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Abstract: Accurate calculation of the stresses and deformations of tunnels is of great importance for
practical engineering applications. In this study, a three-region model for tunnels considering seepage
force was established. A new nonlinear strain-softening model is proposed. Then, a unified solution
for the stresses and deformations of tunnels is deduced. Through a series of discussions, the effects of
seepage force, softening modulus coefficient of cohesion, and initial support resistance on the stress
distribution, radii of the post-peak zone, and surface displacement around the tunnel are discussed.
Results show that the tangential stresses are always larger than the radial stresses. As the distance
from the tunnel center increases, the radial stress continues to increase, while the tangential stress first
increases and then decreases. With the increases in seepage force, the radii of the post-peak zone and
surface displacement all increase. With the increases in softening modulus coefficient of cohesion, the
radii of the post-peak zone increase while the surface displacement decreases. Tunnels with a higher
initial support resistance experience lower radii of the post-peak zone and surface displacement.

Keywords: tunnel; stresses and deformations; nonlinear strain-softening; seepage force

1. Introduction

With the rapid development of society and the economy, many huge infrastructure
projects have been put into construction. As one of the most common structures, tunnels are
widely used in water conservancy engineering and underground traffic engineering [1–3].
The stress state in the underground rock will change after the excavation of tunnels [4,5].
Once the changed stress exceeds the ultimate strength of the rock mass, the tunnel sur-
rounding the rock would be destroyed, and three different regions (a damaged region,
a strain-softening region, and an elastic region) would be formed, which would exert a
significant impact on the stability of the tunnel [6–10]. Therefore, accurate stress analysis of
the surrounding rock is very important to the stability control of the tunnel.

The appropriate constitutive models for different types of rock materials are the key to
solving the stresses and deformation of tunnels. In past decades, the elastic–brittle-plastic
constitutive model (Figure 1a), suitable for hard rock masses with Geological Strength
Index (GSI) values above 75, and the elastic–perfectly plastic constitutive model (Figure 1b)
for soft rock masses with GSI values below 25, were usually used to research this prob-
lem [11–16]. However, the strain-softening behavior of rock mass was ignored by the first
two constitutive models. The third model, called the linear strain-softening constitutive
model (Figure 1c), considering the linear deterioration of strength parameters in the strain-
softening region, can stand for a wider range of rock masses with 25 < GSI < 75 [17–20].
Moreover, the elastic–perfectly plastic constitutive model (the slope of the strain-softening
stage is equal to null) and the elastic–brittle-plastic constitutive model (the slope of the
strain-softening stage is equal to infinity) are both special cases of the linear strain-softening
constitutive model. In fact, the mechanical parameters of rock mass, such as cohesion, tend
to decrease nonlinearly in the post-peak stage [21,22]. Thus, the nonlinear strain-softening
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constitutive model (Figure 1d) was presented and selected as the constitutive model for the
rock mass in this study.
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Groundwater is one of the important components of underground engineering struc-
tures. The seepage force caused by the flow of groundwater also has a non-negligible in-
fluence on the stress state around the tunnel [23–25]. Therefore, the seepage force is ex-
pected to be taken into consideration in the theoretical analysis of tunnels. In order to 
accurately analyze the stresses and deformations of tunnels in nonlinear strain-softening 
rock masses considering seepage force. In the present study, a mechanical model for tun-
nels in water-rich areas is established. A new nonlinear strain-softening model that con-
siders the nonlinear degradation of cohesion is proposed. Based on the Mogi–Coulomb 
criterion, a unified solution for the stresses and displacements of the surrounding rock is 
determined. Through a series of case studies, the effects of seepage force, softening mod-
ulus coefficient of cohesion, and initial support resistance on the stress distribution, radii 
of the post-peak region, and surface displacement around the tunnel are discussed. 

2. Model Establishment 
As shown in Figure 2, assuming that there is a cylindrical tunnel in the water-rich 

area and the surrounding rock is a nonlinear strain-softening media, the original in-situ 
stress is σ0. After the tunnel excavation and stress redistribution, a crushed region, strain-
softening region, and elastic region were formed in the surrounding rock around the tun-
nel. The radii of the tunnel and the three regions are sequentially recorded as R0, Rc, Rs, 
and Re. In addition, an initial support resistance (Pi) was uniformly applied to the excava-
tion surface to maintain the stability of the tunnel. 

