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Abstract: Leucogranites in the Lalong Dome are composed of two-mica granite, muscovite granite,
albite granite, and pegmatite from core to rim. Albite granite-type Be–Nb–Ta rare metal ore bodies are
hosted by albite granite and pegmatite. Based on field and petrographic observations and whole-rock
geochemical data, highly differentiated leucogranites have been identified in the Lalong Dome.
Two-mica granites, albite granites, and pegmatites yielded monazite ages of 23.6 Ma, 21.9 Ma, and
20.6 Ma, respectively. The timing of rare metal mineralization is 20.9 Ma using U–Pb columbite dating.
Leucogranites have the following characteristics: high SiO2 content (>73 wt.%); peraluminosity
with high Al2O3 content (13.6–15.2 wt.%) and A/CNK (mostly > 1.1); low TiO2, CaO, and MgO
content; enrichment of Rb, Th, and U; depletion of Ba, Nb, Zr, Sr, and Ti; strong negative Eu
anomalies; low εNd(t) values ranging from−12.7 to−9.77. These features show that the leucogranites
are crust-derived high-potassium calc-alkaline and peraluminous S-type granites derived from
muscovite dehydration melting under the water-absent condition, which possibly resulted from
structural decompression responding to the activity of the South Tibetan detachment system (STDS).
Geochemical data imply a continuous magma fractional crystallization process from two-mica
granites through muscovite granites to albite granites and pegmatites. The differentiation index (Di)
gradually strengthens from two-mica granite, muscovite granite, and albite granite to pegmatite,
in which albite granite and pegmatite are highest (Di = 94). The Nb/Ta and Zr/Hf ratios of albite
granite and pegmatite were less than 5 and 18, respectively, which suggests that albite granite and
pegmatite belong to rare metal granites and have excellent potential for rare metal mineralization.

Keywords: monazite and columbite ages; whole-rock geochemistry; highly fractionated leucogranites;
Nb–Ta–Be rare metals; Lalong Dome; Tethyan Himalaya

1. Introduction

Rare metal granites and pegmatites have diverse chemical signatures and are impor-
tant sources of strategic metals, such as Li, Be, Nb, Ta, W, and Sn [1–6]. Granitic pegmatites
are always grouped into two different families: LCT (from Li–Cs–Ta) and NYF (from
Nb–Y–F). LCT pegmatites are overall more common than NYF [7]. These rocks often
represent the transition between the magmatic and the hydrothermal stages, and this tran-
sition is very important for rare metal mineralization [1]. Understanding mineralization
processes is essential for the exploration and optimal exploitation of rare metal granites
and pegmatites for metals such as Li, Be, Nb, Ta, Rb, and Cs [6]. Two leucogranite belts
have been recognized in the Himalayan orogenic belt: the Higher Himalayan and Tethyan
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Himalayan leucogranite belts [8,9]. Leucogranites in the Tethyan Himalaya are always
exposed in the domes in the North Himalayan Gneiss Domes (NHGDs). There is now
general agreement that the Tethyan Himalayan leucogranites are often highly evolved
granites [10–14]. Although highly evolved granites are mostly rare metal granites, there are
currently very few typical rare metal deposits in the Tethyan Himalayan belt, aside from the
Cuonadong skarn-type Be–W–Sn rare metal deposit in the Cuonadong Dome [15–17]. As
for the relationship between leucogranites and rare metal mineralization in the Himalayan
belt, previous research mainly focused on mineralogy for Be-, Nb-, Ta-, and Li-bearing rare
metal minerals and geochemistry for whole rocks [8,18–20], which are characterized by
poor representation.

The Lalong Dome, one of the typical domes from the NHGD in the Tethyan Himalayan
belt, is located at the eastern part of the Tethyan Himalayan belt, between the well-studied
Kangmar and Cuonadong Domes. Leucogranites, including two-mica granites, muscovite
granites, albite granites, and pegmatites, are widely exposed in the Lalong Dome [21]. Three
types of rare metal mineralization have been identified in the Lalong Dome: skarn-type Be–
Nb–Ta rare metal mineralization, albite granite-type Be–Nb–Ta rare metal mineralization
and hydrothermal structure-type W–Cu–Pb–Zn polymetallic mineralization [22]. The
first discovery of Lalong albite granite Be–Nb–Ta rare metal mineralization could play a
significant role in building a better understanding of the relationship between leucogranites
and rare metal mineralization in the Himalayan belt [23], which is the first large-scale albite
granite-type Be–Nb–Ta deposit in the Himalayan metallogenic belt. It is further confirmed
that the Himalayan metallogenic belt is a new rare metal metallogenic belt in China.

In this contribution, we carried out a detailed field observation and petrological,
geochemical, and geochronological study of selected leucogranites—two-mica granites,
muscovite granites, albite granites, and pegmatites—from the Lalong Dome. The objectives
of this study are: (1) to constrain the timing of granitic magmatism and Be–Nb–Ta rare
metal mineralization of the Lalong deposit for a comparison with the timing of other
leucogranites and rare metal mineralization in the Tethyan Himalayan belt; (2) to ascertain
the petrogenesis of the leucogranites in the Lalong Dome and provide evidence for the
genesis of Himalayan leucogranites; (3) to elucidate the relationship between highly frac-
tionated leucogranites and Nb–Ta–Be rare metal mineralization in the Lalong Dome; and
(4) to point out the economic potential of rare metal leucogranites in the Tethyan Himalaya.

