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Abstract

:

The Chakabeishan (CKBS) deposit is the first pegmatite-type Li-Be deposit discovered in the eastern North Qaidam Tectonic Belt (NQTB) of Tibetan Plateau. The correct understanding of its petrogenesis and the precise determination of its formation age are of great significance for further regional prospecting and the discovery of new economically valuable rare-metal deposits. Therefore, a systematic study of texture, major-element composition, and U-Pb dating of columbite-tantalite group minerals (CGMs) in the spodumene pegmatite dyke from the CKBS deposit was undertaken. Three types of CGMs were identified, including concentric oscillatory ferrocolumbite (CGMs-1), homogeneous ferrocolumbite (CGMs-2), and irregular ferrotantalite (minor manganocolumbite) with abundant early ferrocolumbite replacement remnants (CGMs-3). The zoning patterns and chemical compositions in the CGMs record the complex evolutionary history of their host pegmatite from the magmatic stage (CGMs-1, disequilibrium crystallization) to the magmatic-hydrothermal transition stage (CGMs-2, equilibrium crystallization) and then to the late metasomatic stage (CGMs-3, replacement/re-equilibrium). CGMs U-Pb dating results suggest that the spodumene pegmatite dyke (No.15) emplaced at 230.1 ± 2.6 Ma. Subsequently, it experienced fluid metasomatism at 221 ± 5.3 Ma. Based on the new age data and published geochronological data, it can be concluded that the spodumene pegmatite dykes in the CKBS deposit formed in an oceanic subduction-related setting, representing a new metallogenic event in western China. Except for the CKBS deposit, a large number of rare-metal pegmatite dykes have also been discovered in the eastern NQTB, indicating that the eastern NQTB may be an important potential rare-metal metallogenic belt that should be explored in detail and arouse painstaking attention.
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1. Introduction


Rare metals (e.g., Li, Be, Nb, Ta, Rb and Cs) play a vital role in the modern electronic industry, medicine, new energy industry, national defense and other high-tech fields. No nation has all of the rare-metal resources it needs domestically, so international trade in rare metals is necessary [1]. If global supplies are considered to be at risk or insufficient to meet growing demand, international commerce may result in international competition for rare-metal resources. Against the background of competition for rare-metal resources, many countries have designated highly import-dependent rare metals as critical metals or strategic metals in the 21st century [1,2,3]. Granitic pegmatite (hereafter pegmatite) is one of the important host rocks for rare metals, thus, it has attracted special attentions [4,5,6,7,8,9]. Pegmatite has been extensively documented over the last two centuries, but many fundamental problems remain unresolved, and new ones are coming to our attention, such as the role of hydrothermal process, the control factor for rare-metal mineralization and the geochemical fractionation of twin elements (e.g., Nb-Ta, Zr-Hf) [10,11,12]. One of the best ways to address the aforementioned issues is through textural and chemical variations in particular minerals, e.g., tourmaline [13,14], muscovite [15,16] and columbite-tantalite group minerals (CGMs) [17,18,19].



The Tibetan Plateau and its marginal areas contain a large number of rare-metal pegmatite dykes. The most fascinating region is the Tianshuihai-Songpan-Ganze terrane in the center of the Tibetan Plateau (Figure 1), where many super-large to medium-sized Li deposits, with a total Li2O resource of >14.8 Mt, have been found [20,21,22,23,24]. These pegmatite-type Li deposits have close temporal, spatial, and genetic relationships to Triassic S-type granites and flysch sedimentary rocks; therefore, it is also called the Markam-Yajiang-Karakoram giant Li ore belt (MYKB), which formed in an orogenic setting in the Paleo-Tethys tectonic domain [20,24,25]. The eastern NQTB, located to the north of the MYKB, also developed significant Triassic granitoids associated with orogenic events in the Paleo-Tethys tectonic domain [21,26,27]. Recently, numerous pegmatite dykes and several pegmatite-type rare-metal deposits/mineralized points have been discovered in the eastern NQTB, including Honglingbei Li-Be mineralization point, Chakabeishan (CKBS) Li-Be deposit, Qiemoge Li-Be deposit, and so on [28,29,30,31,32,33]. The genetic relationship between pegmatite-type rare-metal deposits in the eastern NQTB and MYKB is less discussed. Whether they are products of the same magmatic-tectonic event is worth investigating, which is vital for regional rare-metal prospecting.



In this paper, we focus on the internal zoning pattern, major-element composition, and U-Pb isotope of CGMs (AB2O6, A = Mn, Fe, B = Nb, Ta) in the spodumene-bearing pegmatite from the CKBS Li-Be deposit with the aim of revealing the evolutionary history of the Li-rich pegmatite, determining the formation age of the host pegmatite, and deciphering the relationship between the CKBS deposit and rare-metal deposits in adjacent tectonic units. The results of this study can potentially aid in the exploration of new rare metal mineralization in the eastern section of the North Qaidam Tectonic Belt (NQTB).




2. Geological Backgrounds


The NQTB is situated on the northern margin of the Tibetan Plateau (Figure 2a), with the Qaidam Block to the south, the Qilian Block to the north, the Altyn Tagh fault to the west and the West Qinling Orogen to the east [33,34,35,36,37]. The NQTB is divided into a northern unit and a southern unit by the E-W-trending Yuka-Wulan fault (Figure 2b). The southern unit is an Early Paleozoic subduction-collision complex related to Proto-Tethys Ocean subduction. It is well known for ultra-high pressure (UHP) metamorphic rocks [37,38]. The northern unit, also known as Quanji Massif or Olongbuluke Massif, mainly consists of Proterozoic metamorphic basement and Phanerozoic sedimentary rocks [35,36,39]. More detailed information about the NQTB can be found in the work of Wang et al. [32], Chen et al. [34], Song et al. [38], Pan et al. [40], and Liu et al. [41].



The CKBS deposit is the first pegmatite-type Li-Be deposit discovered in the eastern segment of NQTB (Figure 2b). There are ca. 800 LCT-type pegmatite dykes in the CKBS deposit, which were derived from high fractional crystallization of granitic magmas [42,43]. These pegmatite dykes occurred in the Paleoproterozoic Dakendaban Group schist Formation and the Ordovician quartz diorite (Figure 2c). The elongation of these pegmatites varies but generally shows NW-SE trending with varying dipping (23°–83°). These pegmatite dykes are ca. 10–400 m in length and ca. 0.5–5 m in width. Since its first discovery in 2018, Li-Be resources of ca. 14,200 t Li2O and ca. 7000 t BeO have been identified [31]. More detailed information on the pegmatites and ore-body in the CKBS deposit can be found in the work of Liu et al. [21], Wang et al. [32], Pan et al. [40], and Liu et al. [41]. In the past four years, the formation ages of pegmatite dykes in this deposit, with greater controversy, have been suggested, including 240.6 ± 1.5 Ma [40] and 217–215 Ma [21] by coltan U-Pb dating; 213–211 Ma by muscovite Ar-Ar dating [21,44]; 216.6 ± 0.88 Ma by lepidolite Ar-Ar dating [21]; 235.9 ± 2.3 Ma and 217 ± 1.8 Ma by zircon U-Pb dating [32].




3. Samples


The investigated pegmatite samples were collected from the No.15 spodumene pegmatite dyke in the CKBS deposit, which is emplaced in the Ordovician diorite and mainly consists of spodumene, albite, feldspar, and quartz, with minor muscovite, tourmaline, and garnet (Figure 2c and Figure 3). Although CGM grains were not directly observed within double polished thin sections and hand specimens, they were successfully separated from the investigated samples using conventional heavy liquid and magnetic methods and then hand-picked under a binocular microscope. The CGM grains were extracted, mounted in epoxy resin, and polished by standard methods. The images of back-scattered electron (BSE), transmitted light, and reflected light were obtained to ensure that the CGM grains are fresh and free of inclusions or cracks.