 
Figure 2. Mechanical models. (a) Three-region model of a tunnel cylindrical considering seepage 
force. (b) Nonlinear strain-softening model of surrounding rock. 

Figure 1. Different constitutive models. (a) elastic–perfectly plastic; (b) elastic–brittle-plastic; (c) linear
strain-softening; (d) nonlinear strain-softening.

Groundwater is one of the important components of underground engineering struc-
tures. The seepage force caused by the flow of groundwater also has a non-negligible
influence on the stress state around the tunnel [23–25]. Therefore, the seepage force is
expected to be taken into consideration in the theoretical analysis of tunnels. In order to
accurately analyze the stresses and deformations of tunnels in nonlinear strain-softening
rock masses considering seepage force. In the present study, a mechanical model for tunnels
in water-rich areas is established. A new nonlinear strain-softening model that considers
the nonlinear degradation of cohesion is proposed. Based on the Mogi–Coulomb criterion,
a unified solution for the stresses and displacements of the surrounding rock is determined.
Through a series of case studies, the effects of seepage force, softening modulus coefficient
of cohesion, and initial support resistance on the stress distribution, radii of the post-peak
region, and surface displacement around the tunnel are discussed.

2. Model Establishment

As shown in Figure 2, assuming that there is a cylindrical tunnel in the water-rich area
and the surrounding rock is a nonlinear strain-softening media, the original in-situ stress is
σ0. After the tunnel excavation and stress redistribution, a crushed region, strain-softening
region, and elastic region were formed in the surrounding rock around the tunnel. The
radii of the tunnel and the three regions are sequentially recorded as R0, Rc, Rs, and Re. In
addition, an initial support resistance (Pi) was uniformly applied to the excavation surface
to maintain the stability of the tunnel.
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We assume that the seepage force is evenly distributed outside the elastic region of the
tunnel. Based on Darcy’s law, the differential equation for the seepage force is given by the
following equation:

d2Pw

dr2 +
1
r

dPw

dr
= 0 (1)

where Pw is the seepage force anywhere around the tunnel.
Combining the boundary conditions, Pw = 0, r = R0 and Pw = P0, and r = Re, the

seepage force can be solved as

Pw = P0
ln
(

R0
/

r
)

ln
(

R0
/

Re
) (2)

Generally, the cohesion in the strain-softening region decreases nonlinearly, and the
softening modulus of cohesion increases with the increase in strain, as shown in Figure 3.
We assume that the softening modulus of cohesion is as follows:

E′ = αεθ (3)

where α is the softening modulus coefficient of cohesion, which reflects the brittleness of
the rock mass. The rock mass is ideal elastic-strain-softening when α = 0, and the greater
the softening coefficient, the more brittle the rock.
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Figure 3. Nonlinear strain-softening model of cohesion.

3. Mechanical Analysis

To solve the three-region model shown in Figure 1, the following basic formulas should
be given as [26,27]:

1. Equilibrium differential formula:

dσr

dr
+

σr − σθ

r
+ η

dPw

dr
= 0 (4)

where σr and σθ are the radial and tangential stresses, respectively, and η is the seepage
force coefficient.

2. Geometric formula: 
εr =

du
dr

εθ =
u
r

(5)

where εr and εθ are the radial and tangential strains, respectively.

3. Constitutive formula:
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εr =

1− µ2

E

(
σr −

µ

1− µ
σθ

)
εθ =

1− µ2

E

(
σθ −

µ

1− µ
σr

) (6)

where E is the elastic modulus of rock mass, and µ is the Poisson’s ratio of rock mass.

4. Mogi-Coulomb strength criterion:

σθ = Mσr + N (7)

where M =
(√

3 + 2 sin ϕ
)/(√

3− 2 sin ϕ
)

and N = 4c cos ϕ
/(√

3− 2 sin ϕ
)

.

3.1. Stresses and Displacement in the Elastic Region

By substituting Equations (2), (5), and (6) into Equation (4), the following differential
equation of the displacement in the elastic region can be deduced:

d2ue

dr2 +
1
r

due

dr
− ue

r2 =
ηFv
rE

(8)

where v =
(1 + µ)(1− 2µ)

1− µ
and F = P0

/(
ln
(

R0
/

Re
))

.

