking (PEPT) has
allowed investigations of such systems.

PEPT was designed to study particle dynamics, granular systems, and multiphase
flows with localizing a single traceable particle labeled with a positron-emitting radionu-
clide. This technique was developed at the University of Birmingham, UK [75,76] and has
been described in detail by Leadbeater et al. [77,78]. The main advantage of PEPT over other
techniques is that it allows the recording of a tracer particle motion inside dense, opaque
systems and through solid vessel walls, allowing the detailed study [78] and tracking of a
tracer particle over a long period of time. This enables the estimation of the behavior of
particles and can provide useful information about particle motion [79]. PEPT has been
employed for a variety of equipment such as fluidized beds [52,80–88], stirred [89,90] and
tumbling mills [91–93], stirred tanks [94], mechanically agitated vessels [95–97], hydrocy-
clones [98–100], spiral concentrators [101,102], and flotation cells [103–111].

The ADAC Forte positron camera at the University of Birmingham Positron Imaging
Centre, Birmingham, UK, was used to investigate bed movement using positron emission
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particle tracking. The bulk bed material was fine quartz and was represented using an
activated quartz tracer particle, with an activated hematite particle representing the heavy
phase.

2. Materials and Methods
2.1. Materials

Mono-sized (−300 + 212, −212 + 150, −150 + 106 µm) fine quartz (Unimin Canada
Ltd., Havelock, ON, Canada), which is a typical Geldart Group B solid (40 µm < dparticle

< 500 µm, 4 g/cm3 > ρparticle > 1.4 g/cm3) [43,112–114], was used as the fluidized bed
medium, and single-sized (−300 + 212, −212 + 150, −150 + 106 µm) fine hematite (Gem
and Mineral Miners Inc., Alta Loma, CA, USA) was used as a heavy material subjected to
gravity separation experiments. Single-sized quartz was used to avoid size effects on bed
movement and separation.

2.2. Fluidized Bed and PEPT Setup

The fluidized bed consisted of a bed body, an air chamber, an air distributor, and a
flow meter attached to the air chamber to measure the airflow for minimum fluidization
and to adjust the desired air ratio for experiments. The bed body was made of a cylindrical
transparent Plexiglas column with an inner diameter of 100 mm and height of 900 mm, and
for the air distributor, a quartz frit (Technical Glass Products, QPD100-0) covered with a
38 µm screen sheet was used. In order to measure the change in bed height over time, the
sidewall of the bed was marked with a graduated scale.

PEPT analysis was carried out using the ADAC Forte positron camera [115]. Large
(−1180 + 1000 µm) quartz and hematite (ArcelorMittal Exploitation Minière, Longueuil,
QC, Canada) particles were irradiated with a 35 MeV 3He beam in the Birmingham MC40
cyclotron to produce the positron-emitting isotope 18F in situ in the material matrix. These
oxygen-containing minerals are well-suited for direct activation. An independent activation
run was performed for each test. These large particles were broken after activation using
a brass hammer and anvil and then were sized to the desired diameter using standard
screens. The technique of producing tracer particles for PEPT work has been described in
detail [99,101–103,116]. The fluidized bed set-up was placed inside the field of the camera,
as shown in Figure 1.

The column was filled to a height of 300 mm to create a bed with mono-sized silica.
Air was introduced to fluidize the bed from the bottom. The airflow rate for minimum
fluidization (umf) was measured by increasing the airflow rate from 0 L/min to a certain
rate where the bed expanded and bubbling occurred, which indicated the minimum
fluidization of the Geldart Group B type particle [112,113]. With the addition of hematite,
preliminary observations showed that the segregation of heavy and light particles did not
occur under the minimum fluidization. For separation purposes, the airflow rate was set as
25% and 50% more than the minimum fluidization, and these conditions were used for all
PEPT investigations.

The desired airflow rates and corresponding umf values used during the experiments
for different-sized beds are given in Table 1. The bed was fluidized for a certain time
(approximately 10 min) to reach an initial state with desired airflow depending on the
experimental conditions. After that, the quartz tracer or the hematite tracer (mixed with
300 g hematite for separation purposes) was added to the top of the bed in each case for the
investigation of the bed movement experiments or for separation-behavior experiments,
respectively. Data recorded by the acquisition system were analyzed using the Track
program [76,78], and post-treated with a customized MATLAB code. Track, developed
at the University of Birmingham, is used to identify and reject corrupt events and to
determine the location of the tracer particle [76]. An analysis of the raw data, obtained from
the fluidized bed tests, is needed to determine optimum input parameters for the Track
code for each corresponding speed and tracer activity level in order to minimize the 3D
location error. This trajectory error analysis has been described in detail previously [99].
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Figure 1. ADAC Forte positron camera with the fluidized bed placed between the detectors.