2. Regional Geology

The Himalayan collisional orogenic belt mainly consists of four tectonic units from
north to south—the Tethys Himalayan Sedimentary Sequence (THS), the Higher Himalayan
Crystalline Series (HHC), the Lesser Himalayan Sequence (LHS), and the Sub-Himalayan
Sequence (SHS)—that are separated by five regional boundary fault systems toward the
south: the Indus–Tsangpo suture zone (ITSZ), the South Tibetan detachment system (STDS),
the Main Central Thrust (MCT), the Main Boundary Thrust (MBT), and the Main Frontal
Thrust (MFT), respectively [24,25] (Figure 1A,B). The THS is mainly a set of Triassic–
Cretaceous sedimentary rocks, including sandstone, siltstone, shale, and low-grade meta-
morphic slate and phyllite, and is characterized by the exposure of the North Himalayan
Gneiss Domes (NHGDs), the east–west striking thrust faults, and north–south trending
rifts (NSTRs) [26,27]. Most Pb–Zn and Au–Sb polymetallic deposits are controlled by the
north–south trending faults in the THS, i.e., the large-scale Zhaxikang Pb–Zn polymetallic
deposit [28–30].
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Figure 1. (A) Simplified geologic map of the Himalayan orogenic belt, showing the distribution of 
leucogranites and domes (modified from Wu et al., 2021). (B) ITSZ, Indus–Tsangpo Suture Zone; 
STDS, South Tibetan Detachment System; MCT, Main Central Thrust; MBT, Main Boundary Thrust; 
MFT, Main Frontal Thrust; THS, Tethyan Himalayan Sedimentary Sequence; HHS, Higher Himala-
yan Crystalline Series; LHS, Lesser Himalayan Sequence; SHS, Sub-Himalayan Sequence. Location 
of the Lalong Dome shown by rectangle in the eastern part. 

The North Himalayan Gneiss Domes (NHGDs) are exposed between the ITSZ and 
the STDS [27,31–33] (Figure 1B). The NHGDs, from east to west, including Yalaxiangbo, 
Cuonadong, Kuju, Qialong, Kulagangri, Lalong, Ranba, Kangmar, Kampa, Mabja, Lagoi–
Kangri, Malashan, and Jilong Dome (Figure 1B), generally show a similar geologic frame-
work including a core of orthogneisses and leucogranites, a middle unit of high-grade 
metamorphic rocks, a and upper unit of lower grade–unmetamorphosed sedimentary 
rocks [27,31,34–37]. Although most of the domes underwent multiphase tectonic defor-
mation, two typical structural deformations (D1 and D2) are always recorded in the 
NHGDs. D1 is top-to-south thrust deformation. D2 is top-to-north ductile shear defor-
mation and crustal extension; this is interpreted as the result of a top-to-north detachment 
deformation of the STDS [26,31,34,38–44]. 

The Lalong Dome is located at the eastern part of the NHGDs (Figure 1A). In the 
south, the Lalong Dome is adjacent to the Kulagangri Dome which is the largest dome in 
the NHGDs, about 40 km away from the STDS, and the outcropping area is about 30 km2. 

3. Geology of the Lalong Dome 
The Lalong Dome consists of three lithologic–tectonic units from the inner to outer: 

the lower unit (the core), and the middle and upper units (cover rocks) (Figures 2A,B, 3, 
and 4A). The arc-shaped upper detachment fault is the boundary between the middle unit 
and upper unit, while the lower detachment fault is not well exposed in the Lalong Dome, 
which is characterized by the sheath fold around the core of the Lalong Dome. The lower 
unit consists of a set of the Cenozoic highly fractional crystallization leucogranites, from 
the core to the rim (Figure 3), including two-mica granite, muscovite granite, albite granite 
(Figure 4G), and pegmatite (Figure 4F,H,I). The Be–Nb–Ta rare metal ore bodies are 
mostly hosted by albite granite and pegmatite. The middle unit is commonly known as 
the detachment system, which has been interpreted as the northern part of the STDS 
[36,40]. Leucogranites in the lower unit partly intruded into the middle unit, and the 
boundary between the middle unit and lower unit is always serrated, irregular, and arc-
shaped. The middle unit mainly consists of strongly deformed mica schist (Figure 4), 

Figure 1. (A) Simplified geologic map of the Himalayan orogenic belt, showing the distribution of
leucogranites and domes (modified from Wu et al., 2021 [19]). (B) ITSZ, Indus–Tsangpo Suture Zone;
STDS, South Tibetan Detachment System; MCT, Main Central Thrust; MBT, Main Boundary Thrust;
MFT, Main Frontal Thrust; THS, Tethyan Himalayan Sedimentary Sequence; HHS, Higher Himalayan
Crystalline Series; LHS, Lesser Himalayan Sequence; SHS, Sub-Himalayan Sequence. Location of the
Lalong Dome shown by rectangle in the eastern part.

The North Himalayan Gneiss Domes (NHGDs) are exposed between the ITSZ and
the STDS [27,31–33] (Figure 1B). The NHGDs, from east to west, including Yalaxiangbo,
Cuonadong, Kuju, Qialong, Kulagangri, Lalong, Ranba, Kangmar, Kampa, Mabja, Lagoi–
Kangri, Malashan, and Jilong Dome (Figure 1B), generally show a similar geologic frame-
work including a core of orthogneisses and leucogranites, a middle unit of high-grade
metamorphic rocks, a and upper unit of lower grade–unmetamorphosed sedimentary
rocks [27,31,34–37]. Although most of the domes underwent multiphase tectonic deforma-
tion, two typical structural deformations (D1 and D2) are always recorded in the NHGDs.
D1 is top-to-south thrust deformation. D2 is top-to-north ductile shear deformation and
crustal extension; this is interpreted as the result of a top-to-north detachment deformation
of the STDS [26,31,34,38–44].

The Lalong Dome is located at the eastern part of the NHGDs (Figure 1A). In the
south, the Lalong Dome is adjacent to the Kulagangri Dome which is the largest dome in
the NHGDs, about 40 km away from the STDS, and the outcropping area is about 30 km2.