Solving Equation (8), we can obtain

ue = C1r +
C2

r
+

ηFvr ln r
2E

(9)

where C1 and C2 are undetermined constants.
By substituting Equation (9) into Equation (5), the following strains can be deduced:

εre = C1 −
C2

r2 +
ηFv
2E

(ln r + 1)

εθe = C1 +
C2

r2 +
ηFv ln r

2E

(10)

where C1 and C2 are undetermined constants.
By integrating Equations (6) and (10), we can obtain the radial and tangential stresses:

σre =
EC1

(1 + µ)(1− 2µ)
− EC2

(1 + µ)r2 +
ηF ln r

2(1− µ)
+

ηF
2

σθe =
EC1

(1 + µ)(1− 2µ)
+

EC2

(1 + µ)r2 +
ηF ln r

2(1− µ)
+

µηF
2(1− µ)

(11)

With the stress boundary conditions σr = σr
e−s, r = Rs and σr = σ0 + P0 at r = Re, C1

and C2 can be deduced as follows:
C1 =

ν(1− µ)

E
(σ0 + P0) +

Rs
2

Re2 − Rs2
v(1− µ)

E
(σ0 + P0 − σr

e−s) +
ηFv
2E

Rs
2

Re2 − Rs2 ln
Rs

Re
− ηFv(1− µ)

2E
− ηFv

2E
ln Re

C2 =
1 + µ

E
Re

2Rs
2

Re2 − Rs2 (σ0 + P0 − σr
e−p) +

ηF(1 + µ)

2E(1− µ)

Re
2Rs

2

Re2 − Rs2 ln
Rs

Re

(12)

By substituting Equation (12) into Equation (11), the stresses in the elastic region can
be solved:

σre = σ0 + P0 +
ηF

2(1− µ)
ln

r
Re

+
Rs

2

Rs2 − Re2

(
Re

2

r2 − 1
)[

σ0 + P0 − σr
e−s +

ηF
2(1− µ)

ln
Rs

Re

]
σθe = σ0 + P0 +

ηF
2

ln(r/Re) + 2µ− 1
1− µ

− Rs
2

Rs2 − Re2

(
Re

2

r2 + 1
)[

σ0 + P0 − σr
e−s +

ηF
2(1− µ)

ln
Rs

Re

] (13)
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The radial and tangential stresses should satisfy Equation (7) at r = Rs, so we can obtain

σr
e−s =

−2Re
2(σ0 + P0) +

ηF
2(1− µ)

[(
Rs

2 − Re
2)(ln

Rs

Re
+ 2µ− 1

)
−
(

Rs
2 + Re

2) ln
Rs

Re

]
− Ne

(
Rs

2 − Re
2)

M(Rs2 − Re2)− Rs2 − Re2 (14)

By substituting Equation (11) into Equation (6), the radial and tangential strains in the
elastic region can be deduced:

εre = C1 −
C2

r2 +
ηFv
2E

(ln r + 1)

εθe = C1 +
C2

r2 +
ηFv ln r

2E

(15)

Combining with Equations (5) and (15), the displacement in the elastic region can
be derived:

ue = C1r +
C2

r
+

ηFvr ln r
2E

(16)

3.2. Stresses and Displacement in the Strain-Softening Region

Generally, the volume of roadway surrounding rock will expand after exaction. The
relationship between the dilation coefficient and strains is shown in Figure 4.
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According to the non-associated flow law, the relationship between radial and tangen-
tial strains in strain-softening and crushed regions can be denoted as{

εrs + βsεθs = 0

εrc + βcεθc = 0
(17)

where βs and βc are the dilation coefficient in strain-softening and crushed regions, respec-
tively. They can be obtained by 

βs =
1 + sin ψs

1− sin ψs

βc =
1 + sin ψc

1− sin ψc

(18)

where ψs and ψc are the dilation angle in strain-softening and crushed regions, respectively.
The total strains consist of elastic and strain-softening parts in the strain-softening

region: {
εr = εrs + εr

e−s

εθ = εθs + εθ
e−s (19)
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where εr
e−s and εθ

e−s are the radial and tangential strains on the interface between the
elastic and strain-softening regions, respectively.

