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Abstract: Cadmium (Cd) is one of the most toxic transition metals for living organisms. Thus, effective
measures to remediate Cd from water and soils need to be developed. Cd immobilization by alumina
and mixtures of alumina and smectite have been analyzed experimentally and theoretically by
sorption experiments and sorption modelling, respectively. Removal of aqueous Cd was dependent
on pH and Cd concentration, being maximal for pH > 7.5. A two-site non-electrostatic sorption model
for Cd sorption on alumina was developed and it successfully reproduced the experimental Cd
immobilization on alumina. Cd sorption on mixtures of alumina and smectite were depending on pH,
ionic strength, and alumina content in the mixture. Cd removal in mixtures increased with alumina
content at high pH and ionic strength values. However, Cd sorption decreased with increasing
alumina content under acidic conditions and low ionic strength. This effect was the result of alumina
dissolution and the release of Al3+ into the suspension at low pH values. Modelling of Cd sorption
on mixtures of alumina and smectite was performed by considering the individual Cd sorption
models for alumina and smectite. It could be shown that the contributions of the individual sorption
models were additive in the model for the mixtures when the competition of Al3+ with Cd2+ for
cation exchange sites in smectite was included.

Keywords: Cd; sorption model; retention; immobilization; remediation; heavy metals; Al2O3

1. Introduction

The International Agency for Research on Cancer (part of the World Health Organisa-
tion) classifies cadmium (Cd) in group 1 of species that are carcinogenic for humans [1],
being related to bone, liver, muscle or lung diseases [2,3]. The main Cd intake source for
humans is food. It is estimated that the daily dose that is ingested by humans is in the
range of 10–35 µg, and the lethal oral dose is 350–3500 mg [4].

Therefore, Cd remediation strategies need to be developed to avoid the entrance
and/or the migration of Cd in the biogeosphere. In fact, Cd remediation is a topic of great
interest and numerous remediation strategies have been considered up to date, such as
precipitation, coagulation, sorption, or separation [5,6].

One of the cheapest and most environmentally friendly options to remediate Cd-
polluted areas is the use of naturally occurring sorbents, such as minerals [7–14]. In the last
decades, an increasing number of publications have used nanoparticulate counterparts of
minerals due to their good sorption capabilities [15,16].

Various review articles scrutinized the sorption capacities of different materials for Cd and
their respective fits by using Langmuir and Freundlich isotherms [15,17]. Others are oriented
towards summarizing the mechanistic interaction of Cd with various naturally occurring
minerals [18], describing the formation of both inner- and outer-sphere complexes of Cd.
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However, a small number of works report a combined experimental and theoretical
mechanistic description of Cd sorption; such data are necessary to assess Cd remediation
options in polluted areas. In order to study the sorption of Cd under more realistic
conditions, it is crucial to elucidate the effect of other aqueous ions and the presence of
multiple sorbents. For example, the role of chloride in Cd retention is not yet clear. Several
Cd-Cl species can form in solution [19], but they do not exhibit a generalized behavior.
In some cases, Cl− induces a higher Cd removal [20–23], while it seems to decrease Cd
retention in other studies [24–27]. A recent publication states the importance of chloride
and sulfate on the migration of Cd in soils and its subsequent uptake by plants [28].

In addition, in the environment, several minerals and living organisms coexist, and
their presence might alter Cd sorption. Up to date, few works have studied the immobiliza-
tion of Cd on mixtures of several sorbents. Some of them include the interaction of Cd with
the following: clay and microorganisms [29], biochar and MgO composites [30], biochar
and Fe/Mg composites, pyrogenic carbon and ferrihydrite [31], mixtures of components in
reactive barriers [32], or mixtures of alumina and silica [33]. The development of sorption
models to describe Cd sorption in mixtures of sorbents is essential to better understand Cd
behavior in the environment.

This work aims to analyze Cd immobilization in γ-Al2O3 nanoparticles and in mix-
tures of FEBEX smectite and γ-Al2O3 nanoparticles with a combined experimental and
theoretical approach. Both sorbents were selected because of their ubiquity and their good
cation sorption capabilities (γ-Al2O3 nanoparticles [34,35] and FEBEX smectite [14,36–39]).
Cd sorption on γ-Al2O3 nanoparticles, and in mixtures of smectite and γ-Al2O3 nanoparti-
cles was studied in a wide range of pH values (3.0–11.0), Cd concentrations (from 1·10−10

to 1·10−3 M), Cl− concentrations (0, 1·10−8, and 1·10−3 M), ionic strengths (from 5·10−4

to 1·10−1 M), and mixture composition (from 0% γ-Al2O3 nanoparticles to 100% γ-Al2O3
nanoparticles). A model describing Cd sorption on γ-Al2O3 nanoparticles was developed.
Cd sorption on mixtures of smectite and γ-Al2O3 nanoparticles was modelled by an addi-
tive approach using the sorption models of the individual components and by considering
the chemistry of the aqueous phase.

2. Materials and Methods
2.1. General Experimental Conditions and Materials Used

All the experiments were conducted under equilibrium conditions with the atmo-
sphere, and at ambient conditions in laboratories where the work with radioactive material
is regulated.

Solutions were prepared in Milli-Q water (resistivity 18.2 MΩ·cm, Merck, Darmstadt,
Germany).