3. Geology of the Lalong Dome

The Lalong Dome consists of three lithologic–tectonic units from the inner to outer:
the lower unit (the core), and the middle and upper units (cover rocks) (Figure 2a,b,
Figures 3 and 4A). The arc-shaped upper detachment fault is the boundary between the
middle unit and upper unit, while the lower detachment fault is not well exposed in the
Lalong Dome, which is characterized by the sheath fold around the core of the Lalong
Dome. The lower unit consists of a set of the Cenozoic highly fractional crystallization
leucogranites, from the core to the rim (Figure 3), including two-mica granite, muscovite
granite, albite granite (Figure 4G), and pegmatite (Figure 4F,H,I). The Be–Nb–Ta rare metal
ore bodies are mostly hosted by albite granite and pegmatite. The middle unit is commonly
known as the detachment system, which has been interpreted as the northern part of the
STDS [36,40]. Leucogranites in the lower unit partly intruded into the middle unit, and
the boundary between the middle unit and lower unit is always serrated, irregular, and
arc-shaped. The middle unit mainly consists of strongly deformed mica schist (Figure 4),
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leucogranite, pegmatite, skarn (Figure 4D,E), and marble. The typical metamorphic min-
erals include kyanite, staurolite (Figure 4C), garnet, and biotite. The metamorphic grade
decreases from core to rim, with a garnet + kyanite zone, a garnet + staurolite zone, and a
biotite + garnet zone. These metasedimentary rocks in the middle unit preserve typical Bar-
rovian peak metamorphism defined by mineral assemblages [22]. The skarn is dominated
by calc-silicate minerals such as diopside, andradite and grossular. The main minerals in
the skarns close to granite and pegmatite are quartz, albite, epidote, and calcite, which
represent an internal skarn zone. Closer to the marble, the minerals comprise diopside,
andradite–grossular, wollastonite, chlorite, actinolite, idocrase, phenacite, calcite, and flu-
orite, which represent an external skarn zone. The skarn-type Be–Na–Ta rare metal ore
bodies are hosted by skarns in the middle unit of the Lalong Dome. On the other hand,
albite granites and pegmatites in the middle unit of the dome are the lenticular and vein,
with length ranging from 2 m to 200 m, and width from 1 m to 20 m. These albite granites
and pegmatites are also the host rocks for the Be–Nb–Ta rare metal ore bodies. The upper
unit, commonly known as the cover rocks, consists of phyllite, phyllitic slate (Figure 4B),
and siltstone. The typical metamorphic minerals in this unit are cordierite, chloritoid
(Figure 4B), and andalusite. The metamorphic grade within this unit decreases upsection
from low metamorphic phyllite and phyllitic slate to unmetamorphosed sandstone and
siltstone at the top.

Minerals 2023, 13, x FOR PEER REVIEW 4 of 28 
 

 

leucogranite, pegmatite, skarn (Figure 4D,E), and marble. The typical metamorphic min-
erals include kyanite, staurolite (Figure 4C), garnet, and biotite. The metamorphic grade 
decreases from core to rim, with a garnet + kyanite zone, a garnet + staurolite zone, and a 
biotite + garnet zone. These metasedimentary rocks in the middle unit preserve typical 
Barrovian peak metamorphism defined by mineral assemblages [22]. The skarn is domi-
nated by calc-silicate minerals such as diopside, andradite and grossular. The main min-
erals in the skarns close to granite and pegmatite are quar , albite, epidote, and calcite, 
which represent an internal skarn zone. Closer to the marble, the minerals comprise diop-
side, andradite–grossular, wollastonite, chlorite, actinolite, idocrase, phenacite, calcite, 
and fluorite, which represent an external skarn zone. The skarn-type Be-Na-Ta rare metal 
ore bodies are hosted by skarns in the middle unit of the Lalong Dome. On the other hand, 
albite granites and pegmatites in the middle unit of the dome are the lenticular and vein, 
with length ranging from 2 m to 200 m, and width from 1 m to 20 m. These albite granites 
and pegmatites are also the host rocks for the Be–Nb–Ta rare metal ore bodies. The upper 
unit, commonly known as the cover rocks, consists of phyllite, phyllitic slate (Figure 4B), 
and siltstone. The typical metamorphic minerals in this unit are cordierite, chloritoid (Fig-
ure 4B), and andalusite. The metamorphic grade within this unit decreases upsection from 
low metamorphic phyllite and phyllitic slate to unmetamorphosed sandstone and silt-
stone at the top. 

 
Figure 2. (a) Geological map of the Lalong Dome in Southern Tibet (modified from [22]). (b) Cross-
section through the Lalong Dome (A’A’’) with observed index metamorphic minerals (modified 
from [22]). Location of Figure 3 shown. Mineral abbreviation: Bt, biotite; Grt, garnet; St, staurolite; 
Ky, kyanite. 

Figure 2. (a) Geological map of the Lalong Dome in Southern Tibet (modified from [22]). (b) Cross-
section through the Lalong Dome (A′A′′) with observed index metamorphic minerals (modified
from [22]). Location of Figure 3 shown. Mineral abbreviation: Bt, biotite; Grt, garnet; St, staurolite;
Ky, kyanite.
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Figure 3. Geological map of the Rilongla Be–Nb–Ta rare metal target prospecting area in the La-
long Dome.