As shown in Figure 4, the lengths and widths of the investigated CGM grains are ca. 100–350 μm and ca. 50–150 μm. Based on conspicuously different zoning patterns in the BSE images, three types of CGMs were identified: concentric oscillatory CGMs-1 (Figure 4a,b), homogeneous dark CGMs-2 (Figure 4c), and irregular patchy/complex CGMs-3 (Figure 4d–i). CGMs-3 grains are commonly composed of dark domains (CGMs-3a) and bright domains (CGMs-3b), showing obvious replacement phenomena, such as overgrowth, crosscutting, corrosion, and embayment (Figure 4d–i). CGMs-1 grains are rare, with only three in this study, whereas CGMs-2 and CGMs-3 particles are common.




4. Analytical Methods


4.1. Major-Element Analyses


Major-element concentrations were analyzed by JEOL JXA8230 at Wuhan SampleSolution Analytical Technology Co., Ltd. (Wuhan, China), using a 20 kV accelerating voltage, 20 nA beam current, and 1 μm beam diameter. Peak and background counting times for all investigated elements were 10 s and 5 s, respectively. Data were corrected by the ZAF method provided by JEOL and the following standards were used: TiO2 for Ti, CaMnSi2O6 for Ca, NaAlSi2O6 for Na, SnO2 for Sn, MnSiO3 for Mn, FeCr2O4 for Fe, Bi2Se3 for Bi, Mg3Al2Si3O12 for Al, PbS for Pb and pure metals for Ta, Nb, Pb, U and W. To reveal the chemical variations in the oscillatory zoning, EMPA mapping was performed on typical CGMs-1 grains using the JEOL JXA8230 at the same company, using a 20 kV voltage and 50 nA beam current. The dwell time is 50 ms, the image pixel lattice size is 1 × 1 μm, and the pixel size is 262 × 192.




4.2. U-Pb Analyses


The in-situ U-Pb dating for CGMs grains was performed at the Mineral Laser Microprobe Analysis Laboratory, China University of Geosciences, Beijing (CUGB), China, using an Agilent 7900 Quadrupole Inductively Coupled Plasma Mass Spectrometry (Agilent, Santa Clara, CA, USA) coupled with an ASI RESOlution S115LR laser ablation system (Australian Scientific Instruments, Fyshwick, ACT, Australia). During the analyses, the laser spot size was 33 μm, energy density was 5 J/cm2, ablation time was 40 s, repetition rate was 5 Hz, and raster scanning speed was 5 μm/s. The dwell times for each mass scan were 10 ms for 232Th, 15 ms for 238U and 208Pb, 20 ms for 204Pb and 206Pb, and 30 ms for 207Pb. During analysis, Coltan 139 was used to correct the ratios of 206Pb/238U, 207Pb/235U and 207Pb/206Pb (ID-TIMS age of 506 ± 2.3 Ma, [45]); NP-2 was used to monitor instrument status and experimental results. Offline data analysis and processing were undertaken with the Iolite software (Iolite Softwares Inc., Laurel, MD, USA). In addition, Isoplot v.4.15 software (Berkeley Geochronology Center, Berkeley, CA, USA) was used to plot Tera–Wasserburg diagrams and calculate weighted mean U-Pb ages [46].





5. Results


5.1. Major-Element Composition


All analysis results by EMPA are listed in Table S1. The abundance ranges, average values, and standard deviations of major element compositions in the CGMs are shown in Table 1. The results of EMPA mapping for CGMs-1 grains are shown in Figure 5. The three types of CGM show marked differences in chemical composition. Among, the CGMs-1 grains are characterized by episodic Nb- and Ta-rich zones alternating to each other (Figure 5), coupled with episodic concentrations of TiO2 (0.290–0.439 wt.%), WO3 (0.276–0.497 wt.%) and PbO (0.254–0.393 wt.%) (Figure 6a–c). The ratios of Ta/(Ta + Nb) and Mn/(Mn + Fe) in CGMs-1 range from 0.141–0.204 and 0.273–0.318, respectively. Compared with CGMs-1, CGMs-2 grains have slightly lower Ta/(Ta + Nb) ratios (0.069–0.120) and elevated Mn/(Mn + Fe) ratios (0.292–0.474). The ratios of Ta/(Ta + Nb) (0.058–0.168) and Mn/(Mn + Fe) (0.370–0.482) in CGMs-3a domains are comparable with those in CGMs-1 and CGMs-2. Compared with CGMs-3a domains, CGMs-3b domains display obviously increased Ta/Nb and slightly varied Mn/Fe, TiO2, SnO2, WO3, and PbO (Figure 6d–f).



As shown in Figure 7a, CGMs-1, CGMs-2, and CGMs-3a exclusively plot in the ferrocolumbite region, whereas the CGMs-3b domains are represented mainly by ferrocolumbite and ferrotantalite, and rarely by manganocolumbite. All CGMs show negative correlations in the diagrams of Nb (apfu) vs. Ta (apfu) and Mn (apfu) vs. Fe (apfu) (Figure 7b,c), suggesting the substitution of Ta with Nb and Fe with Mn in the three-type CGMs. The abundances of Nb, Ta, Fe, Mn, and Ti in the dark domains of CGMs-3 are comparable to those in CGMs-2 (Figure 7a–d). However, CGMs-3b show obviously different major element abundances from CGMs-1 and CGMs-2 (Figure 7a–d), especially Nb and Ta.




5.2. U-Pb Ages


LA-ICP-MS U-Pb data for the CGMs are summarized in Table 2 and illustrated in Figure 8. Since there are few well-preserved CGMs-1 grains in the investigated pegmatite, we thus obtain only one analysis point with a 207Pb/235U ratio of 0.5570 and a 206Pb/238U ratio of 0.0398. The one point has a 206Pb/238U age of 252 ± 6.4 Ma. The ratios of 207Pb/235U and 206Pb/238U in CGMs-2 vary from 0.2490 to 0.4110 and 0.0364 to 0.0379, respectively. On the Tera–Wasserburg plot, the CGMs-2 grains are relatively scattered and yield an intercept age of 230.1 ± 2.6 Ma (2SD; MSWD = 1.3), with a weighted-mean 206Pb/238U age of 233.3 ± 3.5 Ma (2SD; MSWD = 2.6). The ratios of 207Pb/235U and 206Pb/238U in CGMs-3b vary from 0.236 to 0.262 and 0.0338 to 0.357, respectively. The seven CGMs-3b analyzed points yield an intercept age of 221.2 ± 5.3 Ma (2SD; MSWD = 2.8), with a weighted-mean 206Pb/238U age of 220.8 ± 4.3 Ma (2SD; MSWD = 4.8). The intercept ages yielded by CGMs-2 and CGMs-3b agree well with their weighted-mean 206Pb/238U age.





6. Discussions


6.1. CGMs Origin and Chemical Evolution


Both primary magmatic and secondary metasomatic models have been suggested for the genesis of CGMs in the hydrous granitic magma systems. The magmatic origin of CGMs has been established by both experimental determinations and natural samples [47,48,49,50]. The researchers favoring a magmatic model suggested that the CGMs commonly coexist with other rock-forming minerals, show simple textures (oscillatory zoning, homogeneous, progressive normal/reverse zoning), and display gradual or periodical variations in Ta/(Ta + Nb) and/or Mn/(Mn + Fe) from core to rim [49,50,51,52,53,54,55]. The main pieces of evidence cited for a metasomatic model are that the CGMs show patchy/complex textures with two distinctly different chemical domains (mainly expressed in the ratios Ta/Nb and Mn/Fe), and coexist with secondary minerals (e.g., wodginite, microlite), and occur in replacement bodies [19,40,48,49,54]. It is worth noting that a recent experimental study suggested that homogenous CGMs with magmatic textures could crystallize from fluid–melt interactions in a hydrous granitic system, where CGMs saturations are reached at geologically reasonable concentrations of high field strength elements (HFSE, e.g., Nb, Ta) in melts and fluid-mobile elements (FME, e.g., Mn, Fe) in hydrothermal fluids [50]. The experiment demonstrated that CGMs can form at the magmatic-hydrothermal stage and require two-end members, rather than always resulting from a single melt or fluid phase as previously reported. The question arises as to whether the CGM grains in the spodumene pegmatite from the CKBS deposit were formed through magmatic processes, metasomatic processes, or fluid–melt interactions.