The pH of solutions and suspensions was measured after daily calibration of the
electrode and pH adjustment was carried out by adding aliquots of NaOH, HCl, or HClO4
from 1·10−2 M to 1 M to a buffer-containing suspension (more details about the buffers
used are reported elsewhere [40]). Carbonate concentration in solution was measured in
the suspensions at different pH, by ion chromatography (Dionex ICS-2000, Sunnyvale,
USA) and the average value in solution was 1 mM HCO3

−.

2.1.1. Sorbents

Gamma alumina nanoparticles (γ-Al2O3 NPs, purchased in Sigma-Aldrich, St. Louis,
MO, USA) were previously characterized by their isoelectric point (pHIEP 8.5), point of zero
charge (pHZPC 8.3), and specific surface area (136 m2/g, calculated from nitrogen isotherms
at 77 K) [41].

Smectite used in the experiments was obtained from FEBEX bentonite, a clay extracted
from El Cortijo de Archidona (Almería, Spain), which is composed of 93% smectite and
the following accessory minerals: 3% plagioclase (mixture of NaAlSi3O8 and CaAl2Si2O8),
2% quartz (SiO2), 1% cristobalite (SiO2), and traces of calcite (CaCO3), potassium feldspar
(KAlSi3O8), and tridymite (SiO2) [42]. FEBEX bentonite has been widely investigated with
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the aim of understanding its behavior as a buffer material for a deep geological repository
in crystalline rock [43]. For the experiments, Na-homoionized smectite was used following
the procedure described elsewhere [34]. Na-homoionized smectite has been previously
characterized with a cation exchange capacity (CEC) of 100 ± 4 meq/100 g and specific
surface area (59 m2/g, calculated from nitrogen isotherms at 77 K) [38].

For the sake of simplification, γ-Al2O3 NPs and Na-homoionized FEBEX bentonite
will be hereafter referred as to A and S, respectively.

Suspensions of A, S, and A/S mixtures at a given NaClO4 ionic strength were prepared
as described elsewhere [34].

2.1.2. Adsorbate

Cd(II) was used as adsorbate in the experiments. Cd(II) was added as CdCl2 or
Cd(ClO4)2.

For the sorption experiments aliquots of a 109CdCl2 stock solution (Isotope Products.
Berlin, Germany) containing Cd-carrier were added. The stock solution had a total 1·10−5 M
Cd(II) concentration and it was dissolved in 1·10−1 M HCl. Higher Cd concentrations
were reached by adding aliquots of CdCl2 (Sigma-Aldrich, St. Louis, USA) or Cd(ClO4)2
(Sigma-Aldrich, St. Louis, USA) stock solutions (ranging from 1·10−6 M to 1·10−1 M)
dissolved in 1·10−1 M HCl or HClO4.

109Cd has a half-life of 426.6 days and it decays by electron capture, being detectable
by gamma spectrometry between 60 and 463 keV.

2.2. Cadmium Sorption Experiments

Cd sorption experiments were prepared in 12 mL polypropylene centrifuge tubes,
with a total suspension volume of 10 mL. The effect of several variables (ionic strength,
chloride concentration, Cd concentration, and sorbent) on Cd removal was analyzed. In
general, Cd sorption experiments were prepared by the following procedure. A sorbent
suspension was added (0.5 g/L final solid to liquid ratio at given NaClO4 concentration) to
the centrifuge tube, followed by the addition of aliquots of buffers (2·10−3 M final concen-
tration, as described in [40]) and Cd(II) stock solutions; then, the pH was adjusted if needed.
After the required contact time of circular shaking, the Cd-containing suspensions were
centrifuged at 21,500× g for 60 min. The supernatant was analyzed for Cd concentration
(see Section 2.2.1) and pH.

Tables 1–3 summarize the experimental details of sorption experiments for pure
sorbents (Tables 1 and 2) and A/S mixtures (Table 3).

Table 1. Experimental conditions of Cd sorption experiments by pure γ-Al2O3 NPs (A). Variable
parameters are highlighted in bold. Chloride concentration is given by the Cd-stock solution addition.
Parameters shown in bold font highlight the variables modified in the experiments.

Experiment Kinetics pH Effect Isotherm

Solid to liquid ratio of
A 0.5 g/L 0.5 g/L 0.5 g/L

[Cd2+]0 2·10−9 M 4.6·10−8 M, 1·10−5 M 1·10−10 M–1·10−3 M
pH 5.5 3.0–11.0 9.8, 8.9, 6.1/7.2

[Cl−] 4·10−9 M
0 M,

10−8 M, 10−3 M 1·10−3 M

Contact time 30 min–64 days 7 days 7 days
Ionic strength

NaClO4
1·10−1 M 5·10−4 M–10−1 M 1·10−1 M/1·10−3 M
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Table 2. Experimental conditions of Cd sorption experiments by pure Na-homoionized smectite (S).
Variable parameters are highlighted in bold. Contact time for the sorption experiments was set to
seven days. Chloride concentration is given by the Cd-stock solution addition. Parameters shown in
bold font highlight the variables modified in the experiments.

Experiment Ionic Strength Effect

Solid to liquid ratio of S 0.5 g/L
[Cd2+]0 4.6·10−8 M

pH 4.5
[Cl−] 1·10−3 M

Ionic strength NaClO4 5·10−4 M–10−1 M

Table 3. Experimental conditions of Cd sorption experiments by mixtures of γ-Al2O3 NPs (A) and
Na-homoionized smectite (S). Variable parameters are highlighted in bold. Contact time for the
sorption experiments was set to seven days. Chloride concentration is given by the Cd-stock solution
addition. Parameters shown in bold font highlight the variables modified in the experiments.