The Lalong Dome has experienced four major deformational events: D1, top-to-S
thrust; D2, top-to-N shear characterized by vertical thinning and N–S extensional defor-
mation; D3, doming deformation associated with intrusion of leucogranites; and D4, late
extensional faults with N–S, E–W, and NE trending which also cut the above three units
of the dome [22]. D1 structures, as the Cenozoic oldest deformational event in the Lalong
Dome, preserved in the middle and upper units. In the upper unit, the rocks are deformed
by macroscopic, typically disharmonic F1 folds and “M” or “W” type folds with the perva-
sive development of axial plane cleavage. In the middle unit, D1 is characterized by S–C
fabrics, the asymmetric fold, σ-type porphyroclast, and indicating top-to-S thrust shear
sense. D2, a relatively younger, high-strain deformational event, probably represents the
residual northward detachment of the STDS. D2 deformation in the Lalong Dome is charac-
terized by penetrative foliation (S2) and mineral stretching lineation (L2). S2 becomes an
intensely developed mylonitic layer. Typical mylonite includes S–C fabrics, rotation struc-
tures in garnet, and sheath folds. In order to better distinguish from stretching lineation L1,
L2 is predominantly defined by stretching lineation with the x-direction on the surface of
the strongly deformed granite in the sheath folds. D3 is always associated with the dome
formation and is characterized by the intrusion of the latest albite granite. These granites
partly intruded into the marble, skarn, and mica schist in the middle unit of the dome. D4
is the latest brittle deformation event that probably resulted from the thermal cooling and
gravitational collapse after the dome formation. These faults always crosscut all the older
penetrative fabrics in the dome. The hydrothermal structure Cu–Pb–Zn mineralization in
the Lalong Dome is controlled by the E–W and N–E trending faults.
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Figure 4. Field outcrop photos in the Lalong Dome in Southern Tibet. (A) Macrophotograph
in the Rilongla Be–Nb–Ta rare metal target prospecting area in the Lalong Dome, showing three
lithologic–tectonic units from the inner to outer: the lower unit (the core), middle, and the upper
units (the cover rocks). (B) Cordierite-chloritoid-bearing slate in the upper unit of the Lalong Dome.
(C) Garnet-staurolite-bearing mica schist in the middle unit. (D) Idocrase skarn in the middle unit.
(E). Garnet idocrase skarn in the middle unit. (F) Pegmatite with graphic texture in the core of the
Lalong Dome. (G) Fine-grained albite granite in the core. (H) Beryl-bearing pegmatite in the core.
(I) Molybdenite-bearing pegmatite in the core.

There are three types of mineralization in the Lalong Dome: albite granite-type Be–
Nb–Ta rare metal mineralization, skarn-type Be–Nb–Ta rare metal mineralization, and
hydrothermal structure-type W–Pb–Zn polymetallic mineralization [22]. Albite granite-
type Be–Nb–Ta rare metal mineralization is the focus of this contribution, and the other
two types of mineralization will be reported in other papers. Lalong albite granite-type
Be–Nb–Ta rare metal mineralization is mainly hosted by albite granite and pegmatite. The
controlled strike length of the rare metal ore bodies is ca. 1500 m. The average thickness
of orebody is 5 m, the average grades of BeO, Rb2O, Nb2O5, and Ta2O5 are 0.0785%,
0.0556%, 0.0087%, 0.0208%, respectively. The ore structure is generally a massive structure,
and the ore texture is mostly euhedral–granular and metasomatic. The main rare metal
minerals are columbite, tantalite, pyrochlore, teshirogilite, tapiolite, beryl (Figure 4H),
uraninite, microlite, Nb–Ta-bearing rutile, and fergusonite. In addition, molybdenite
(Figure 4I) is mainly scattered in pegmatite. The main gangue minerals are quartz, albite,
K-feldspar, muscovite, with minor garnet, tourmaline, and biotite. Both the albitization
and greisenization occur in the Lalong albite granite-type rare metal deposit.

4. Sample Petrology

Leucogranites, exposed in the core of the Lalong Dome, include four types from the
core to rim: (1) two-mica granite, (2) muscovite granite, (3) albite granite, and (4) pegmatite.
These show good lithofacies zoning (Figures 2a and 3). The sampling locations in this
contribution are shown in Figure 2. Two-mica granite generally occurs at the core of the
dome, and comprises gray–in–hand specimens (Figure 5A). Two-mica granite is primarily
medium–fine-grained and typically consists of quartz, plagioclase, K-feldspar, muscovite,
biotite, garnet, tourmaline, and accessory zircon, monazite, and apatite (Figure 6A). Plagio-
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clase commonly occurs as euhedral to subhedral laths. The K-feldspar is often characterized
by subhedral and anhedral habits. Most muscovite grains are in textual equilibrium with
the other phases, suggesting that this muscovite is the primary mineral. The quartz grains
are normally anhedral and are distributed between other mineral crystals.
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Muscovite granite is widely exposed in the core of the dome, some of which are
independent veins, and the contact boundary with pegmatite is obvious. Some of them
are surrounded by pegmatite, and the boundaries are blurred and gradual. In the outcrop,
two-mica granite and muscovite granite show a gradual transition relationship, and the
boundary is not very clear. Muscovite granite is primarily medium–fine grained, and
is light gray in color in hand specimens (Figure 5B). The main minerals in muscovite
granite are quartz, plagioclase, K-feldspar, muscovite, garnet (Figure 6B,C) and a small
amount of tourmaline and biotite, and the secondary minerals are zircon, monazite, apatite,
phosphtrium, and columbite group mineral (CGM). The garnet crystals occur as purple–
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pink euhedral crystals that are as big as 1–3 mm in diameter and are free of inclusions
(Figure 6B). The results of electron probe analysis show that garnet in muscovite granite is
mainly almandite [21].
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Figure 6. Photomicrographs of leucogranite samples in the Lalong Dome. (A) Photomicrograph
of two-mica granite in cross-polarized light. (B) Photomicrograph of muscovite granite in cross-
polarized light. (C) Photomicrograph of muscovite granite in cross-polarized light. (D,E) Pho-
tomicrograph of albite granite in cross-polarized light. (F) Photomicrograph of albite granite in
plane-polarized light, showing columbite in albite. (G,H) Photomicrograph of pegmatite in cross-
polarized light. (I) Photomicrograph of pegmatite in cross-polarized light, showing quartz inclusions
in albite and representing fluid dissolution. Mineral abbreviation: Ab, albite; Kfs, K-feldspar; Pl,
plagioclase; Qtz, quartz; Mus, muscovite; Bt, biotite; Grt, garnet; Clf, columbite.