6.1.1. Primary CGMs-1 and CGMs-2


The oscillatory zoning in the CGMs-1 ferrocolumbite is concentric and continuous, which is different from the irregular, discontinuous oscillatory zoning in metasomatic CGMs [56], indicating that CGMs-1 are of non-metasomatic origin. The textural pattern in CGMs-1 is similar to that in magmatic CGMs from granite and pegmatite worldwide, such as Shangbao granite [47], Ineigi granite [48], Penouta leucogranite [52], Separation Lake pegmatite [19], Tanco Lower pegmatite [49], Jezuitské Lesy pegmatite [57], and Koktokay No.3 pegmatite [5], implying that CGMs-1 have a syn-magmatic origin. The magmatic origin of the CGMs-1 is further supported by the coupled chemical oscillatory zoning, including periodical variations in the concentrations of Ta, Nb, Ti, Sn, W and Pb (Figure 5 and Figure 6c). The chemical oscillatory zoning in magmatic CGMs from pegmatites is believed to result from non-equilibrium fractional crystallization due to the slow diffusion of Nb and Ta, as well as Ti, Sn, W, and Pb, relative to the rate of crystal growth in the crystallization front of the pegmatite [49,56,58,59], which is described as a process of constitutional zone refining by London et al. [4].



Unlike CGMs-1, CGMs-2 ferrocolumbite grains are homogeneous in the BSE images (Figure 4c). The unzoned textural pattern in the CGMs-2 ferrocolumbite reflects balanced contributions of the main components [49,60,61], chiefly Nb and Ta (Figure 7a). This indicates that the CGMs-2 ferrocolumbite grains were products of equilibrium crystallization, which is significantly distinct from the non-equilibrium crystallization crystals of CGMs-1 ferrocolumbite. In the context of pegmatite, equilibrium-crystallization could take place in the condition of a silicate melt phase coexisting with an independent fluid phase [62,63], where CGMs might directly crystallize from the melt phase, or from the fluid phase, or form via melt-fluid interactions. The chemical and B-isotopic compositions in tourmaline indicated that Na-Fe-B-rich fluid exsolution occurred during the evolution of spodumene pegmatite from the CKBS deposit [43]. The Na-Fe-B-rich fluid cannot transport significant amounts of Nb and Ta to precipitate CGMs-2 ferrocolumbite directly, since melt-aqueous fluid partition coefficients for Ta and Nb are extremely low in the hydrous granitic melt system [12,64,65,66]. The solubility of Nb and Ta could be enhanced in fluoride solutions, mainly as HF [55,67,68]. However, we have to discount a major role of such fluid on the formation of CGMs-2, since F-rich minerals (e.g., lepidolite, fluorapatite, fluorite, topaz) are either scarce or absent in the investigated pegmatite (No.15), suggesting a low-F system rather than an F-rich one [69,70]. Furthermore, if CGMs-2 had crystallized directly from an F-rich fluid phase, they should have plotted in the Mn-rich region [19,69] rather than the Fe-rich region (Figure 7a). Unlike Nb and Ta, abundant Fe (a fluid mobile element, [60]) was incorporated into the Na-Fe-B-rich fluid phase during fluid-melt immiscibility, resulting in the residual melt phase hardly crystallizing ferrocolumbite directly due to the absence of bivalent cations. Thus, the most possible mechanism for the formation of homogeneous CGMs-2 ferrocolumbite grains is fluid-melt interactions, i.e., they formed via interactions of a melt that is enriched in HFSE (e.g., Nb, Ta) with a diffused fluid enriched in FME (e.g., Mn, Fe). The elevated Mn/(Mn + Fe) trend in the CGMs-2 ferrocolumbite crystals could be ascribed to the competitive crystallization of paragenetic Fe-rich minerals (e.g., hydrothermal tourmaline, [43]).




6.1.2. Secondary CGMs-3


The textures, such as corrosion, crosscutting, embayment, and overgrowth (Figure 4d–i), exclusively indicate the partial decomposition of CGMs-3a by later fluids/melts and the generation of a more Ta-rich CGMs-3b along with the margins and micro-cracks of crystals [19,49,58]. Since the CGMs-3a domains are comparable to CGMs-1 and CGMs-2 in texture patterns and chemical compositions (Figure 4 and Figure 7), it is thus reasonable to infer that CGMs-3a are pristine domains of CGMs-1 and CGMs-2 remaining after alterations of CGMs-3b. The texture patterns in CGMs-3 are comparable to those in CGMs from hydrous granitic melts worldwide, such as Shihuiyao granite [61], Abu Dabbab granite [71], Big Whopper pegmatite [19], Kamativi pegmatite [69], Presqueira pegmatite [70], Mufushan pegmatite [72], and Nanyangshan pegmatite [73], which was suggested to be of later fluid-induced or melt-induced replacement origin. If melt-induced model (Ta-rich melt replaced) were applied to CGMs-3, highly evolved injected melt could react with early crystallized rock-forming minerals and form replacement phenomena (e.g., muscovite replacement, [49]). However, replacement phenomena are not observed in the investigated spodumene pegmatite where all main rock-forming minerals boundaries are sharp (Figure 3). Thus, the most possible metasomatic medium for CGMs-3 was a special fluid phase, which might be regional metamorphic [74] or exsolved from the more evolved melt in the very last stages of fractionation [5,19,56,70]. There is no evidence for the pegmatite formation being connected to regional metamorphism either at the outcrop or thin section scale, suggesting the CGMs-3 recorded the variable conditions within the pegmatite-forming melt itself. This is further supported by the extremely wide range of composition in CGMs-3 expressed as ferrocolumbite, ferrotantalite and manganocolumbite (Figure 6a), since metamorphic fluid could homogenize the composition of CGMs whereas magmatic hydrothermal alteration results in diversification of the mineralogy of Nb and Ta [74]. Accordingly, it can be concluded that the special fluid for CGMs-3 formation was magmatic fluid that exsolved from the pegmatite-forming melt at the end of magmatic crystallization. Unfortunately, the available data in the study and reliable data in the associated papers are insufficient to constrain the physicochemical properties of the special fluid, warranting further work on this topic, especially fluid inclusions. As several case studies have shown [47,73], we suggest that the Ta-rich special fluids may be similar to hydrosilicate fluids that were rich in both H2O and SiO2 and had the capacity to dissolve Ta that accumulated in the terminal melts at temperatures ranging from 600 °C to relatively lower temperatures. It is worth noting that the special fluid phase is not the same fluid phase related to CGMs-2 formation in terms of textural relationships between CGMs-2 and CGMs-3, i.e., two fluid exsolution events occurred. By studying fluid inclusions, Alfonso and Melgarejo [75] have confirmed that fluid pulse exsolution could occur during the evolution of rare-metal pegmatite.



According to the study of the internal zoning patterns and element compositions, the formation process of CGMs and the evolution of the spodumene pegmatite are specifically reconstructed as follows (Figure 9): after the pegmatitic melt was emplaced into the shallow crust, Nb was initially saturated and primary CGMs-1 crystals with oscillatory zonation were crystallized directly from the melt in disequilibrium conditions. Subsequently, during the magmatic-hydrothermal transition stage, the homogeneous CGMs-2 crystals were generated via interactions of the evolved melt (enriched in Nb and Ta) with the diffused fluid (enriched in Fe and Mn). Finally, a special magmatic Ta-rich fluid (hydrosilicate?) exsolved from the imminently exhausted melt and led to the formation of secondary CGMs-3 grains by substituting the early formed CGMs-1 and CGMs-2.