Table 1. Airflow rates for different stages.

Bed Size
(µm)

Airflow
(L/min)

umf
(cm/s)

Airflow
(L/min)

1.25 umf
(cm/s)

Airflow
(L/min)

1.5 umf
(cm/s)

−300 + 212 33 7.00 41.25 8.75 49.5 10.50
−212 + 150 22 4.67 27.5 5.84 33 7.00
−150 + 106 16 3.40 20 4.24 24 5.09

3. Results and Discussion
3.1. Investigation of the Bed

A series of experiments were carried out to investigate the motion of the fluidized bed
by tracking activated quartz particles (tracer) with airflow rates of 1.25 and 1.5 umf for each
size fraction. Figure 2 presents vertical velocities of the activated quartz particle in each
fluidized bed at different airflow rates, which demonstrates particle motions inside the
beds. The trajectories of the tracer particle during the entire experimental run can be seen
from Appendix A, Figures A1–A3 for each size fraction.

In the bed of size −300 + 212 µm, despite the airflow rate differences, the flow patterns
look similar to deeper beds [41]. As can be seen from Figure 2a,b, both beds show the
particle ascending at the center and descending near the wall [80]. The absolute veloc-
ity of the descending particle on the walls is relatively low (<0.01 m/s) for both airflow
rates. However, the ascending particles in the center move faster than the corresponding
downwards motion and the ascending region is slightly expanded at a high airflow rate
(1.5 umf). The effect of the ascending particle will be discussed in the separation
Section 3.2.1.
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Figure 2. Vertical velocities of the activated quartz particle in each fluidized bed for an airflow rate of
1.25 umf (left column) and 1.50 umf (right column) for decreasing particle size (top to bottom). (a)
−300 + 212 µm at 1.25 umf; (b) −300 + 212 µm at 1.50 umf; (c) −212 + 150 µm at 1.25 umf; (d) −212 +
150 µm at 1.50 umf; (e) −150 + 106 µm at 1.25 umf; (f) −150 + 106 µm at 1.50 umf.

Different to the coarser-sized bed (−300 + 212 µm), Figure 2c shows that, at a lower
airflow rate (1.25 umf), the −212 + 150 µm bed starts to descend in the center and ascend
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between the center and the wall. However, according to Figure 2d, under a higher airflow
rate (1.5 umf) the flow pattern of the bed looks similar to the −300 + 212 µm bed with the
particle ascending at the center and descending near the wall. The flow pattern for this
condition looks similar, but the absolute velocity of the ascending and descending particle
is faster (>0.01 and > 0.015 m/s, respectively) than the coarser bed (−300 + 212 µm).

As for the −150 + 106 µm fluidized bed, based on Figure 2e, it shows that the overall
bulk motion is still similar to the −212 + 150 µm bed (1.25 umf), but the speed distribution
is higher. The particle descends near the wall and ascends in the center. However, there is a
descending region in the middle when the figure is investigated closely. From Figure 2f, the
flow patterns of the solids under higher airflow rate behave similarly to the −300 + 212 µm
bed for both airflow rates and the −212 + 150 µm bed at the 1.25 umf bed, where the
particle ascends at the center and descends near the wall. However, the absolute velocity
of the ascending and descending particle is faster (>0.015 and >0.02 m/s, respectively),
and the ascending particle reaches the maximum velocity (0.04 m/s) at the top half of the
column center.

3.2. Separation Behavior and Heavy-Particle Motion

Experiments were conducted to investigate the movement of an activated heavy
hematite particle in the same-sized fluidized bed with two airflow rates, 1.25 and 1.50 umf,
respectively. Each size fraction was tested twice with different activated hematite particles.
An additional test was added for the −300 + 212 µm fraction at both airflow rates due to
promising separation.

3.2.1. The −300 + 212 µm Hematite Bed

Figures 3 and 4 show the results of the three runs (a, b, and c) for the −300 + 212 µm
hematite particle with an airflow rate of 1.25 umf and 1.50 umf, respectively.