Albite granite is mostly distributed in the edge of the core, and is named as a-type
albite granite. Some of it intrudes into the marble and skarn in the middle unit, and either
parallel to or cutting through the marble bedding, these albite granites are named as b-type
albite granite. In the outcrop, albite granite and muscovite granite also show a gradual
transition relationship, and the boundary is not very clear. Albite granite is predominately
fine grained and sugar-granular in texture, and is white or creamy white on outcrop or
hand specimens (Figure 5C,D). Albite granite is mainly composed of minerals with albite,
quartz, white mica, garnet, and a small amount of K-feldspar and tourmaline (Figure 6D,E),
as well as accessory zircon, monazite, apatite, phosphtrium and columbite group mineral
(CGM) (Figure 6E,F), uraninite, and pyrochlore. Albite is characterized by a sugar-granular
and foliated lamellar texture (Figure 5C,D). The garnet crystals occur as pink euhedral
crystals that are as much as 0.5–3 mm in diameter and are also free of inclusions (Figure 6D).
Garnet in albite granite is predominantly spessartite [21]. Muscovite grains are fine-grained
and scaly.

Pegmatites are widely exposed in the core of the dome, some of them are independent
dikes, some of them intrude or interpenetrate into the two-mica granite and muscovite
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granite, and some of them are distributed along the edge of the core of the dome. Pegmatite
mainly consists of plagioclase, quartz, muscovite, tourmaline, garnet, beryl, and accessory
Nb–Ta–(Ti) oxide minerals, zircon, monazite, and apatite. Pegmatite is mainly distributed
in the core of the dome near the edge, and overall is in the shape of oats on the outcrop or
hand specimens (Figure 5E,F). Pegmatite is characterized by the complex internal structure
including the coarse-grained pegmatite and aplite (Figure 5E). The boundary between
coarse-grained pegmatite and aplite is very fuzzy, showing a gradual transition relationship.
Pegmatite is mainly composed of albite, K-feldspar, quartz, muscovite, garnet and a
small amount of tourmaline (Figure 6G–I), as well as accessory zircon, monazite, apatite,
phosphtrium and columbite group mineral (CGM), uraninite, and pyrochlore. The mineral
grains in the coarse-grained pegmatite range from 3 cm to 10 cm.

5. Methodology
5.1. Monazite U–Th–Pb and Columbite U–Pb Dating

In order to constrain the timing of granitic magmatism in the Lalong Dome, three rep-
resentative samples including two-mica granite sample PM04-2TW, albite granite sample
D3003D1, and pegmatite sample D1223-TW1 are selected for monazite U–Th–Pb dating.
Three leucogranite samples from the Lalong Dome were selected for monazite U–Th–Pb
geochronology: two-mica granite sample PM04-2TW, albite granite sample D3003D1, and
pegmatite sample D1223-TW1. Albite granite sample D3003D1 was also collected for
columbite U–Pb dating.

The entire analyses were performed at State Key Laboratory of Metallogenic Mecha-
nism of Endogenous Metal Deposits, Nanjing University, China. Using a combination of
back-scattered electron (BSE) images and optical microscopy, the clearest, least fractured
rims of the monazite and CGM crystals were selected as suitable targets for laser ablation
inductively coupled plasma mass spectrometry (LA-ICPMS) analysis. The laser denudation
injection system was a Resolution S-155 193 nm ArF excimer laser from ASI (Australia), cou-
pled with an iCAP Q quadrupole plasma mass spectrometer from Thermo Fisher Scientific
(Waltham, MA, USA).

The conditions for monazite U–Pb isotopic dating and trace element analysis are as
follows: laser denudation spot diameter was 20 µm; the energy density was ~3 J/cm2;
and the frequency was 3 Hz. Analytical dwell time was set at 10 ms for 232Th and 238U,
15 ms for 204Pb, 206Pb and 208Pb, 20 ms for 207Pb, and 7 ms for all other elements. Every
eight sample analyses were followed by analysis of the monazite standards (Treblicock,
M4) and two standard glass NIST 610 and NIST 612. Monazite standard Treblicock (TIMS
age 272 ± 2 Ma, Tomascak et al., 1996) was used to correct U–Pb isotope fractionation.

Detailed analysis procedures for CGM U–Pb isotope dating can be found in [45]. The
conditions for columbite U–Pb isotopic dating are that the laser denudation spot diameter
was 43 µm, an energy density of ~5 J/cm2, and a frequency of 4 Hz. The dwell times of the
analyzed elements were 10 ms for 232Th and 238U, 15 ms for 204Pb, 206Pb and 208Pb, 30 ms
for 207Pb, and 6 ms for all other elements. Every eight sample analyses were followed by
analysis of the tantalite standards (Coltan139) and four standard glass samples including
two standard glass NIST 610, one USGS standard glass BCR-2G, and one USGS standard
glass GSE-1G. Tantalite sample Coltan139 (TIMS age 505 ± 3.4 Ma, Gerdes) was used to
correct U–Pb isotope fractionation.

In the Monazite U–Th–Pb and columbite U–Pb analyses, the analysis time of each
sample point was 90 s, in which the background signal was collected for 20 s, the sample
signal was collected for 50 s, and the cleaning time was 20 s. Data reduction was per-
formed using the GLITTER (v. 4.0) program [46]. Isoplot V4.15 software was used to plot
the concordia diagram and calculate the weighted average age [47]. Results of isotopic
measurement on monazite and columbite are listed in Tables S1 and S2, respectively.
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5.2. Whole-Rock Geochemical Analysis

Fresh samples (each one weights about 2 kg) were selected for major- and trace-
element analysis. Samples were crushed initially in a jaw crusher. Analysis of major and
trace elements was conducted at Shandong Bureau Test Center, China Metallurgical Geol-
ogy General Administration. Major elements were determined using X-ray fluorescence
spectrometry (XRF) with relative standard deviations within 5% using standard fused-bead
and pressed-pellet technique. The loss on ignition (LOI) was determined by a pre-ignition
method before major element analyses. Trace elements, including the rare earth elements
(REE) and high field strength elements (HFSE), were analyzed using inductively coupled
mass spectrometry (ICPMS) following HF–HNO3–HClO4 acid digestion and HCl leach.
The analytical precisions for major elements were 1%–3% (for those present at concen-
trations of higher than 1%) and approximately 5% (for those with concentrations of less
than 1%). The analytical uncertainties for the trace elements were 10% (for those with
abundances of less than 10 ppm) and approximately 5% (for those with concentrations of
more than 10 ppm). The analysis results are presented in Table S3.