6.2. Geochronogical Framework and Implications


6.2.1. Previous Geochronology Review


Zircon U-Pb data revealed that spodumene pegmatite dykes in the CKBS deposit were emplaced at ca. 217 Ma [32]. However, these zircons experienced obvious metamictization and metasomatism, indicating that their U-Pb ages cannot represent the crystallization time of the host pegmatite [76]. The uncertainty of zircon U-Pb age in pegmatite-system has been demonstrated in many case studies, e.g., [21,76]. CGMs grains are regarded as an excellent U-Pb dating alternative for pegmatite-system due to their high U and low common Pb contents [24,45]. Pan et al. [40] were the first to report CGMs U-Pb age for spodumene pegmatite dykes in the CKBS deposit, where eleven homogenous dark CGMs grains yielded a weighted mean 206Pb/238U age of 240.6 ± 1.5 Ma. The textural patterns in the CGMs grains documented by Pan et al. [40] are comparable with those in CGMs-2, indicating that they formed at the magmatic-hydrothermal stage and their U-Pb ages could represent consolidation ages of the host pegmatite. Recently, Liu et al. [21] reported obviously younger CGMs U-Pb ages (217–215 Ma) for spodumene pegmatite dykes in the CKBS deposit. After careful comparisons, it can be found that these CGMs grains of 217–215 Ma commonly show bright BSE images (Ta-rich domains), which are similar to the CGMs-3b domains in this study and the CGM grain of 211 Ma documented by Pan et al. [40], indicating they are of metasomatic origin and their U-Pb ages represent the time of late metasomatic events. This is further supported by the fact that the U-Pb ages of CGMs with bright BSE images (217–215 Ma) are comparable with muscovite Ar-Ar ages (217–212 Ma) and lepidolite Ar-Ar ages (ca. 217 Ma) [21,44], since the Ar-Ar isotopic systems in the muscovite/lepidolite are susceptible to being reset by late metasomatic events related to CGMs-3 formation due to the low closure temperature (350–400 °C, Burrt and Phillips [77]).




6.2.2. Geochronogical Framework


In terms of the origin and evolution model for the CGMs crystals as discussed above, it would be accepted that the U-Pb ages of CGMs-1 and CGMs-2 represent the crystallization time of the host pegmatite whereas the secondary CGMs-3 U-Pb age is representative of late metasomatic time. One data point obtained for CGMs-1 has no apparent statistical significance, and its 206Pb/238U age of 252 ± 6.4 Ma hardly represents the crystallized age of host spodumene pegmatite. Because the cooling rate of pegmatite-forming melts after emplacement is rapid [4,78], it is reasonable to ignore the CGMs-1 U-Pb data and use the CGMs-2 intercept age as the crystallization time of the host pegmatite. Accordingly, we reconstruct the geochronological framework for the spodumene pegmatite dyke (No.15) in the CKBS deposit: a Li-B-rich pegmatite-forming melt phase was emplaced into the eastern NQTB and started to crystallize CGMs-1 and CGMs-2 at 230 ± 2.6 Ma. Subsequently, CGMs-1 and CGMs-2 grains were replaced to form CGMs-3 by a special fluid phase at 221 ± 5.3 Ma. Please note that the U-Pb ages of the primary and secondary CGMs are consistent within errors (minimum gap is ca. 1 Ma).



Comparing the new U-Pb data (Table 2, Figure 8) with published geochronological data [21,32,40,44], it can be concluded that the crystallization ages of the spodumene pegmatite dykes in the CKBS deposit are different, with a discrepancy of ca. 6–15 Ma within errors. As the consolidation of an individual pegmatite dyke should be finished in a short time [4,78], the age discrepancy of ca. 6–15 Ma reflects that (i) the Li-rich pegmatites in the CKBS deposit are not a cogenetic pegmatite group (defined by Černý [79]) although they are spatially close together, i.e., they might be derived from different sources, as documented in the pegmatites of the Fregeneda area [80] and the Kamativi area [69]; (ii) the pulse emplacements rather than a single emplacement of Li-rich pegmatite-forming melts in the CKBS deposit, i.e., multiple batches of Li-rich pegmatitic melts were emplaced into the shallow crust during a period of ca. 6–15 Ma. The latter scenario is difficult to reconcile with geological observations that a granitic magma chamber must be large enough to survive over ca. 6 Ma (1200 km2 for ca. 10 Ma, [81]). So far, no contemporaneous S-type granite with such a large volume has been found around the CKBS deposit. The scenario of the pegmatites not being a cogenetic pegmatite group is more likely, which is supported by the numerous independent 255–235 Ma granitoids exposed around the CKBS deposit [21,42].




6.2.3. Tectonic Environment


Extensive Early-Middle Triassic arc igneous plutons are exposed near the studied area in the eastern NQTB, including the Wulan gabbro (245–242 Ma), the Tianjunnanshan granites (246 Ma), the Qinghaihunanshan granite (238 Ma), the Xugeigou granite (254 Ma), the Qiluoshan granodiorite (251 Ma), the Chahannuo hornblende diorite (249 Ma), the Chahannuo granite (248 Ma), the Chahanuo granodiorite (243 Ma), the Chahanhe granite (240 Ma), the Shailekeguolei granodiorite (249 Ma), and the Narong granitic porphyry (245 Ma) [21,27,40]. The formation ages and Nd-Hf isotopic compositions of these arc igneous plutons in the eastern NQTB are comparable to those of arc igneous rocks in the Buerhanbuda area (250–238 Ma) in the East Kunlun and the Tongren-Zeku area (242–234 Ma) in the West Qinling, indicating that the eastern NQTB, East Kunlun, and West Qinling were a complete active continental margin system during the Early-Middle Triassic, which was related to the northward subduction of the Paleo-Tethys oceanic plate [21,26]. Post-collision A-type granite plutons in the eastern NQTB (220–215 Ma) and East Kunlun (228–218 Ma) indicate that the Paleo-Tethys Ocean was closed in the Late Triassic [21]. Therefore, it would be accepted that the Middle Triassic pegmatites and adjacent Early-Middle Triassic granitoids in and around the CKBS deposit were formed in an oceanic subduction-related setting. The conclusion is consistent with Boroujerd pegmatites [82].





6.3. Regional Mineralization Comparison


Regionally, there are three important rare-metal metallogenic belts related to Tethys evolution around the CKBS deposit in the eastern NQTB (Figure 10a), including the world-class MYKB [21,24], the Guanpo-Danfeng mineralization belt (GDMB) [73,83,84] and the Tugman-Tashisayi mineralization belt (TTMB) [76,85]. The CKBS Li-Be deposit in the eastern NQTB and the pegmatite-type rare-metal deposits in the MYKB, GDTB and TGMB are products of extreme fractionation of peraluminous granitic intrusions [21,25,42,83,85,86]. Therefore, whether the CKBS deposit can be connected with one of the spatially adjacent MYKB, GDTB, and TTMB remains an interesting question, which is of great significance for regional prospecting. The following three reasons support the conclusion that the CKBS deposit is not connectible to the three spatially adjacent rare-metal mineralization belts. First, the formation ages of rare-metal deposits in the MYKB, GDMB, and TTMB are 224–144 Ma, 420–394 Ma, and 468–350 Ma, respectively, which are different from the crystallization age of the CKBS deposit (ca. 240–230 Ma, Table 3, Figure 10b–d). However, it is interesting to note that the late metasomatic ages of pegmatite dykes in the CKBS deposit overlap with the crystallization ages of some deposits in the MYKB (Figure 10d). Second, regionally comprehensive studies showed that the geological environments were late/post-orogenic regimes when rare-metal deposits formed in the MYKB, GDMB, and TTMB [25,73,83,85], whereas the dynamic environment for the formation of spodumene pegmatite in the CKBS deposit was an active continental margin, indicating that they were controlled by different geological events. Third, Hf isotopic compositions in zircons are believed to be unaffected during metamictization, which thus could trace the source of host granitic rock [86]. The εHf(t) values in zircons from the CKBS deposit varied from −15.5 to −11.63 [32] while those from the rare-metal deposits in the MYKB and GDMB ranged from −13.6 to −7.23 [86,87] and from −7.8 to −7.0 [83], respectively, indicating that the sources of these pegmatite-granite are different.