By integrating Equations (5), (17), and (19), the differential equation for displacement
in the strain-softening region can be deduced:

dus

dr
+ βs

us

r
= εr

e−s + βsεθ
e−s (20)

When us = ue−s and r = Rs, Equation (20) can be solved:

us =

[
ue−s − εr

e−sRs

βs + 1

](
Rs

r

)βs

+
(εr

e−s + βsεθ
e−s)r

βs + 1
(21)

The strains in the strain-softening region can be deduced by substituting Equation (21)
into Equation (5):

εrs =
βs(εr

e−s − εθ
e−s)

βs + 1

(
Rs

r

)βs+1
+

εr
e−s + βsεθ

e−s

βs + 1

εθs =
εθ

e−s − εr
e−s

βs + 1

(
Rs

r

)βs+1
+

εr
e−s + βsεθ

e−s

βs + 1

(22)

As shown in Figure 2b, the cohesion in the nonlinear strain-softening region can be
written as

cs = c0 − αεθs(εθs − εθ
e−s)

= c0 − α

[
εθ

e−s − εr
e−s

βs + 1

(
Rs

r

)βs+1
+

εr
e−s + βsεθ

e−s

βs + 1

][
εθ

e−s − εr
e−s

βs + 1

(
Rs

r

)βs+1
+

εr
e−s + βsεθ

e−s

βs + 1
− εθ

e−s

]

= c0 −
α(εθ

e−s − εr
e−s)

βs + 1

[
εθ

e−s − εr
e−s

βs + 1

(
Rs

r

)2(βs+1)
+

2εr
e−s + (βs − 1)εθ

e−s

βs + 1

(
Rs

r

)βs+1
− εr

e−s + βsεθ
e−s

βs + 1

] (23)

where c0 is the initial cohesion.
By substituting Equations (2), (7) and (23) into Equation (4), the differential equation

for the radial stress in the strain-softening region can be deduced:

dσr

dr
+

(1−M)σr

r
+

A
(

Rs

r

)2(βs+1)
+ B

(
Rs

r

)βs+1
− D

r
− Ne + ηF

r
= 0 (24)

where 

A =
4 cos ϕα(εθ

e−s − εr
e−s)

2(√
3− 2 sin ϕ

)(
βp + 1

)2

B =
4 cos ϕα(εθ

e−s − εr
e−s)

(
βpεθ

e−s − εθ
e−s + 2εr

e−s)(√
3− 2 sin ϕ

)
(βs + 1)2

D =
4 cos ϕα(εθ

e−s − εr
e−s)(εr

e−s + βsεθ
e−s)(√

3− 2 sin ϕ
)
(βs + 1)2

(25)

When r = Rs and σr = σr
e−s, the stresses in the strain-softening region can be solved:
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σrs =

(
σr

e−s − Ne + ηF + D
1−M

)(
Rs

r

)1−M
− A

2βs + M + 1

[(
Rs

r

)1−M
−
(

Rs

r

)2(βs+1)
]
−

B
βs + M

[(
Rs

r

)1−M
−
(

Rs

r

)βs+1
]
+

Ne + ηF + D
1−M

σθs = M

{(
σr

e−s − Ne + ηF + D
1−M

)(
Rs

r

)1−M
− A

2βs + M + 1

[(
Rs

r

)1−M
−
(

Rs

r

)2(βs+1)
]
− B

βs + M
·[(

Rs

r

)1−M
−
(

Rs

r

)βs+1
]
+

Ne + ηF + D
1−M

}
+ Ne − A

(
Rs

r

)2(βs+1)
− B

(
Rs

r

)βs+1
+ D

(26)

3.3. Stresses and Displacement in the Crushed Region

The total strains consist of strain-softening and crushed parts in the crushed region
and we can obtain {

εr = εrc + εr
s−c

εθ = εθc + εθ
s−c (27)

where εr
s−d and εθ

s−d are the radial and tangential strains at r = Rc, respectively.
By integrating Equations (5), (17), and (27), the differential equation for the displace-

ment in the crushed region can be deduced:

duc

dr
+ βc

uc

r
= εr

s−c + βcεθ
s−c (28)

When r = Rc and uc = us−c, the displacement in the strain-softening region can
be solved:

uc =

[
us−c − εr

s−cRc

βc + 1

](
Rc

r

)βc

+
(εr

s−c + βcεθ
s−c)r

βc + 1
(29)

Combining Equations (5) and (29), the strains in the crushed region can be deduced:
εrc =

βc(εr
s−c − εθ

s−c)

βp + 1

(
Rc

r

)βs+1
+

εr
s−c + βcεθ

s−c

βd + 1

εθc =
εθ

s−c − εr
s−c

βc + 1

(
Rc

r

)βc+1
+

εr
s−c + βcεθ

s−c

βc + 1

(30)