As seen from the Figure 3(a1,b1,c1), all heavy particles reach the bottom of the bed in
a relatively short time (approximately 5 min) at an airflow rate of 1.25 umf. Investigating
the route of the heavy particle shows that it follows the descending bed movement near
the walls (Figure 3(a2,a3,b2,b3,c2,c3)). The absolute velocity of the particle shows that the
heavy particle moves faster than the descended bed velocity, possibly due to the combined
effects of bed movement and gravity.

The same behaviors were observed for the airflow rate of 1.5 umf (Figure 4(a1,a2,a3,b1,
b2,b3)) apart from the last run (Figure 4(c1,c2,c3)). As mentioned in Section 3.1, the ascended
bed velocity and its region is slightly bigger at an airflow rate of 1.50 umf. It is clear that
there are one or more convective cells present in the bed at different heights, and there
may be more cells as the airflow rate increases. Thus, there is more chance for the heavy
particle to become entrained in a local convection cell. This explains why the heavy particle
remained in the middle of the fluidized bed for a period of time before moving downward.
However, heavy particles in this size (−300 + 212 µm) could still overcome the impact from
the bulk ascending bed motion and eventually reached the bottom of the bed. Results from
the third run indicate that a higher airflow rate leads to a longer separation time.

The heavy particles shown in Figure 5(a1,b1) do not remain at the bottom of the bed
during the two runs. In both cases, the particle descends first in the descended bed region,
and as soon as it reaches the center of the bed, it starts to ascend with the airflow and
the rest of the bed (Figure 5(a2,a3,b2,b3)). During the first run (Figure 5(a1)), the particle
reaches just the middle of the bed. One of the reasons for this behavior is the high absolute
velocity of the ascended region, which pushes the particle upward in the center more easily.
However, the tracer particle cannot stay in the middle of the bed during the second run
(Figure 5(b1)) and it reaches the bottom of the bed in the end.
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3.2.2. The −212 + 150 µm Hematite Bed

Figures 5 and 6 show the results of the two runs (a and b) for the −212 + 150 µm
hematite particle with an airflow rate of 1.25 umf and 1.50 umf, respectively.
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Figure 5. The results of 2 runs (a,b) of a −212 + 150 µm hematite particle for an airflow rate of
1.25 umf (Lagrangian trajectory (1) and Eulerian flow maps (2 and 3)).

It was observed that, even though the tracer did not stay at the bottom, some hematite
particles fed to the fluidized bed reached the bottom and remained there. However, even
though there was a separation, the recovery of the heavy particles would be lower than
coarse bed (−300 + 212 µm) separation. Regardless of the low recovery, it shows that there
is still a potential for separation in this size fraction.

For further investigation, experiments at the 1.50 umf airflow rate were conducted.
However, the particle did not descend. On the contrary, it started to travel all over the
bed with the bulk quartz material (Figure 6(a1,a2)). The observation of the bulk hematite
particles showed a similar trend as the tracer particle. They were distributed in the bed,
nearly homogeneously, and acted like the bed material.

Based on Eulerian flow maps of this size fraction (Figure 6(a2,a3,b2,b3)), the descend-
ing velocity of the dense particle was similar to that of the bulk bed particle, while the
ascending velocity of the heavy particle was slightly slower than the bed particle. This
indicates that, during the ascension, the gravity forces are still effective. However, they are
not sufficient to overcome the effect of the airflow. From these results, it can be concluded
that, for this size fraction, lower airflow rates (<1.25 umf) should be investigated to produce
a better separation.
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Even though there was no observable separation, the results indicate that mixing the
light (quartz) and heavy (hematite) material in this size fraction can be useful for creating
denser beds.

3.2.3. The −150 + 106 µm Hematite Bed

Figures 7 and 8 show the results of the two runs (a and b) for the −150 + 106 µm
hematite particle with an airflow rate of 1.25 umf and 1.50 umf, respectively.
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As can be seen from the particle trajectories (Figure 7(a1,b1) and Figure 8(a1,b1)),
the heavy particles acted like a bed particle and did not remain at the bottom of the bed
during the two runs regardless of the airflow rate. In each case, the particle descended
in the descending bed region, and then started to rise with the airflow following the
same route and with the same velocity as the bed particles (Figure 7(a2,a3,b2,b3) and
Figure 8(a2,a3,b2,b3)). This shows that both heavy and light particles travel all over the
cylinder at the same trajectory. The reason for this is that the high absolute velocity of
the ascending region pushing the particle upward in the center overcomes the downward
impact of gravity on the heavy particle. It can be concluded that there will likely be no
separation in a deep bed created from particles of this size. However, it is possible to make
a homogeneous high-density bed which can be potentially used as bed material for dry
dense medium separation of iron ore based on floating and sinking of ore particles in a
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gas–solid fluidized bed. Based on the good mixing behavior, this bed also has the potential
to be applied to tribocharging mineral particles prior to using a triboelectric separator.
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3.3. General Discussion