Except for ca. 800 pegmatite dykes in the CKBS deposit, significantly abundant pegmatite dykes have also been found in the eastern segment of NQTB (Figure 11), e.g., ca. 360 in the Shaliuquan area, ca. 100 in the Chahannuo area and ca. 700 in the Shinaihai area [28,33]. Recently, several granite-pegmatite-related rare metal deposits/mineralization points have also been discovered in these pegmatite-exposure areas, including the Shaliuquan Nb-Ta deposit, Asiheta Be deposit, Shinaihai Nb-Ta-Rb deposit, Honglingbei Li-Be mineralization point, Yematannan Li mineralization point, and so on (Figure 11). In addition to the pegmatite in the CKBS deposit, pegmatite dykes in other deposits/mineralized points in the eastern NQTB are very poorly understood, which makes it difficult to quantitatively decipher the rare-metal metallogenic regularity at the moment. However, the following three commonalities can be concluded for the pegmatite dykes in the eastern NQTB based on the results of preliminary field investigations [28,29,30,31,32,33,40]: (1) mostly intruded into schist, gneiss, and marble of Paleoproterozoic Dakendaban Group; (2) distributions were controlled by secondary fracture and/or ductile shear zone; (3) closed related to adjacent granite, some even occurred in granite. Therefore, we suggest that the eastern NQTB may be a new potential rare-metal mineralization belt, which should be explored in detail and arouse painstaking attention.





7. Conclusions


(1) Three-stage crystallizations of CGM crystals are identified in terms of variations in internal zoning patterns and major element compositions. First, oscillatory CGMs-1 ferrocolumbite grains crystallize at the magmatic stage, which are products of non-equilibrium fractional crystallization and are characterized by episodic variations in Ta/(Ta + Nb), TiO2, WO3 and PbO. Second, homogeneous CGMs-2 ferrocolumbite grains are formed at the magmatic-hydrothermal transition stage, which result from equilibrium crystallization via fluid-melt interactions and are characterized by the relatively stable Ta/(Ta + Nb) and moderately elevated Mn/(Mn + Fe). Third, irregular/complex CGMs-3 crystals commonly consist of Nb-rich domains (CGMs-3a) and Ta-rich domains (CGMs-3b) and are formed by the metasomatism of early-formed CGMs-1 and CGMs-2 with special fluids. This metasomatism causes considerably elevated Ta/(Ta + Nb) in CGMs-3b.



(2) The investigated spodumene pegmatite dyke (No.15) emplaced at 230.1 ± 2.6 Ma and then experienced a late fluid-induced metasomatic event at 221 ± 5.3 Ma.



(3) The CKBS deposit is not likely to be connected to the adjacent rare-metal mineralization belts (MYKB, GDTB and TTMB). The occurrence of abundant pegmatite dykes and obvious mineralization information indicate that the eastern NQTB may be a new potential rare-metal mineralization belt in western China, which should be paid more attention to.
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Figure 1. (a) Topographic map showing typical rare-metal deposits in the Tibetan Plateau. (b) Geological sketch showing the distributions of Late Triassic to Early Jurassic igneous rocks and major pegmatite-type rare-metal deposits in the NQTB and neighboring tectonic zones (modified after Yan et al. [20]; Liu et al. [21]). Abbreviations of tectonic units: TSGT = Tianshuihai-Songpan-Ganzi Terrane, EKO = Eastern Kunlun Orogen, WKO = Western Kunlun Orogen, MAT = Middle of Altyn Tagh. Abbreviations of geological boundaries: GLS = Ganzi-Litang suture, JS = Jinsha suture, AKMS = Ayimaqin-Kunlun-Matztagh suture, SQS = South Qilian suture, LMST = Longmenshan thrust, ATS = Altyn Tagh fault. Abbreviations of typical rare-metal deposits: BLS = Bailongshan, MLC = Mulinchang, XEBL = Xiaoerbulong, HSTS = Huoshitashi, XFL = Xuefengling, DHLT = Dahongliutan, ZWL = Zhawulong, CL = Caolong, JJK = Jiajika, KEY = Ke’eryin, XBD = Xuebaoding, TGM = Tugman, TGMB = TugmanBei, CKBS= Chakabeishan and SLQ = Shaliuquan. 






Figure 1. (a) Topographic map showing typical rare-metal deposits in the Tibetan Plateau. (b) Geological sketch showing the distributions of Late Triassic to Early Jurassic igneous rocks and major pegmatite-type rare-metal deposits in the NQTB and neighboring tectonic zones (modified after Yan et al. [20]; Liu et al. [21]). Abbreviations of tectonic units: TSGT = Tianshuihai-Songpan-Ganzi Terrane, EKO = Eastern Kunlun Orogen, WKO = Western Kunlun Orogen, MAT = Middle of Altyn Tagh. Abbreviations of geological boundaries: GLS = Ganzi-Litang suture, JS = Jinsha suture, AKMS = Ayimaqin-Kunlun-Matztagh suture, SQS = South Qilian suture, LMST = Longmenshan thrust, ATS = Altyn Tagh fault. Abbreviations of typical rare-metal deposits: BLS = Bailongshan, MLC = Mulinchang, XEBL = Xiaoerbulong, HSTS = Huoshitashi, XFL = Xuefengling, DHLT = Dahongliutan, ZWL = Zhawulong, CL = Caolong, JJK = Jiajika, KEY = Ke’eryin, XBD = Xuebaoding, TGM = Tugman, TGMB = TugmanBei, CKBS= Chakabeishan and SLQ = Shaliuquan.



[image: Minerals 13 00201 g001]







[image: Minerals 13 00201 g002 550] 





Figure 2. (a) Topographic map showing the location of (b); (b) Geological sketch of the NQTB and its surrounding tectonic units (modified after Chen et al. [34], Li et al. [35] and Ren et al. [36]); (c) Geological sketch showing the typical area of the CKBS Li-Be deposit and sampling location (modified after 1:10,000 geological survey data). 
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Figure 3. Photographs and photomicrographs showing mineral assemblages of the spodumene pegmatite dykes in the CKBS Li-Be deposit. (a) The pegmatite dyke intruded into diorite. (b) Hand-specimen of pegmatites in the CKBS deposit. (c) Photograph of a coarse green spodumene crystal. (d–f) Photomicrographs of the spodumene-bearing pegmatite on double polished thin sections. Spd—spodumene, Tur—tourmaline, Mus—muscovite, Ab—albite, Kfd—feldpasr, Gt—garnet and Q—quarzt. 
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Figure 4. Back-scattered electron images of the CGMs. (a,b): oscillatory CGMs-1 grains; (c): homogenous CGMs-2 crystal; (d): Ta-rich patch overgrowth on CGMs-1; (e): Ta-rich domains crosscutting Nb-rich domain; (f): corroded Nb-rich fragments remained in the Ta-rich domain (metasomatic relict texture); (g): small worm-like Ta-rich domains occurred into the Nb-rich domain (metasomatic myrmekitic texture); (h): CGMs-3 with mottled zoning; (i): CGMs-3 with embayment texture. 
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Figure 5. EMPA mapping for the oscillatory CGMs-1 grains. (a–c) for grain on Figure 4a and (d–f) for grain on Figure 4b. 
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Figure 6. Electron probe microanalysis profiles showing the chemical variations of typical CGMs-1 (a–c) and CGMs-3 (d–f) from core to rim. Analyzed numbers and sites are marked as yellow circles (not to scale) in the backscattered electron images of (a,d), and the corresponding contents and ratios of elements are shown in the form of change curve (b,c,e,f). 
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Figure 7. Major-element compositions in CGMs from the CKBS deposit expressed in terms of (a) Mn/(Mn + Fe) vs. Ta/(Ta + Nb) (after Černy and Ercit [17]), (b) Nb (apfu) vs. Ta (apfu), (c) Mn (apfu) vs. Fe (apfu) and (d) Mn/(Mn + Fe) vs. Ti (apfu). 
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Figure 8. Tera-Wasserburg (a) and weighted average (b) diagrams for CGMs-2. Tera-Wasserburg (c) and weighted average (d) diagrams for CGMs-3b. Red circles and red words on the BSE images of typical CGM crystals showing U-Pb analyzed sites and results (206Pb/238U ages), respectively. 
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Figure 9. Schematic model illustrating the formation process of CGMs and the evolution of pegmatite. Ta# = Ta/(Ta + Nb). Note that the sizes of minerals are not to scale. 
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Figure 10. Comparison of geochronological data of the pegmatite-type rare-metal deposits in the TTMB, GDMB, E-NQTB and MYKB. (a) Topographic map showing the distributions of the rare-metal mineralized belts around the CKBS deposit in the eastern NQTB (modified after Zhan et al. [88], Zhang et al. [89] and Robinson [90]). (b) the dating results for the TTMB (Tugman-Tashisayi mineralization belt, pink area). (c) the dating results for the GDMB (Guanpo-Danfeng mineralization belt, laurel-green area). (d) the dating results for the E-NQTB (the eastern North Qaidam Tectonic Blet, saffron yellow area) and the MYKB (Markam-Yajiang-Karakoram belt, purple area). Yellow area and light grey area in (c) represent the ranges for crystallization ages and metasomatic ages of pegmatites in the eastern NQTB, respectively. Detailed data and sources are shown in Table 3. This diagram does not include the muscovite Ar-Ar ages of the Aketasi, Dangba and Tugmanbei deposits due to their far difference from the results of other geochronological methods. Meanwhile, due to the large error values (±8, MSWD = 6.7, Li et al. [23]), the cassiterite U-Pb age for the 505 Li is also ruled out. The ages of Triassic granitoids (grey area) in the eastern NQTB are from Wu et al. [91] and Sun et al. [42]. 
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Figure 11. Geological sketch of Triassic granitoids and rare-metal deposits in the eastern NQTB. Letter abbreviations: NQTB = North Qaidam Tectonic Belt, Gts = grantoids, GT = granite-type, PT = pegmatite-type and MPs = mineralization points. Number abbreviations of deposits/mineralized-point: 1 = Shinaihai Nb-Ta deposit, 2 = Honglingbei Li mineralized point, 3 = Qiemoge Li-Be deposit, 4 = Chakabeishan Li-Be deposit, 5 = Edanggang Be deposit, 6 = Ashiheta Be deposit, 7 = Chahannuo Nb mineralized point, 8 = Shengge Nb mineralized point, 9 = Yematannan Nb-Ta mineralized point, 10 = Bahagaidege Be mineralized point, 11 = Gaotelameng REE mineralized point, 12 = Balegenluole LREE mineralized point, 13 = Chahansen Nb mineralized point, 14 = Halahada Be mineralized point, 15 = Shaliuquan Nb-Ta deposit, 16 = Amuneige Nb mineralized point, 17 = Xiaerdawu Nb-REE mineralized deposit, 18 = Chachaxiangka U mineralized point. 
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Table 1. Major-element compositional variations of the three-type CGMs in the spodumene pegmatite from the CKBS deposit.
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CGMs-1