By substituting Equations (2) and (7) into Equation (4), the differential equation for
radial stress in the crushed region can be obtained:

dσr

dr
+

(1−M)σr − Nd
r

− ηF
r

= 0 (31)

When r = R0 and σrd = Pi, the stresses in the crushed region can be derived:
σrc =

(
pi −

Nc + ηF
1−M

)(
R0

r

)1−M
+

Nc + ηF
1−M

σθc = M
(

pi −
Nc + ηF
1−M

)(
R0

r

)1−M
+

MNc + ηF
1−M

(32)

3.4. Radii of Strain-Softening and Crushed Regions

When r = Rc and σrs = σrc, combining Equations (26) and (33), we can obtain
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(
σr

e−s − Ne + ηF
1−M

)(
Rs

Rc

)1−M
+

Ne − ηF
1−M

+
4 cos ϕ/(

√
3− 2 sin ϕ)α(εθ

e−s − εr
e−s)

(βs + 1)(βs + M)

[(
Rs

Rc

)1−βs

−
(

Rs

Rc

)1−M
]
+

4 cos ϕ/(
√

3− 2 sin ϕ)α(εθ
e−s − εr

e−s)

(βs + 1)(1−M)

[
1−

(
Rs

Rc

)1−M
]
=

(
pi −

Nc + ηF
1−M

)(
R0

Rc

)1−M
+

Nc + ηF
1−M

(33)

Based on Equation (23), the cohesion at r = Rc can be deduced:

cc = c0 −
α(εθ

e−s − εr
e−s)

βs + 1

[
εθ

e−s − εr
e−s

βs + 1

(
Rs

r

)2(βs+1)
+

2εr
e−s + (βs − 1)εθ

e−s

βs + 1

(
Rs

r

)βs+1
− εr

e−s + βsεθ
e−s

βs + 1

]
(34)

Combining Equations (33) and (34), Rs and Rc can be obtained by an iterative method.
The flowchart of the above calculation can be shown in Figure 5.
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4. Special Cases Discussion
4.1. Kastner’s Formula

When α = 0, ψs = ψc = 0, c0 = cc, d η = 0, the current nonlinear strain-softening model
degenerates for the elastic–perfectly plastic model, and the radius of the plastic region can
be determined by the following equation:

Rs = R0

(
(2σ0 − Ne)/(1 + M)− Ne/(1−M)

Pi − Ne/(1−M)

)1/(M−1)
(35)

Equation (35) is Kastner’s formula [15].

4.2. Wilson’s Formula

When α = ∞, ψs = ψc = 0, and η = 0, the current nonlinear strain-softening model
degenerates for the elastic–brittle-plastic model, and the radius of the plastic region can be
determined by the following equation:

Rs = R0

(
(2σ0 − Ne)/(1 + M)− Nc/(1−M)

Pi − Nc/(1−M)

)1/(M−1)
(36)

Equation (36) is Wilson’s formula [16].



Minerals 2023, 13, 138 9 of 14

5. Parameter Sensitivity Analysis

As shown in Figure 6, taking the main return laneway in Qingdong Coal Mine in
Anhui Province, China, as an example, the influence of some important factors on the
stresses and deformations is discussed next. The geometrical and mechanical parameters
are as follows: R0 = 3 m, σ0 = 18.9 MPa, Pi = 0.4 MPa, P0 = 4 MPa, η = 1, Re/R0 = 20,
µ = 0.25, E = 2550 MPa, c0 = 4.5 MPa, cc = 1.1 MPa, ϕ = 26◦, ψs = ψc = 10◦, and α = 3×104 MPa.
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5.1. Seepage Force

Figure 7 shows the effect of seepage force on the radii of strain-softening and crushed
regions and surface displacement around the tunnel. It can be seen that the Rs, Rc, and u0
values all increase with the increasing P0. For example, as P0 increases from 3.0 MPa to
6.0 MPa, the Rs, Rc, and u0 increase by 1.61 m, 1.45 m, and 0.14 m, with an increment of
32.07%, 37.21%, and 91.98%, respectively. Therefore, the larger seepage force will aggravate
the deformation of the tunnel.
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The radial and tangential stresses in the tunnel surrounding rock with different seepage
forces are shown in Figure 8. It can be seen that the radial stress is always less than the
tangential stress. The radial stress at the tunnel wall is consistent with the initial support
resistance, and it presents an increasing trend with the increase in radius. The tangential
stress first increases in the broken and strain-softening regions and then decreases in the
elastic region, and the peak value of tangential stress appears at the interface between
elastic and strain-softening regions. The peak value of tangential stress increases with the
increase in seepage force. For example, as the P0 value increases from 3.0 MPa to 6.0 MPa,
the peak value of tangential stress increase by 6.88 MPa, with an increment of 16.95%.
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5.2. Softening Modulus Coefficient of Cohesion