5.3. Sr and Nd Isotope Analysis

To determine Sr and Nd isotopes, nine leucogranite samples were selected (the least-
altered samples), crushed, and ground in an agate ring mill. All the analytical procedures
were analyzed by the micromass isoprobe multi-collector inductively coupled plasma mass
spectrometer (MC-ICPMS) at National Geological Experiment and Test Center (Beijing,
China). The main analysis process is as follows: accurately weigh 0.25 g powder sample,
and then put them into the Teflon stew tank, add 0.5 mL HNO3 and 1.5 mL HF, close and
heat digestion at 190 ◦C for 48 h, remove HF at 160 ◦C, add 3 mL 1:1 HNO3, close and
redissolve at 150 ◦C for 6 h, and constant volume to 25 g. According to the Nd content,
appropriate sample solution was centrifuged, the supernatant was dried, and the acidity
was adjusted. LN special resin was used to separate pure Nd, and the sample solution
containing Nd was obtained. 143Nd/144Nd values were determined using a Thermo
Fisher Scientific multi-receiver inductively coupled plasma mass spectrometer Neptune
Plus MC-ICPMS. According to the natural abundance ratio of 146Nd/144Nd (0.7218), the
measured 143Nd/144Nd values were corrected by online mass fractionation according to
the exponential law. The uncertainty of 143Nd/144Nd value is 2σ, which only includes the
uncertainty determined by mass spectrometry. The analytical data and calculated results
are listed in Table S4.

6. Results
6.1. Monazite U–Th–Pb Dating

Monazite grains from the leucogranite are light yellow, subhedral–euhedral, mainly
short columnar and granular, with length ranging from 60 µm to 150 µm. These monazites
generally have no distinct zoning under BSE images. Twenty-four U–Pb analyses in two-
mica granite sample PM04-2TW were performed using LA-ICPMS method. From sample
PM04-2TW, 23 analysis spots yielded a weighted-mean of 208Pb/232Th age of 23.6 ± 0.1 Ma
(1σ; MSWD = 1.1; n = 24) (Figure 7A,B). Twenty-four U–Pb analyses in albite granite sample
D3003D1 were performed, and nineteen analysis spots from sample D3003D1 yielded a
weighted-mean 208Pb/232Th age of 21.9 ± 0.1 Ma (1σ; MSWD = 0.49; n = 19) (Figure 7C,D).
Twenty-five U–Pb analyses in pegmatite sample D1223-TW1 were performed, and twenty-
five analysis spots from sample D1223-TW1 yielded a weighted-mean of 208Pb/232Th age
of 20.6 ± 0.1 Ma (1σ; MSWD = 1.8; n = 25) (Figure 7E,F).
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Figure 7. U–(Th)–Pb dating results of the leucogranites in the Lalong Dome. (A) LA–ICP–MS
monazite U–Th–Pb dating results of two-mica granite. (B) Weighted average age dating diagram of
two-mica granite. (C) LA–ICP–MS monazite U–Th–Pb dating results of albite granite. (D) Weighted
average age dating diagram of albite granite. (E) LA–ICP–MS monazite U–Th–Pb dating results of
pegmatite. (F) Weighted average age dating diagram of pegmatite.

6.2. Columbite U–Pb Dating

To better constrain for Be–Nb–Ta mineralization of the Lalong deposit, a representative
albite granite sample D3003D1 is selected for columbite U–Pb dating. Sample D3003D1
contains subhedral to euhedral CGM grains with lengths ranging from 150 µm to 600 µm
that display the typical zoning and complex structures (Figure 8A). The clear oscillatory
zoning and complex structures are usually formed in the magmatic stage and the magma–
hydrothermal transition stage. Twenty-five U–Pb analyses in albite granite sample D3003D1
were performed, and twenty-one analysis spots from sample D3003D1 yielded a concordant
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of 206Pb/238U age of 21.5 ± 0.9 Ma (1σ; MSWD = 2.2; n = 21) (Figure 8B) and a weighted-
mean of 206Pb/238U age of 20.9 ± 0.5 Ma (1σ; MSWD = 2.3; n = 21) (Figure 8C).
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Figure 8. (A) Back-scattered electron (BSE) images of the analysed CGM grains in albite granite
sample D3003D1. The red circle and number represent the analysis point and spot, respectively.
(B) U–Pb concordia diagrams for CGM sample. (C) Weighted average age dating diagram.

6.3. Major and Trace Element Compositions

The leucogranite samples in the Lalong Dome fall in the granite field in the TAS
classification plot (Figure 9A). Two-mica granites, muscovite granites, albite granites, and
pegmatites have high SiO2 contents of 73.1–74.7 wt.%, 73.6–74.2 wt.%, 73.3–74.8 wt.%, and
74.8–76.6 wt.%, respectively. These leucogranitic rocks are peraluminous (Figure 9B) with
high Al2O3 content (13.6–15.2 wt.%) and A/CNK [molar Al2O3/(CaO + Na2O + K2O)]
(1.02–1.2). Two-mica granites and muscovite granites are characterized by the high-K calc-
alkaline series, while albite granites, and pegmatites are calc-alkaline series (Figure 9C). In
the Hark diagrams (Figure 10), Na2O content from two-mica granites, muscovite granites
to albite granites and pegmatites are gradually increasing with the SiO2 content. MgO,
CaO, Al2O3, TiO2, and P2O5 content from two-mica granites, muscovite granites–albite
granites, and pegmatites gradually decrease with the SiO2 content increase.
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diagram [50].