Experiment pH Dependency Mixture
Composition

A/S mixtures (wt.%) 80A/20S 50A/50S (100A→ 100S)
Total solid to liquid ratio 0.5 g/L 0.5 g/L 0.5 g/L

[Cd2+]0 4.8·10−8 M 4.8·10−8 M 4.8·10−8 M
pH 3.0–11.0 3.0–12.0 4.3/8.0

Ionic strength NaClO4 1·10−1 M 5·10−4 M–1·10−1 M 1·10−2 M/1·10−1 M
[Cl−] 1·10−3 M 1·10−3 M 1·10−3 M

It was verified that neither the presence of buffer-affected Cd sorption on the sorbents
nor sorption of Cd on the centrifuge tubes occurred.

2.2.1. Cadmium Sorption Quantification

Three aliquots (2 mL) of the supernatant were extracted to determine the final 109Cd ac-
tivity by gamma counting with a NaI detector (Packard Autogamma COBRA2, PerkinElmer,
Waltham, MA, USA).

It was considered that natural Cd and 109Cd have the same affinity for the sorbent
surfaces. The experimental error of the gamma measurements never exceeded 2% of the
measured value.

Experiments to evaluate the effect of chloride on Cd removal were performed with
Cd(ClO4)2 (Sigma-Aldrich, St. Louis, USA) instead of CdCl2; the rest of the conditions
were the same as described in Table 1. Aliquots of supernatant were extracted and acidified
with HNO3 (Sigma-Aldrich, St. Louis, USA) prior their quantification for Cd in solution
by inductively coupled plasma mass spectrometry (Thermo Fischer Scientific X Series II,
Waltham, USA).

Cd removal was calculated as percentage of Cd removed (%Cdsorbed) and distribution
coefficient (KD in mL/g) using Equations (1) and (2), respectively.

%Cdsorbed =
[Cd]0 − [Cd]eq

[Cd]0
·100 (1)

KD =
[Cd]0 − [Cd]eq

[Cd]eq
·V
m

(2)

where [Cd]0 is the initial Cd concentration (in Bq/L or M), [Cd]eq is the final Cd equilibrium
concentration in solution (in Bq/L or M), V is the volume of the suspension (in mL), and m
is the mass of sorbent (in g).
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2.3. Cadmium Sorption Modelling

The geochemical code CHESS 2.4 was used to perform the model calculations [44].
Table 4 summarizes the Cd thermodynamic data of Cd solid and aqueous speciation

considered in the calculations. Figures S1–S3 show the Cd speciation as a function of
pH for the most studied experimental conditions in this work ([Cd2+]0 = 4.6·10−8 M,
[NaClO4] = 1·10−1 M, [HCO3

−] = 1·10−3 M, and [NaCl] = 1·10−3 M).

Table 4. Cd species considered in modelling. Thermodynamic data were taken from the IUPAC Cd
database [45], * from [46], and ** from [14]. Uncertainties of the thermodynamic data can be found in
the respective references. Species with similar chemical composition are defined as aqueous (aq) or
solid (s) to avoid misunderstanding. Words in bold font highlight the aqueous and solid species used
in the model.

Species Code Definition log10 K◦

Aqueous
Cd2+ Basis species

CdCl+ 1 Cd[2+], 1 Cl[−] 1.98
CdCl2 (aq) 1 Cd[2+], 2 Cl[−] 2.64

CdCl3− 1 Cd[2+], 3 Cl[−] 2.30
CdCl(OH) (aq) 1 Cd[2+], 1 Cl[−], 1 H2O, −1 H[+] −7.4328 *

CdHCO3
+ 1 Cd[2+], 1 HCO3

− 1.50 *
CdCO3 (aq) 1 Cd[2+], 1 HCO3

−, −1 H[+] −5.9288
Cd(CO3)2

2− 1 Cd[2+], 2 HCO3
−, −2 H[+] −14.4576

CdOH+ 1 Cd[2+], 1 H2O, −1 H[+] −9.91
Cd(OH)2 (aq) 1 Cd[2+], 2 H2O, −2 H[+] −20.19

Cd(OH)3
− 1 Cd[2+], 3 H2O, −3 H[+] −33.50

Cd(OH)4
2− 1 Cd[2+], 4 H2O, −4 H[+] −47.28

Cd2OH3+ 2 Cd[2+], 1 H2O, −1 H[+] −8.73
Cd4(OH)4

4+ 4 Cd[2+], 4 H2O, −4 H[+] −31.8
Solid
Cd (s) 1 Cd[2+], 1 H2O, −2 H[+], −0.5 O2(aq) −56.6

CdCl2 (s) 1 Cd[2+], 2 Cl[−] 0.674 *
CdCl2:H2O (s) 1 Cd[2+], 2 Cl[−], 1 H2O 1.6747 *
CdCl(OH) (s) 1 Cd[2+], 1 Cl[−], 1 H2O, −1 H[+] −3.543

Otavite (CdCO3 (s)) 1 Cd[2+], 1 HCO3
−, −1 H[+] −0.1 **

Cd(OH)2 (s) 1 Cd[2+], 2 H2O, −2 H[+] −13.72 *
Monteponite (CdO (s)) 1 Cd[2+], 1 H2O, −2 H[+] −15.097

A non-electrostatic sorption model (SM) for Cd sorption on S has been recently de-
scribed [14]. For the sake of simplicity, non-electrostatic sorption models (SMs) were also
developed to predict Cd sorption on pure A and A/S mixtures (Table 5).