	
CGMs-2

	
CGMs-3a

	
CGMs-3b




	

	
min–max

	
a ± sd

	
min–max

	
a ± sd

	
min–max

	
a ± sd

	
min–max

	
a ± sd






	
Nb2O5 (wt.%)

	
55.63–61.70

	
58.92 ± 1.862

	
63.66–69.27

	
67.75 ± 1.413

	
58.34–70.41

	
66.11 ± 4.455

	
20.66–59.87

	
40.80 ± 12.79




	
Ta2O5 (wt.%)

	
16.78–23.73

	
19.81 ± 2.071

	
8.496–14.47

	
9.924 ± 1.380

	
7.187–19.56

	
11.76 ± 4.431

	
17.11–62.22

	
38.99 ± 14.27




	
TiO2 (wt.%)

	
0.290–0.439

	
0.361 ± 0.049

	
0.341–0.556

	
0.420 ± 0.048

	
0.310–0.565

	
0.449 ± 0.090

	
0.192–0.951

	
0.447 ± 0.178




	
SnO2 (wt.%)

	
0.000–0.142

	
0.066 ± 0.057

	
0.000–0.270

	
0.081 ± 0.080

	
0.016–0.304

	
0.129 ± 0.086

	
0.000–1.182

	
0.237 ± 0.254




	
MnO (wt.%)

	
5.356–6.351

	
6.075 ± 0.318

	
5.980–9.698

	
8.148 ± 0.987

	
7.376–9.518

	
8.224 ± 0.679

	
6.163–11.89

	
7.849 ± 1.395




	
FeO (wt.%)

	
13.51–14.44

	
13.84 ± 0.293

	
10.91–14.72

	
12.52 ± 1.031

	
10.34–13.24

	
12.21 ± 0.973

	
7.121–13.74

	
10.38 ± 1.729




	
WO3 (wt.%)

	
0.276–0.497

	
0.383 ± 0.067

	
0.261–0.575

	
0.388 ± 0.078

	
0.278–0.511

	
0.408 ± 0.079

	
0.215–1.608

	
0.398 ± 0.253




	
PbO (wt.%)

	
0.254–0.393

	
0.319 ± 0.046

	
0.174–0.427

	
0.363 ± 0.048

	
0.275–0.426

	
0.337 ± 0.047

	
0.000–0.343

	
0.188 ± 0.093




	
Total (wt.%)

	
98.81–100.2

	
99.77 ± 0.417

	
98.50–100.6

	
99.60 ± 0.507

	
98.92–100.5

	
99.63 ± 0.617

	
97.84–100.9

	
99.30 ± 0.899




	
Mn/(Mn + Fe)

	
0.273–0.318

	
0.308 ± 0.015

	
0.292–0.474

	
0.397 ± 0.049

	
0.370–0.482

	
0.406 ± 0.039

	
0.312–0.628

	
0.435 ± 0.075




	
Ta/(Ta + Nb)

	
0.141–0.204

	
0.168 ± 0.019

	
0.069–0.120

	
0.081 ± 0.012

	
0.058–0.168

	
0.098 ± 0.039

	
0.147–0.644

	
0.375 ± 0.160








min–max: minimum value–maximum value; a: average value; sd: standard deviation; the numbers of analysis points for CGMs-1, CGMs-2, CGMs-3a and CGMs-3b are 12, 27, 9 and 30, respectively; details see Table S1.
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Table 2. Analytical results of U-Pb isotopes and calculated ages for CGMs grains in the spodumene pegmatite from the CKBS deposit.
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Spot No.

	
Type

	
Isotopic Ratios

	
Age (Ma)