Symmetric circulating particle flow formed where the particles rose along the center
area of the bed and move to the wall sides after reaching the top, and descended along
the wall. This observed fluidized bed motion behavior from the PEPT tests is similar to
that reported previously by Luo et al. [71], in which CFD–DEM simulation was applied
for modeling. The circulating particle flow became strong as the superficial air velocity
increased, which corresponds well with the findings from Oshitani et al. [117].

Regarding the separation behavior, the coarsest size (−300 + 212 µm) achieved best
separation regardless of the airflow rates. Density segregation dominates the separation
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since the heavy hematite and light quartz are controlled in the same size fraction for each
test to minimize the effect of size segregation. Hematite settles faster than quartz under the
flow and separation happens as the drag force from the ascending airflow cannot compete
with the gravity force acting on particles in the coarse size fraction. It should be noted that,
even in the coarsest size fraction, there is a chance for heavy particles to be entrained (third
run of the −300 + 212 µm fraction under high airflow rate). However, the particles of this
size eventually overcame the hindered effect from the rising flow and managed to percolate
through the fluidized bed to reach the bottom of the bed to form the final concentrate.
This finding may indicate that high airflow could result in a longer separation time for
coarse sizes. Overall, the degree of the density segregation depends on the air velocity. The
segregation dependence on the air velocity is related to the difference in the size of the air
bubbles and the fluidization intensity in various locations of the bed. Oshitani et al. [26]
came to the same conclusion when they treated iron ore in similar size range in a gas–solid
fluidized bed.

The negative effect of increasing airflow rate on separation performance becomes
more pronounced in finer size fractions, since the drag force dominated the flow motion
of particles. There was no observed separation, and hematite and quartz particles mixed
well and travelled all over the bed. There was no difference when compared to the solid
mixing model presented in the literature [71]. The overall behavior of the tracer particle
is representative of the bulk motion as the single particle had been followed for a long-
enough period (one hour) [118]. As the airflow rate increases, particulate collisions happen
more frequently, which corresponds well with the observations from Lagrangian trajectory
figures. This can develop more convective cells in the bed at different heights. Finer heavy
particles become entrained easily. It is possible that particles still separate briefly on the
micro-scale at an individual trajectory level, then become entrained easily in these local
convection cells and/or become re-entrained in another cell after a longer period. Thus, the
motion behavior looks similar on average over time and no separation is observed overall.

4. Conclusions

This paper presents the characterization of mono-sized (−300 + 212, −212 + 150,
−150 + 106 µm) deep beds and an investigation into the separation mechanism of heavy
particles in a fluidized bed using PEPT. The conclusions are as follows:

1. Quartz (a typical Geldart Group B solid) and hematite can be activated for PEPT char-
acterization of the fluidized bed and investigations into the separation mechanisms.

2. The overall bulk motion is nearly the same, which indicates that the average bed
behavior is very systematic and as described in the literature. Despite their different
ascending and descending velocities, bed material of all sizes show the same patterns
as described by Kunii and Levenspiel [41] and Lin et al. [80].

3. The coarsest size fraction (−300 + 212 µm) yields the best separation. The heavy
hematite particle descends in less than 5 min under both airflow rates. However,
increasing the airflow rate increases the chance of the heavy particle being entrained
by the increasing ascending flow, which results in longer separation time.

4. Separation happens in the −212 + 150 µm fraction with a lower airflow rate (1.25 umf);
the recovery will, however, be low due to the hindering effect from the bulk ascending
flow. There is no separation under a higher airflow rate.

5. There is no observed separation at −150 + 106 µm fraction. However, the similar flow
patterns of the light and dense particles in this case can possibly be used for creating
high-density beds.

Fine-size separation can be possible in a dry fluidized bed; however, more work should
be conducted focusing on different fluidized bed heights and/or a different size and shape
of the bed structure.
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Figure A3. Trajectories of an activated quartz particle (−150 + 106 µm) inside the bed against time 
for 1.25 umf (1) and 1.50 umf (2): (a) the tracer trajectory with fit; the tracer trajectory from side view 
(b) and top view (c). 
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