SMs of Cd on A/S mixtures were described by considering an additive approach, i.e.,
the sum of the individual Cd sorption on A and S. The SM of Cd on A/S mixtures took
into account the water chemistry. In brief, the water chemistry of the mixture considers the
initial concentration of Cd in solution (in M), the concentration of the sorbents (in g/L),
the concentration of NaClO4 (in M), the concentration of Cl− (in M), and other secondary
processes that influence the chemistry in solution as described in [34]: the dissolution of A,
the Al3+ cation exchange in S, and carbonate concentration ([HCO3

−] = 1·10−3 M).
The SMs for Cd sorption on the pure sorbents were described by taking into account the

sorption properties of the solids. A and S contain amphoteric surface sites that (de)protonate
as a function of pH and their charge changes accordingly [47]. A and S present both strong
and weak surface sites to sorb anionic and cationic species. S does not only contain
strong and weak surface sites but it also has cationic exchange sites due to its structural
properties [48], which enables cation exchange reactions of pollutants with S.
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Amphoteric surface sites can be protonated and deprotonated depending on the pH
value. The protonation and deprotonation reactions are:

XOH + H+ � XOH+
2 (3)

XOH � XO− + H+ (4)

where X represents the surface active sites. Their equilibrium reactions are defined as:

K+ =

[
XOH+

2
]

[XOH][H+]
(5)

K− =

[
XO−

]
[H+]

[XOH]
(6)

where K+ and K− are the protonation and deprotonation equilibrium constants, respectively.
The protonation and deprotonation constants as well as the concentration of the surface
active sites for A and S are summarized in Table 5.

The interaction of Cd with active surface sites can take place through different mech-
anisms. This includes inner-sphere, outer-sphere, and ternary surface complexation. In
general, Cd sorption on surface sites can be described by the following reaction:

XOH + Cd2+ � XOCd+ + H+ (7)

For the development of the SM of Cd on A in this work, we have assumed Cd
sorption on both strong and weak sites of the A surface and the reactions considered in
the theoretical description of Cd sorption are summarized in the section “Cd sorption by
surface complexation” of Table 5.

In addition, the sorption of the main anionic species (Cl−, ClO4
−, and HCO3

−) on
alumina has been considered in the models. They are expressed by:

XOH+
2 + Cl− � XOH2Cl (8)

XOH+
2 + ClO−4 � XOH2ClO4 (9)

XOH+
2 + HCO−3 � XOH2HCO3 (10)

Such anionic complexation reactions on alumina were previously reported [41,49] and
they are summarized in the section “anion sorption on A” of Table 5.

The cation exchange sites available in Na-homoionized smectite allows for the ex-
change of Na by other cations present in solution as follows:

Na ≡ Y + Bb+ 
 B ≡ Yb + bNa+ (11)

where ≡Y represents the cation exchange site, and B is a cation of b valence.
The selectivity coefficient (B

NaKc) representative of the cation exchange of Na by B is
defined, according to Gaines-Thomas, as:

B
NaKc =

(NB)[γNa]
b

(NNa)
b[γB]

(12)
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where γNa and γB represent the activity coefficients of Na and B, respectively, and NNa
and NB are their fractional occupancies on the solid. The fractional occupancy of a general
element i (Ni) can be calculated as:

Ni =
eqi, sorbed/m

CEC
(13)

where eqi, sorbed/m is the equivalent of i sorbed per mass (m) of sorbent (in eq/g) and CEC is
the cation exchange capacity of the solid (in eq/g).

One way to determine B
NaKc experimentally was suggested by Bradbury and Baeyens [50].

Applied to the Na-homoinized smectite selected for this work, when the concentration Na+

is much higher than the concentration of cation Bb+ in Equation (12), B
NaKc can be calculated

using the experimental distribution coefficient (KD, Equation (2)):

B
NaKC =

(KDb)
CEC

{γNa}b

{γb}
[A]b (14)

where the activity coefficients of Na and B (γNa and γB) are calculated by using the Davies
approximation for ionic strengths (I) below 0.5 M in aqueous systems at room temperature.
The activity coefficient of an ion i can be calculated using the following equation.

−logγi = 0.5085zi
2

[ √
I

1 +
√

I
− 0.3I

]
(15)

where zi is the charge of the ion i.
However, B

NaKc cannot be direcly used in geochemical codes. The value entered in
the geochemical code to account for the cation exchange, the exchange code, KEX, can be
calculated for the Na-homoionized smectite as follows:

B
NaKEX = B

NaKC·(CEC)1−b · 1
b
· (s/l)1−b (16)

where s/l is the concentration of the solid in suspension in (g/L). For further understanding
of this equation, please refer to [50].

B
NaKc values, when B is Cd2+ or Al3+, were defined in [34,49] and are summarized in

the section “cation exchange in S” of Table 5. The values of KEX for the cation exchange
of Cd2+ and Al3+ of S, which was used to describe the Cd sorption models in S and A/S
mixtures will be specified below.