In general, the Lalong leucogranites are enriched in highly incompatible trace elements
(LILEs) and depleted in high-field-strength elements (HFSEs). In the primitive mantle-
normalized spider grams (Figure 11), leucogranites exhibit similar patterns, and are depleted
in Ba, Sr, Zr, and Ti, but enriched in Rb, Pb, Nb, and Ta. Furthermore, their REEs show similar
patterns in the chondrite-normalized patterns, featured by negative anomalies of Eu with
obvious negative Eu anomalie in albite granites and pegmatites. The term “tetrad effect”
refers to the subdivision of the 15 lanthanide elements into four groups in a REE chondrite-
normalized distribution pattern: (1) La–Ce–Pr–Nd, (2) Pm–Sm–Eu–Gd, (3) Gd–Tb–Dy–Ho,
and (4) Er–Tm–Yb–Lu [51]. The existence of the “tetrad effect” in highly evolved peralu-
minous magmatic systems is the result of the interaction between the melt and the phase
containing volatilization diverge, which is the criterion of the degree of magma differentiation.
Albite granites and pegmatites exhibit a significant lanthanide tetrad effect which is confined
by the degree of the tetrad effect (TE1,3) that ranges from 1.11 to 1.33. TE1,3 is defined as (TE1
× TE3)0.5, TE1 = (Ce/Ce*× Pr/Pr*)0.5, TE3 = (Tb/Tb*× Dy/Dy*)0.5, Ce* = LaN

2/3 ×NdN
1/3,

Pr* = LaN
1/3 ×NdN

2/3, Tb* = GdN
2/3 ×HoN

1/3, Dy* = GdN
1/3 ×HoN

2/3; the subscript N
is chondrite-normalized lanthanide concentration [52].
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Two-mica granites have the highest total REE concentration (71.4–93.8 ppm) and high-
est Nb/Ta (12.21–19.41), Zr/Hf ratios (19.14–22.73), and the lowest TE1,3 values (1.06–1.07).
Muscovite granites have higher total REE content (71.9–87.7 ppm) and higher Nb/Ta
(4.07–8.67), Zr/Hf ratios (15.87–19.3), and lower TE1,3 values (1.09–1.21). The a-type albite
granites have lower total REE content (36.3–56.3 ppm) and lower Nb/Ta (3.63–5.77), Zr/Hf
ratios (10.43–10.56), and lower TE1,3 values (1.22–1.26), while b-type albite granites with
Nb/Ta (11.42–20.63), Zr/Hf ratios (14.37–15.28), and lower TE1,3 values (1.11–1.15). Peg-
matites have Nb/Ta (2.14–4.19), Zr/Hf ratios (8.26–9.32), and lower TE1,3 values (1.26–1.33).
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6.4. Whole-Rock Sr–Nd Isotopes

Two-mica granites from the Lalong Dome have Rb content ranging from 320 to 329 ppm
and Sr content ranging 69.7 to 75.5 ppm, with 87Rb/86Sr ratios ranging from 12.6 to 13.3.
These granites have 87Sr/86Sr(i) ratios [87Sr/86Sr(i) = 87Sr/86Sr + 87Rb/86Sr(eλt − 1)] that
range from 0.736524 to 0.736548, 143Nd/144Nd ratios range from 0.511985 to 0.512014, and
εNd(t) values range from −12.69 to −12.10.

Muscovite granites have Rb content ranging from 335 to 407 ppm and Sr content
ranging 38.2 to 39.7 ppm, with 87Rb/86Sr ratios ranging from 25.5 to 29.8. They have
87Sr/86Sr(i) ratios that range from 0.737010 to 0.739400, 143Nd/144Nd ratios range from
0.511987 to 0.512092, and εNd(t) values that range from −12.70 to −10.76.
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The a-type albite granites have Rb content ranging from 954 to 956 ppm and Sr content
ranging 7.97 to 8.77 ppm, with 87Rb/86Sr ratios ranging from 317.6 to 349. They have
87Sr/86Sr(i) ratios that range from 0.673811 to 0.67671, 143Nd/144Nd ratios range from
0.512033 to 0.512049, and εNd(t) values range from −12.06 to −11.76. The b-type albite
granites have Rb content of 626 ppm and Sr content of 10.3 ppm, with 87Rb/86Sr ratio of
176.8. They have 87Sr/86Sr(i) ratio of 0.710205, 143Nd/144Nd ratio of 0.512005, and εNd(t)
value of −12.45.

Pegmatites have Rb content ranging from 441 to 445 ppm and Sr content ranging
8.27 to 9.11 ppm, with 87Rb/86Sr ratios ranging from 142.1 to 155.2. they have 87Sr/86Sr(i) ra-
tios that range from 0.715228 to 0.718533, 143Nd/144Nd ratios range from 0.512143 to 0.512162,
and εNd(t) values range from−10.04 to−9.77. εNd(t) values were calculated at 23 Ma. Sr–Nd
isotopic data are shown in Table S4, and plotted in Figure 12.
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7. Discussion
7.1. The Emplacement Age of Leucogranites and Timing of Nb–Ta–Be Rare Metal Mineralization in
the Lalong Dome

Leucogranites are widely exposed in the Tethys Himalayan Sedimentary Sequence
(THS), which mostly controlled by the dome structure [9]. A lot of geochronological studies
have been carried out on the leucogranites in the northern Himalaya, especially in the
NHGDs. The emplacement ages of these granites are mainly concentrated in Oligocene–
Miocene, and some Eocene granites are found, such as granites of about 45–44 Ma in the
Yalaxiangbo Dome [53] and the Ranba Dome [13], and granites of 37 Ma in the Dingri
Dome. At the same time, ca. 508 Ma granites are reported in the Kangmar Dome [54], which
is consistent with the crystallization age of granitic gneiss in other domes (e.g., 500 Ma
granitic gneiss in Cuonadong Dome) [43]. The emplacement age of Oligocene–Miocene
leucogranite in the NHGDs is basically interpreted as the active timing of the STDS, and its
initial initiation time is about 35 Ma at the earliest [43,55]. The termination age of the STDS
was determined by the mica Ar–Ar age, which was about 14 Ma, indicating that the duration
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of the STDS activity was about 21 Ma [16,31,43]. The STDSs, which are continuously active
for a long time, are also accompanied by multiple periods of magmatic activity, with at least
two or three periods of magmatic activity in each dome in the NHGDs. For example, the
Yalaxiangbo Dome records three periods of magmatic activity since Eocene, ranging from
old to new, these are 45.4 Ma, 35.3 Ma, and 20.2 Ma, respectively [53]. The Ranba Dome
also records three periods of magmatic activity, 44.3 Ma, 28.0 Ma, and 7.6 Ma, respectively,
from old to new [13]. Three periods of magmatic activity were recorded in the Jilong area:
27.0 Ma, 20.0 Ma, and 16.8 Ma. Three periods of magmatic activity (23.2 Ma, 15.8 Ma,
and 13.6 Ma) were also recorded in the Dingjie area. The Cuonadong Dome also records
three periods of magmatic activity, 32.0 Ma, 20.2 Ma, and 14.2 Ma [43]. Zircon age of
tourmaline-bearing muscovite granites in the Luozha area is 17.7 Ma [56].