	
207Pb/235U

	
2σ

	
206Pb/238U

	
2σ

	
207Pb/206Pb

	
2σ

	
207Pb/235U

	
2σ

	
206Pb/238U

	
2σ

	
207Pb/206Pb

	
2σ






	
1

	
CGMs-1

	
0.5570

	
0.0450

	
0.03980

	
0.00100

	
0.10010

	
0.00680

	
445

	
29

	
252

	
6.4

	
1570

	
130




	
2

	
CGMs-2

	
0.4100

	
0.0260

	
0.03760

	
0.00110

	
0.07810

	
0.00330

	
343

	
18

	
238

	
6.9

	
1062

	
89




	
3

	
CGMs-2

	
0.4110

	
0.0200

	
0.03714

	
0.00069

	
0.08010

	
0.00350

	
346

	
14

	
235

	
4.3

	
1114

	
92




	
4

	
CGMs-2

	
0.3160

	
0.0250

	
0.03643

	
0.00082

	
0.06110

	
0.00360

	
274

	
18

	
231

	
5.1

	
540

	
110




	
5

	
CGMs-2

	
0.2490

	
0.0130

	
0.03647

	
0.00068

	
0.04980

	
0.00260

	
224

	
11

	
231

	
4.2

	
150

	
110




	
6

	
CGMs-2

	
0.2780

	
0.0120

	
0.03640

	
0.00061

	
0.05610

	
0.00250

	
247

	
10

	
231

	
3.8

	
409

	
96




	
7

	
CGMs-2

	
0.3130

	
0.0260

	
0.03659

	
0.00087

	
0.06250

	
0.00530

	
273

	
20

	
232

	
5.4

	
500

	
170




	
8

	
CGMs-2

	
0.3840

	
0.0170

	
0.03792

	
0.00075

	
0.07380

	
0.00290

	
327

	
13

	
240

	
4.6

	
970

	
89




	
9

	
CGMs-3b

	
0.2420

	
0.0170

	
0.03569

	
0.00087

	
0.04990

	
0.00350

	
217

	
14

	
226

	
5.4

	
100

	
130




	
10

	
CGMs-3b

	
0.2370

	
0.0110

	
0.03412

	
0.00062

	
0.05100

	
0.00240

	
215

	
9

	
216

	
3.9

	
200

	
100




	
11

	
CGMs-3b

	
0.2490

	
0.0170

	
0.03573

	
0.00088

	
0.05200

	
0.00390

	
224

	
14

	
226

	
5.5

	
160

	
140




	
12

	
CGMs-3b

	
0.2470

	
0.0140

	
0.03453

	
0.00090

	
0.05200

	
0.00280

	
222

	
12

	
219

	
5.6

	
210

	
110




	
13

	
CGMs-3b

	
0.2360

	
0.0130

	
0.03375

	
0.00068

	
0.05150

	
0.00280

	
215

	
10

	
214

	
4.2

	
210

	
100




	
14

	
CGMs-3b

	
0.2620

	
0.0110

	
0.03520

	
0.00057

	
0.05370

	
0.00220

	
235

	
9

	
223

	
3.5

	
302

	
87




	
15

	
CGMs-3b

	
0.2435

	
0.0075

	
0.03529

	
0.00056

	
0.04980

	
0.00150

	
221

	
6

	
224

	
3.5

	
162

	
65
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Table 3. The formation ages revealed by various dating methods for pegmatite-type rare-metal deposits in the TTMB, MYKB, GDMB and the eastern NQTB.
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	Deposit
	Minerallized Belt
	Dating Method
	Age (Ma)
	References





	CKBS
	The eatern NQTB
	Columbite U-Pb *
	230.1 ± 2.6
	This study



	
	
	Columbite U-Pb *
	240.6 ± 1.5
	Pan et al. [4]



	
	
	Columbite U-Pb **
	214.9 ± 1.7
	Liu et al. [21]



	
	
	Columbite U-Pb **
	217 ± 2.3
	Liu et al. [21]



	
	
	Columbite U-Pb **
	221.2 ± 5.3
	This study



	
	
	Columbite U-Pb **
	215 ± 1.5
	Liu et al. [21]



	
	
	Zircon U-Pb
	217 ± 1.8
	Wang et al. [32]



	
	
	Zircon U-Pb
	235.9 ± 2.3
	Wang et al. [32]



	
	
	Muscovite Ar-Ar
	212.6 ± 0.6
	Chen et al. [44]



	
	
	Muscovite Ar-Ar
	211.7 ± 0.4
	Liu et al. [21]



	
	
	Muscovite Ar-Ar
	211.8 ± 0.3
	Liu et al. [21]



	
	
	Lepidolite Ar-Ar
	216.6 ± 0.9
	Liu et al. [21]



	Qiemoge
	The eatern NQTB
	Zircon U-Pb
	229.5 ± 1.3
	Li et al. [29]



	Aketasi
	MYKB
	Muscovite Ar-Ar
	144.7 ± 4.3
	Qiao et al. [92]



	505 Li
	MYKB
	Cassiterite U-Pb
	223.5 ± 7.9
	Li et al. [23]



	Xiaoerbulong
	MYKB
	Columbite U-Pb
	204.6 ± 2.1
	Yan et al. [20]



	Kangxiwar
	MYKB
	Zircon U-Pb
	209 ± 4.4
	Zhang et al. [93]



	Xuefengling
	MYKB
	Columbite U-Pb
	206.3 ± 1.8
	Yan et al. [20]



	Bailongshan
	MYKB
	Columbite U-Pb
	208.1 ± 1.5
	Wang et al. [94]



	
	
	Monazite U-Pb
	207.4 ± 0.6
	Yan et al. [20]



	Caolong
	MYKB
	Monazite U-Pb
	204 ± 0.3
	Li et al. [87]



	
	
	Monazite U-Pb
	200.4 ± 0.7
	Li et al. [87]



	Zhawulong
	MYKB
	Columbite U-Pb
	204.5 ± 1.8
	Li et al. [95]



	Xuebaoding
	MYKB
	Cassiterite U-Pb
	199.6 ± 6
	Yan et al. [20]



	Jiajika
	MYKB
	Columbite U-Pb
	214 ± 2
	Hao et al. [96]



	
	
	Cassiterite U-Pb
	210.9 ± 4.6
	Dai et al. [97]



	
	
	Zircon U-Pb
	211 ± 5
	Dai et al. [97]



	Dangba
	MYKB
	Muscovite Ar-Ar
	152 ± 1
	Li et al. [98]



	Dahongliutan
	MYKB
	Columbite U-Pb
	211.9 ± 2.4
	Yan et al. [24]



	Mulinchang
	MYKB
	Columbite U-Pb
	206.4 ± 2.0
	Yan et al. [20]



	Huoshitashi
	MYKB
	Columbite U-Pb
	205.7 ± 2.7
	Yan et al. [20]



	
	
	Monazite U-Pb
	204.2 ± 2.0
	Yan et al. [20]



	Lijiagou
	MYKB
	Zircon U-Pb
	198 ± 3.4
	Fei et al. [99]



	
	MYKB
	Columbite U-Pb
	211.1 ± 1.0
	Fei et al. [22]



	Tugman
	TTMB
	Zircon U-Pb
	459.9 ± 3.7
	Xu et al. [85]



	Tugmanbei
	TTMB
	Zircon U-Pb
	458.7 ± 2.3
	Li et al. [76]



	
	
	Cassiterite U-Pb
	468 ± 8.7
	Li et al. [76]



	
	
	Muscovite Ar-Ar
	350.2 ± 1.6
	Li et al. [76]



	
	
	Columbite U-Pb
	464.1 ± 2.7
	Li et al. [76]



	Guanpo
	GDMB
	Cassitereite U-Pb
	420 ± 2
	Zeng et al. [83]



	Wuduoshan
	GDMB
	Zircon U-Pb
	417.4 ± 2.5
	Chen et al. [100]



	Nanyangshan
	GDMB
	Columbite U-Pb
	406.8 ± 3.3
	Yuan et al. [86]



	Jiucaigou
	GDMB
	Columbite U-Pb
	415.9±2.4
	Zhou et al. [16]



	Daxigou
	GDMB
	Columbite U-Pb
	399.2±1.7
	Zhou et al. [16]



	Sigou
	GDMB
	Columbite U-Pb
	415.4±3.2
	Zhou et al. [16]



	Huoyangou
	GDMB
	Columbite U-Pb
	393.9±3.6
	Zhou et al. [16]







* represents magmatic age; ** represents metasomatic age; NQTB: North Qaidam Tectonic. Belt; MYKB: Markam-Yajiang-Karakoram Mineralization Belt; TTMB: Tugman-Tashisayi Mineralization Belt; GDMB: Guanpo-Danfeng Mineralization Belt.



















	
	
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.











© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).






media/file8.jpg





media/file13.png
—_—

a—

— / ’
. % _—~ 7 Tantalite-tapiolite .~ (a)
77N miscibilitygap _ 7
SV Ferrotapiolite =
- — Manganotantalite
—— " %o

Tal/(Ta+Nb)

— ’I;errotantalif f

4}
Ferro-
-columbite

~

¢
¢ Manganocolumbite

%o

¢ 1
$ui

0.2 0.4 0.6 0.8 1.0

Mn/(Mn+Fe)

Fe (apfu)

(c)

he 8

y=-0.988x + 1.022 €
R*=0.9749 @0
O
Of2 01.3 Of4 015 01.6 0.7

Mn (apfu)

1.2 ’Q
0
—_ . y =-0.985x + 1.937
> ‘S R?=0.9992
Q.
g 0.8 ’
© Q@
— ® CGMs-1 \
® CGMs-2
04 ¢ CGMs-3a o
¢ CGMs-3b
0 . . | . | .
0 0.8 1.2 1.6
Nb (apfu)
0.05
’0
0.04
S0.03 *2e
o o
© S 0'. &
= 0.02 4 4
® L ®
0.01 . 4 0‘
0.00 L L . .
0. 0.3 0.4 0.5 0.6
Mn/(Mn+Fe)






media/file12.jpg
Tal(Ta+Nb)

Fe (apfu)

100 - AL

T Tamalteaio (a) o)
. miscibilitygap .~
Gpotte 4
[ Manganotamae | _ -
T" 9992
ol e PO [TRI— 1 -
Caumte o o 1o o Cousz
o 't |2 e
“. CoMs.3b
Mn/(Mn+Fe) Nb (apfu)
© . )
& .o
Fou B
o g 0% 0n o
o v
y=-0saexs 102z F .?’” . e
K RS
oo . B
B L e S T

Mn (apfu) Mni(Mn+Fo)





media/file18.jpg
() | s

Ages (Ma)






media/file9.png
(d)






media/file14.jpg
0080

Imercoptar
230132600

20

Vean=2123:354a

e TheW0 =25
WETusuD
0.080 4
2 2
0070 £
L S
o0 [ I I I
ooso
a4 .
- L@ e <=
% £ Ed % E)
iyt
oo 220
marcostat 7 Vemn=z20024 3w
oo I TS s
Wi . comean
0.054 e \ Y & =)
N\ 2
002 \ H
L 2 ol
os0[ 240 i 3 N
TR
a0
© (d)
204 T B W

ypeepy






media/file20.jpg
. Early-Middle
lsvdorn— 12~ ~ _ Qin [ Ery-Midde I Late Triassicots
d "0, e e 7] Pogmatio voins
—_— Yen;, (Notto scale)
i 7] Fault .~ NQTB boundary
Jewars (1) Dessianiee

] GT deposits/MPs|
] PT deposits/MPs

l36°40'N

Qg s
asin~ — . O~

lo700E  o7'30E 98°00'E 98°30'N 99°30'N






media/file5.png
J-.l._r.r!il...avga

= e 4 Mt Mo,






media/file15.png
207 Pb/ZOGPb

207 Pb/206Pb

0.090 1

0.080
0.070

0.060

" 250 240 —\J_i_,/

0.050

0.040

0.058

0.056
0.054 |
0.052
0.050
0.048
0.046

0.04426

‘-
\.
\

CGM82

‘

Intercept at
230.1+2.6 Ma

s =7MSWD=1.3

25 26

27

Intercept at
221.2+5.3 Ma
rN=7MSWD = 28

29
238 U /206 P b

*°Pp/**°U age

*°Pp/**°U age

246

242

234 ¢

2307

226

Mean =233.3+ 3.5 Ma
N=7MSWD=2.6

2387

]

222

238

206

' (b) i@ -

Mean =220.8+4.3 Ma
N=7MSWD =4.8

2307

2227

214+






media/file19.png
E100°

Monazite U-Pb age
Cassiterite U-Pb age
Muscovite Ar-Ar age
Zircon U-Pb age
CGMs U-Pb age

Lepidolite Ar-Ar age

_______ ¢ R
__ ._______
——
——
—i—
__________
— — — — — — . — — —
—i—
[ ]
—a—
= =
—@—
—#—

480 475 470 465 460 455

425 420 415 410 405 400 395 390

Ages (Ma)

250 245 240 235 230 225 220 215 210 205 200 195 190

Lijiagou
Kangxiwa
Jiajika

Xuebaoding
Caolong

Zhawulong

Bailongshan

Xuefengling
Dahongliutan
Mulinchang

Huoshitashi

Xiaoerbulong
Qiemoge

CKBS

Huoyangou
Daxigou
Nanyangshan
Sigou
Jiucaigou
Wuduoshan
Guanpo
Tugerman

Tugermanbei





media/file2.jpg
‘o






nav.xhtml


  minerals-13-00201


  
    		
      minerals-13-00201
    


  




  





media/file11.png
Ratios

Ratios

0.50t

0.40f

0.30¢

0.20f

Mn/(Mn+Fe)

Ta/(Ta+Nb)

b)

Mn/(Mn+Fe)

Ta/(Ta+Nb)

o
(o)}
o

Abundances( wt.%)
© o o o
N w NEN &)}
o o o o

o
-
o

(c)

Abundances(
© o o
- N w
o o o

o
o
o

TiO,

WO,
PbO

SnO,

-
N
w






media/file6.jpg
(a) CGMs-1 (b) CGMs-1

(d) ceMms-3 (e) CGMs-3

M‘

(g)coms:3 (h)cems-3

(c)CGMs-2

2

(f) cGMs-3

corrodet
remnants

(i) CGMs-3






media/file1.png
I I
83° E 104° E

Qilian Orogenic Belt  *® N~

«—Figure 2b

Qinling 34° N+
SZWLIQL "= —— o

[ P w
. PR Songpan &
R .‘ eSongRgn e,

Early-Middle Late Triassic-
Triassic granite Jurassic granite

------ Suture zones  Typical Rare-metal deposits:
—A— Thrust Fault ZWLO inTSGT
— Fault CKBSO IineasternNQTB

®Ganzi City TGMO in MAT






media/file10.jpg





media/file7.png
(a) CGMs-1 (b) CGMs-1 (c) CGMs-2






media/file16.jpg
Formation process of CGMs

i
CGMs-3, imsgular
palchy/ complex |

i

Do L e Rt e b

CGMs-2, homogenous

@

o =
atusion o uids et

g 1

[ The evolution of the pegmatite-forming melt >






media/file3.png
(b)

—40° N

Archean-Proterozoic
metamorphic basement

Early Paleozoic
accretion complex

Paleozoic-Cenozoic
sedimentary sequences

- UHP metamorphic terrances

I:I Granitoid - Lake
Faults @

City

Qinghai
Lake

North Qilian subduction

QB-Qaidam Block NQL- accretionary complex

Western Qinlin

Qilian North Qaidam
ABglock  W9OB-0rogenicBelt  NATB-tecionic Belt
@ southern tectonic unit ® northern tectonic unit
in NQTB in NQTB
~99° 99°04'02.8"
B Quaternary Ordovician Carboniferous to middle |
g Sediments 20 Quartz Diorite Permain Gajia Formation g
~ Proterozoic Da- : Sampling N
= PtD, kendaban Group Pegmatite 7;‘( Yy =
.~ | Mylonite
. sone .~~~ |Fault Q100 M
".l
N AN |
" N ~ PtD, |
- N ¢ \ I
N AN I
= - e
5 XN \ ~ 5
| 199°01'20.9" 99°04'02.8






media/file17.png
Formation process of CGMs

CGMs-1, oscillatory

Ta#=0.178 Ta# =0.141
Ta#

disequilibrium crystallization

I
CGMs-3, irregular
patchy/ complex |
I

I

minerals ! fluids
/ —

increasing volatile
e.g., F,H,0,B(OH),

ﬁ enhedral| Na-Fe-B-rich ﬁ

magmatic stage

|

|

I

I

|
| o
CGMs-2, homogenous | I
=0.069—0.120- l !
| I
equilibrium crystallization I re-equilibrium/replacement i
| I
anhedral | Ta-rich quidsI
minerals | !
> O,o melt-fluid I I
interactions | I
—— |
. : . hydroinIicate (?) I
\ O\ diffusion of fluids fluids dxsolution |
O@% o |
d oversaturated melt coexisting with fluid _L post-crystallization fluid _:

magmatic-hydrothermal transition stage

late metasomatic stage

| The evolution of the pegmatite-forming melt






media/file4.jpg





media/file0.jpg
G o' nie
n Orogenic Belt

—Figure 2b

S Suureonos Typka Rare ot apesis
A ThustFaun  2wLo TSGT
sow Gy Towo AT






media/file21.png
Early-Middle : .
_ | Trassicats I Late Triassic Gts

- Pegmatite veins
City/County (Ngt to scale)
Fault _~ NQTB boundary

Deposits/MPs
__| E-NQTB numbers

. 0 | GT deposits/MPs
NN |
\\ N 0 | PT deposits/MPs
RS N 28k
7 53 Y A m
) N

97°00'E 97°30'E 98°00'E