Table 5. Parameters and reactions used to describe Cd sorption on γ-Al2O3 NPs (A) and Na-
homoionized FEBEX bentonite (S) in the CHESS V.2 software. CEC is the cation exchange capacity, X
represents the surface active sites of γ-Al2O3 NPs (A) or Na-homoionized FEBEX smectite (S), ≡Y
represents the cation exchange site of S, s and w stands for strong and weak surface sites, respectively.
(*) Data obtained in this study. (§) Selectivity coefficient (log10 Kc) related to the Na+ exchange in the
clay by Cd2+ or by Al3+, the value entered in the CHESS V.2 software was calculated using equation
16. The log10 K◦ values were derived by sorption modelling and are not the result of experiments,
thus, no uncertainties are provided.

Parameter A S

CEC (meq/100 g) 100 ± 4 [38][
XSOH ] (µeq/m2) 9.5·10−3 [51] 3.4·10−2 [37][
XWOH ] (µeq/m2) 1.1 [41] 1.02 [52]

BET (m2/g) 136 [41] 59 [38]
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Table 5. Cont.

Species and reactions A
log10 K◦

S
log10 K◦

Surface sites acidity constants
XsOH + H+ 
 XsOH+

2 6.90 [51] 4.8 [37]
XsOH − H+ 
 XsO− −9.7 [51] −9.9 [37]
XwOH + H+ 
 XwOH+

2 6.90 [41] 5.3 [52]
XwOH − H+ 
 XwO− −9.7 [41] −8.4 [52]

Cation exchange in S
2Na ≡ Y + Cd2+ − 2Na+ 
 Cd ≡ (Y)2 - 0.8 § [14]
3Na ≡ Y + Al3+−3Na+ 
 Al ≡ (Y)3 - 1.5 § [34]

Cd sorption by surface complexation
XsOH − H+ + Cd2+ 
 XsO− Cd+ 0.1 * −1.4 [14]
XwOH − H+ + Cd2+ 
 XwO− Cd+ −2.25 * −2.51 [14]
XsOH + Cd2+ 
 XsOH − Cd2+ 7.9 * 6.10 [14]
XwOH + Cd2+ 
 XwOH − Cd2+ 5.4 * 4.14 [14]
XsOH + Cd2+ + H2O− 2H+ 
 XsO− CdOH −12.5 * −11.66 [14]
XwOH + Cd2+ + H2O− 2H+ 
 XwO− CdOH −13.2 * −11.88 [14]

Empirical Cd sorption at low pH log10 Kd (mL/g) = 2.2 * -

Anion sorption on A
Xs,wOH + H+ + HCO−3 ⇔ Xs,wOH2HCO3 11.50 [41] -
Xs,wOH + H+ + Cl− ⇔ Xs,wOH2Cl 9.2 [49] -
Xs,wOH + H+ + ClO−4 ⇔ Xs,wOH2ClO4 8.5 [41] -

3. Results and Discussion
3.1. Cadmium Sorption on Alumina Nanoparticles: Experiments and Modelling
3.1.1. Effect of Time

The kinetics of Cd sorption on alumina are shown in Figure 1.
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3. Results and Discussion 
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3.1.1. Effect of Time 

The kinetics of Cd sorption on alumina are shown in Figure 1. 
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Figure 1. Cadmium sorption (as distribution coefficient KD) on alumina nanoparticles (A) as a func-

tion of time. [A] = 0.5 g/L, ionic strength 1∙10−1 M NaClO4, pH 5.5, and [Cd]0 = 4∙10−9 M. 
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in contact for seven days with the aim of comparing the Cd sorption behavior on A with 

that reported for S [14]. 
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Various factors on the Cd removal by A have been studied. The effect of pH and ionic 
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Figure 1. Cadmium sorption (as distribution coefficient KD) on alumina nanoparticles (A) as a
function of time. [A] = 0.5 g/L, ionic strength 1·10−1 M NaClO4, pH 5.5, and [Cd]0 = 4·10−9 M.

Figure 1 shows that sorption of Cd on A is constant (log10 KD ≈ 2.2) regardless of
contact time. The sorption equilibrium is reached after 30 min of interaction. This is in
agreement with the fast Cd sorption on alumina observed by Sen et al. [53], occurring in
the first five minutes of Cd-alumina interaction. The following Cd sorption experiments
were in contact for seven days with the aim of comparing the Cd sorption behavior on A
with that reported for S [14].



Minerals 2023, 13, 1534 9 of 17

3.1.2. Effect of pH, Ionic Strength, Chloride Concentration, and Cadmium Concentration

Various factors on the Cd removal by A have been studied. The effect of pH and ionic
strength on Cd sorption is shown in Figures 2 and 3.
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Figure 2. Cadmium sorption (as distribution coefficient KD) on alumina nanoparticles (A) as a
function of pH evaluated at different NaClO4 concentrations (details in figure legend). Colored
solid lines represent the Cd sorption model calculated using the parameters shown in Table 5 for
different ionic strengths according to the figure legend. [A] = 0.5 g/L, contact time = 7 days, and
[Cd]0 = 4.6·10−8 M.
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Figure 3. (a) Cadmium sorption (as distribution coefficient KD) on alumina nanoparticles (A) as a
function of pH values at 1·10−1 M NaClO4 and at different Cd concentrations (detailed in figure
legend). (b) Cadmium sorption (as mol of Cd per gram of A) on alumina nanoparticles (A) as a
function Cd concentration at different NaClO4 ionic strengths and pH values (detailed in figure
legend). Colored solid lines represent the model of Cd sorption that was calculated using the
parameters shown in Table 5 for given conditions according to the figure legend. [A] = 0.5 g/L,
contact time = 7 days, and [Cd]0 from 1·10−10 M to 1·10−3M.