The effect of softening modulus coefficient of cohesion on the radii of strain-softening
and crushed regions and surface displacement around the tunnel is shown in Figure 9. It
can be seen that the radii of strain-softening and crushed regions both increase with the
increase in softening modulus coefficient. However, the ratio of the radii of the above two
regions is getting smaller with the increasing softening modulus coefficient. For example,
as α increases from 3 × 104 MPa to 8.0 × 104 MPa, the ratio of Rs to Rc decreases from
1.27 to 1.13, with a reduction of 11.02%. The surface displacement also decreases with the
increase in softening modulus coefficient. For example, the surface displacement is 0.19 m
when the softening modulus coefficient is 3 × 104 MPa, and surface displacement reduces
to 0.18 m when the softening modulus coefficient reaches 8 × 104 MPa.
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The radial and tangential stresses in the tunnel surrounding rock with different softening
modulus coefficients of cohesion are shown in Figure 10. It can be seen that the tangential
stress is always larger than the radial stress. As the distance from the tunnel center increases,
the radial stress continues to increase, and the tangential stress first increases in the crushed
and strain-softening regions and then decreases in the elastic region, which is similar to the
laws in Figure 8. However, the radial and tangential stresses in the crushed region are very
close under different softening modulus coefficients of cohesion. Additionally, as the softening
modulus coefficient increases, the peak value of tangential stress does not change, which
means the sensitivity of softening modulus coefficient to stress distribution is quite low.
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5.3. Initial Support Resistance

Figure 11 shows the effect of initial support resistance on the radii of strain-softening
and crushed regions and surface displacement around the tunnel. It can be seen that the Rs,
Rc, and u0 values all decrease with the increasing Pi. For example, as the Pi value increases
from 0 to 1.0 MPa, the Rs, Rc, and u0 values decrease by 1.26 m, 0.99 m, and 0.09 m, with a
reduction of 20.49%, 20.45%, and 38.51%, respectively. Therefore, the larger initial support
resistance can control the deformation of the tunnel. As a result, some support measures,
such as concrete lining and bolts, can be used to increase the initial support resistance and
ensure the stability of the tunnel.
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The radial and tangential stresses in the tunnel surrounding rock based on different
initial support resistance are shown in Figure 12. It can be seen that with the increase in
initial support resistance, the whole radial stress and the tangential stress in the crushed
and strain-softening regions increases while the tangential stress in the elastic region
decreases. However, the peak value of tangential stress remains constant as the initial
support resistance changes.
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6. Conclusions

Considering the influence of seepage force, a closed-form solution for the stress
distribution and deformations around the tunnels in the water area is deduced based on
the new nonlinear strain-softening model. Moreover, the effects of seepage force, softening
modulus coefficient of cohesion, and initial support resistance on the stress distribution,
radii of the post-peak zone, and surface displacement are also discussed. The conclusions
can be summarized as follows:

(1) Compared with other solutions, when the softening modulus coefficient of cohesion
and seepage force coefficient are both zero, the current solution degenerates for the
elastic–perfectly plastic solution by Kastner. When the softening modulus coefficient
of cohesion is large enough, and the seepage force coefficient is zero, the current
solution degenerates for the elastic–brittle-plastic solution by Wilson.

(2) The tangential stress is always larger than the radial stress. As the distance from
the tunnel center increases, the radial stress continues to increase, and the tangential
stress first increases in the broken and strain-softening regions and then decreases in
the elastic region. The peak value of tangential stress appears at the interface between
elastic and strain-softening regions.

(3) As the seepage force increases, the radii of strain-softening and crushed regions and
surface displacement all increase. As the softening modulus coefficient of cohesion
increases, the radii of strain-softening and crushed regions increase while the surface
displacement decreases. Additionally, the radii of strain-softening and crushed regions
and surface displacement all decrease with the increasing initial support resistance.

This study only analyzes the stresses and deformations of tunnels through theoretical
methods. Further research on numerical simulation should be carried out in the future.
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