Cd sorption on alumina increases with increasing pH, being higher than 90% Cdsorbed
at pH > 7.4. The influence of ionic strength on Cd removal by A is minimal, and it
can only be observed at low pH values (pH < 7), when Cd sorption represents log10
KD = 2.2 (≈10%Cdsorbed) at 1·10−1 M and 1·10−2 M ionic strengths, whereas at ionic strengths
1·10−3 M and 5·10−4 M the value of KD is slightly higher (log10 KD = 2.6, which represents
≈20% Cdsorbed). At pH > 8.0, the variability of Cd sorption data can be simply due to
experimental error since the values of % Cdsorbed range from 95% to 100%. The effect of
ionic strength on pollutant sorption gives hints about the pollutant surface complexation
mechanisms [54]. A decrease in pollutant sorption with increasing ionic strength is related
to outer-sphere complexation, whereas inner-sphere complexation occurs when ionic
strength changes do not alter pollutant sorption. Thus, Cd sorption on alumina at pH < 7 Cd
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sorption on alumina could be partially represented by outer-sphere complexation, whereas
at pH > 7 Cd sorption on alumina occurs by inner-sphere complexation.

The sorption of Cd on A follows the general sorption trend of cations on metal ox-
ides [55]. However, removal of 10 to 20% of aqueous Cd was observed under acidic
conditions. Cd sorption on γ-Al2O3 at acidic conditions was also reported in [53,56], but
this was not observed by others at pH < 5 [57]. We have observed such unusual cation
sorption at low pH for Sr2+ and Fe2+ when using alumina nanoparticles as sorbent [34,35].
The overall zeta potential of A under those pH values is positive [41,58], and the interaction
between Cd2+ and A should be electrostatically hindered, but some surface sites of A can
be negatively charged. Nanoparticles possess a higher area-to-volume ratio and specific
surface area than their bulk counterparts. A hypothesis to explain such unusual cation
sorption at low pH values is that these nanoparticle properties favor the interaction of Cd2+

with A despite its overall positive charge.
The influence of Cd concentration on its immobilization on A was studied at different

ionic strengths and pH values and the results are depicted in Figure 3.
The Cd sorption curves slightly differ with the increase of the initial Cd concentration

in solution (Figure 3a). This effect is especially remarkable at pH values between pH 6
and pH 8, when log10 KD is 0.5 units lower at higher Cd concentrations than at lower Cd
concentrations (Figure 3a). Cd sorption isotherms show an increase in Cd immobilization
with increasing Cd concentration (Figure 3b), but this trend is not linear, and the slope
resulting from the fit of log10 [Cd]Sorbed vs log10 [Cd]Solution leads to a value lower than one.
These observations indicate that Cd sorption on A is dependent on Cd concentration and
suggest that either more than one surface site of A is involved in Cd sorption or several
different Cd species are sorbed on A. Figure S7 represents the individual contribution of
the Cd complexes to the isotherm curves.

Other factors that influence Cd sorption on A are the formation of Cd-containing
precipitates, the presence of Cd-Cl species, and the aging of A.

Some authors have observed the formation of a new solid phase, layered double
hydroxides (LDH), when divalent metals interact with trivalent metal oxides under neutral
to alkaline pH conditions [59,60]. Such a solid formation is visible to the naked eye when
it occurs [35]. Some authors discard the formation of Cd-Metal(III) LDH [61,62], whereas
another publication confirms its formation [63].

The formation of Cd-Al LDH was observed at high Cd concentration (in the mM
range) [63]. In the present work, we have generally worked with low Cd concentration
(below µM range). The formation of Cd-Al LDH would increase Cd sorption due to
precipitation with increasing Cd concentration. However, in this work we observed the
opposite behavior, as depicted in Figure 3a. Therefore, the formation of Cd(II)-Al(III)
layered double hydroxide was excluded and was not considered in the SM.

Several papers report that Cd-chloride species can influence Cd sorption and are either
increasing [20–23,64,65] or decreasing it [24–27,66,67]. Furthermore, alumina transforms
to gibbsite (Al(OH)3) over time [68], which might modify the Cd sorption conditions.
Therefore, additional experiments were carried out with the aim of evaluating whether the
presence of chloride or the age of A suspensions influenced Cd removal (results are plotted
in Figures S4 and S5).

However, it was observed that neither the concentration of chloride nor the aging time
of the A suspensions had an effect on Cd sorption on A. This confirms that Cd-chloride
species are not involved in Cd sorption and that the possible alumina phase change does
not influence Cd sorption.

3.1.3. Cd Sorption Model on Alumina

A non-electrostatic SM for Cd sorption on A has been developed by considering
two sorption sites —weak and strong (w and s)—with different affinities for Cd, according
to the results obtained in Figure 3. The sorption of Cd-chloride species on A and the
formation of Cd-Al LDH were not considered in the SM.
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Two-site models have been previously described for metal oxides [69] and aluminium
oxide [34,70–73]. None of the reported Cd sorption studies onto any kind of Al2O3 phase
considered a two-site model, probably because reported Cd sorption studies on Al2O3 were
carried out with higher initial Cd concentration (>10−6 M) [53,56,57,64,68,74–80] than in
the present work. Strong sorption sites prevail at low adsorbate concentration. Thus, the
contribution of strong sorption sites might have been overlooked in previous works.

The SM was developed considering similar equilibria to those suggested in the SM
of Cd sorption on S [14]: the sorption of Cd2+ and CdOH+ on negatively charged surface
sites on A (Xs,wO-Cd+ and Xs,wO-CdOH) and the sorption of Cd2+ on neutral surface sites
on A (Xs,wOH-Cd2+). However, the model was unable to simulate the experimental Cd
sorption for pH < 5.0. With the aim to reproduce theoretically the sorption of Cd under
acidic conditions, an empirical Cd sorption value of log10 KD ≈ 2.2 (Table 5) was considered.
This approach was used in [34], as no experimental evidence was available to describe
the nature of the unusual cation sorption on A. The SM could reproduce the experimen-
tal data obtained for Cd sorption on A (see solid lines in Figures 1–3 and Figures S4–S7).
Figures S6 and S7 show the individual contributions of the equilibria, which were consid-
ered to describe the total Cd sorption on A in this SM.

Although the formation of a ternary complex of Cd to A surface—i.e., enabled by ClO4
−,

which is the main anion in solution—can be a feasible explanation for the sorption of Cd at
low pH values; however, we do not have experimental evidence proving that this occurs.

3.2. Cadmium Sorption on Mixtures of Alumina Nanoparticles and Smectite: Experiments
and Modelling

Cd sorption in A/S mixtures (in wt. %) was studied as a function of ionic strength, pH,
and mixture composition, as summarized in Table 3. Sorption of Cd on 50A/50S mixtures
at different ionic strengths is shown in Figure 4. Sorption of Cd on 50A/50S and 80A/20S
at 1·10−1 M ionic strength is shown in Figure S8. Cd removal by A/S mixtures as a function
of A content at fixed pH (4.1 and 8.0) and ionic strength (1·10−2 M and 1·10−1 M NaClO4)
is shown in Figure 5.
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Cd sorption at I = 1.0∙10−1 M is very similar for pure A and S, being higher in S under 
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Figure 4. Cadmium sorption (as distribution coefficient KD) on mixtures of alumina nanoparticles (A)
and Na-homoionized smectite (S) as a function of pH for different ionic strengths (detailed in figure
legend). Colored lines represent the Cd sorption on A/S mixtures calculated using the data collected
in Table 5. Solid lines represent the sorption of Cd without including Al3+ competition. Dashed lines
represent the sorption of Cd including 2 mg/L of Al3+. [A/S]total = 0.5 g/L, 50% A and 50% S, contact
time = 7 days, and [Cd]0 = 4.8·10−8 M.

Cadmium sorption on 50A/50S mixtures increases with increasing pH. At pH > 9.0 Cd
sorption does not depend on ionic strength, whereas at pH < 9.0 Cd sorption increases
with decreasing ionic strength (Figure 4). This effect is due to the contribution of cation
exchange in S.
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Figure 5. Cadmium sorption (as distribution coefficient KD) on mixtures of alumina nanoparticles
(A) and Na-homoionized smectite (S) as a function of A content in wt.% for (
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The first attempt to apply an additive SM to fit the data was successful for I≥ 1·10−2 M,
but the model overestimated Cd sorption for I ≤ 1·10−3 M. The factor in the SM for both A
and S, which is the most affected by ionic strength is cation exchange in S. Therefore, Cd
sorption on S as a function of ionic strength and pH 4.5 was to evaluate possible influences
on Cd sorption. It was observed that when the selectivity coefficient recently reported for
Cd in [14] (log10 Kc = 0.8) was considered in the SM, Cd sorption was overestimated for
I < 5.0·10−2 M. This is most likely due to the presence of other cations in solution—coming
from S dissolution or from impurities—that compete with Cd for cation exchange sites in
S. Therefore, the selectivity coefficient (log10 Kc) was modified to an “apparent selectivity
coefficient” that allowed for the simulation of Cd removal at low pH values. The model
of Cd sorption, considering the equilibria constants in Table 5, is shown in solid lines in
Figure 4. The model simulates the experimental Cd sorption data, except for pH < 4.0.
Under those pH values, it is known that A dissolution occurs [34]. In the SM of Cd sorption
on A, the dissolution of A was not considered. The formation of A is described by the
following reaction.

2Al3+ + 3H2O→ Al2O3 + 6H+ (17)

The most accepted equilibrium formation constant of A (log10 KForm = −17.8 [81])
clearly overestimates the dissolution of A at pH < 5.0 and pH > 11 [34]. The log10 KForm
value needed to simulate Cd sorption on A/S mixtures at pH < 4.0 in Figure 4 would be

log10 KForm = −9.0, whereas the reported A formation constants range from log10
KForm = −16.1 to −19.1 [81–83]. This was perhaps due to the kinetic effects of A disso-
lution. To simulate the Cd sorption on A/S mixtures, it was necessary to add a given
aluminum concentration to the solution that competed with Cd2+ for cation exchange in
smectite (Table 5) in order to fit the theoretical data with the experimentally measured Cd
sorption data. The added Al3+ concentration in the model is described in the captions of
Figures 4 and 5.

These observations imply that Cd sorption in A/S mixtures is very susceptible to the
presence of competitive cations coming from mineral dissolution, either from A or S.

Cd sorption at I = 1.0·10−1 M is very similar for pure A and S, being higher in S under
acidic and neutral pH values, and slightly higher in A under alkaline conditions (Figure S8).
The Cd immobilization in A/S mixtures exhibits an intermediate behavior, showing an
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improved Cd removal under (i) acidic conditions with increasing S content, and (ii) under
alkaline conditions with increasing A content in the A/S mixtures (Figure S8).

The effect of A content in the mixtures on Cd removal was studied in detail at two pH
values and two ionic strengths (Figure 5).

The composition of the A/S mixture influences the retention of Cd. At pH 8 and
1·10−1 M NaClO4, Cd sorption on S (%Cdsorbe = 87%) is enhanced by increasing the content
of A (%Cdsorbe = 97%). However, at acidic pH and I = 1·10−2 M, Cd sorption decreases
from %Cdsorbe = 84% in 100S to %Cdsorbe = 8% by increasing the amount of A in the A/S
mixtures. The SM was additive and reproduced the experimental Cd sorption when the
given Al3+ content was considered in solution. According to the results in Figures 4 and 5,
the use of A/S mixtures to remediate Cd-polluted areas needs to be assessed depending
on the chemical conditions of the environment. The addition of S to alumina improves Cd
sorption at low pH values (from pH 4.0 to pH 7.0) and low ionic strengths (≤1·10−3 M),
while adding A to S enhances Cd removal at high pH > 8.5. Another factor to be considered
in the removal of Cd by minerals is their size in suspension, since it has been known that
colloids in suspension (particle size in suspension below 1 µm) can be responsible for the
migration of pollutants [84,85]. We have observed that A/S mixtures lead to an increase in
the colloidal size at pH < 9.0 with increasing A content and ionic strengths [51]. Therefore,
the use of A/S mixtures as Cd scavengers would not only improve Cd sorption but it
would limit the migration of pollutants driven by colloids.

The literature dealing with Cd sorption and additive SMs by mixtures of two or more
than two components present inconsistent results.

Some studies dealing with Cd retention on different mixed systems could explain Cd
sorption results by additivity of the sorption on independent components: in iron oxide,
silicon oxide and quartz mixture [86], in mixtures of hydrous ferric oxide, kaolinite and
bacteria (B. suctilis) [87], and in mixtures of alumina and silica [33].

In other studies dealing with Cd sorption on mixtures of silicon and iron oxides
showed that Cd retention was enhanced at low pH, which was not observed in the absence
of silicon [88]. The improvement of Cd removal by the mixture was explained by the
presence of silicate, which acted as a bridge to bind Cd to the surface. Other studies on Cd
removal using mixtures of oxides (goethite and aluminium oxide) showed Cd sorption was
not additive [89], and it was attributed to Al3+ ions covering and modifying the iron oxide
surface, changing its surface properties [90].

Thus, it is crucial to assess the presence of additional ions in solution (coming from
mineral dissolution or from the water chemistry) in order to evaluate the performance of
Cd sorption using mixtures since they might improve or worsen the removal of Cd.

4. Conclusions

Cd sorption on A is fast and nearly independent of ionic strength, but it is dependent
on pH (increasing with pH) and Cd concentration. Cd sorption is close to 100% at pH > 7.5.
An increase in initial Cd concentration decreases the distribution coefficient (log10 KD) by
0.5 units at pH 5.0 to 8.0. This indicates that A presents two surface sites to bind Cd. Our
work is the first one reporting strong sorption sites in Cd removal when using metal oxides
as Cd scavengers.

We have developed a two-site non-electrostatic SM, including the sorption of Cd2+ on
negative and neutral surface sites, the sorption of CdOH+ on negative surface sites, and an
empirical Cd sorption of log10 KD = 2.2 to describe the unusual Cd2+ sorption under low
pH values.

Cd sorption on A/S mixtures is maximum for pH > 4.5 at low ionic strengths (≤1·10−3 M).
Two different effects could be observed during Cd sorption. On the one hand, Cd sorption is
slightly enhanced in comparison with S when A content increases under alkaline conditions
and high ionic strength (1·10−1 M). On the other hand, Cd sorption decreases at pH < 4.5 and
low ionic strengths (≤1·10−2 M) when A is present in the A/S mixtures. This is due to the
dissolution of A and subsequent Al3+ competition with Cd2+ for cation exchange sites in S,
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which has a higher effect at low ionic strengths. Thus, the presence of A in the mixtures has
two opposite influences on Cd sorption.

The SM in A/S mixtures fit the experimental results by considering the models of pure
A and S and adding the cation exchange competition of Al3+.

Therefore, the chemistry of suspensions highly influences Cd sorption on A/S mixtures
and needs to be analyzed before simulating and evaluating the effectiveness of such
mixtures and their potential in remediating a Cd-polluted site.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/min13121534/s1. The supporting information shows: the Cd speciation
diagram for the most-used experimental conditions (Figures S1–S3), additional graphs for the Cd
sorption model on alumina (Figures S4–S7), and alumina and smectite mixtures (Figure S8).
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