There are also some ages of rare metal mineralization in the Himalaya. Qin et al.
(2021) reported the age of 25–24 Ma from spodumene pegmatite in the Qiongjiagang
area, and which is further interpreted as the metallogenic age of lithium deposit [57].
Spodumene pegmatites of 25–23 Ma are also reported in the Pusila pluton in the Higher
Himalaya [58]. The ore-forming rocks closely related to Be–W–Sn rare metal mineralization
in Cuonadong Dome are highly differentiated muscovite granites, whose formation age is
16–14 Ma [15,59].

In the Lalong Dome, leucogranites including two-mica granites, albite granites, and
pegmatites yielded monazite 208Pb/232Th ages of 23.6 ± 0.1 Ma, 21.9 ± 0.1 Ma, and
20.6 ± 0.1 Ma, respectively, which are interpreted as the timing of crystallization of these
leucogranites in the Lalong Dome. At the same time, the timing of crystallization gradually
becomes new from two-mica granites to albite granites and pegmatites, and the crystal-
lization differentiation of the magma lasted for 3 Ma (from 23.6 Ma to 20.6 Ma). Albite
granite yielded a columbite Pb/U age of 20.9 ± 0.5 Ma, which is interpreted as the timing
of Be–Nb–Ta rare metal mineralization in the Lalong deposit. These data are interpreted to
indicate that the time of albite granite crystallization occurred at 21.9 Ma with the U–Pb
monazite age, and the timing of albite granite-type Be–Nb–Ta rare metal mineralization
occurred at 20.9 Ma with U–Pb columbite age.

7.2. Petrogenesis of Highly Differentiated Leucogranites in the Lalong Dome

Many classical models have been proposed for the genesis of Himalaya leucogranites,
and the representative models are as follows: (1) water-rich melting [60,61]; (2) dehydration
and melting under reduced pressure [62]; (3) melting caused by friction heat generation
such as STDS and MCT [63]; (4) superheated melting caused by the accumulation of
large amounts of radioactive materials [64]; (5) from superheated melting of the thickened
crust [65]; (6) highly crystalline differentiation [9]. Among them, partial melting of the
HHS and intense crystal fractionation for leucogranites comprise the typical and contro-
versial views in the literature. Previous researchers have suggested that the Himalayan
leucogranites, generally belong to the S-type granite, are derived from the metapelites of
the Tethys Himalayan Sedimentary Sequence (THS), and are characterized by high silica
content (>70 wt.%), peraluminous compositions (A/CNK > 1.1), low content of TiO2, FeOT

and MgO, high initial 87Sr/86Sr ratios ranging from 0.73 to 0.78, and low εNd(t) values
ranging from −10 to −15 [8,10,14].

Compared to the typical Himalayan leucogranites, leucogranites in the Lalong Dome,
including two-mica granites, muscovite granites, albite granites, and pegmatites, are
characterized by high SiO2 content (>73 wt.%), peraluminous with high Al2O3 content
(13.6–15.2 wt.%) and A/CNK (mostly > 1.1), low content of TiO2, CaO, and MgO. At the
same time, these leucogranites exhibit the enrichment of Rb, Th, U, and the depletion
of Ba, Nb, Zr, Sr, and Ti, strong negative Eu anomalies, and low εNd(t) values ranging
from −12.7 to −9.77. These features indicate that the Lalong leucogranites were originally
derived from a metasedimentary protolith, showing the features of crust-derived high
potassium calc-alkaline and peraluminous S-type granite. In the discrimination diagrams
(Figure 13A,B), the Lalong leucogranites are generally plotted in the field of S-type granite.
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Moreover, in the Rb/Ba versus Rb/Sr discrimination diagram, most leucogranites are plot-
ted in the fields of clay-rich sources and nearly calculated pelite-derived melt (Figure 13C),
these clay-rich sedimentary rocks are probably the major source rocks of S-type granitic
magma in the Lalong Dome. The source rocks of these leucogranites should be derived
from HHC metasedimentary rocks. Similar source rocks of leucogranites were also re-
ported in other domes in the NHGDs. In the Rb/Sr versus Ba discrimination diagram,
leucogranites in the Lalong Dome were derived from muscovite dehydration melting
under the water-absent condition (Figure 13D), which possibly resulted from the structural
decompression responding to the activity of the STDS [9].
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Figure 13. (A) Zr + Nb + Ce + Y versus (Na2O + K2O)/CaO showing A-type granites and fields for
fractionated felsic granites (FG) and unfractionated M-, I- and S-type granites (OGT); the coordinates
of these fields are X = 350, Y = 4 and 16 (A) [66]. (B) Y vs. Rb diagram [67]. (C) Rb/Sr vs. Rb/Ba plots of
the granitic rocks [68]. (D) Ba–Rb/Sr diagram. Mus (VP)—muscovite melting alteration in saturated
vapor phase; Mus (VA)—muscovite melting alteration without vapor phase; Bi (VA)—biotite melting
alteration without vapor phase.

Based on the field observation using petrography, there is geochronological, and
geochemical evidence that indicates that two-mica granites, muscovite granites, albite
granites, and pegmatites in the Lalong Dome are cogenetic leucogranites with the close
spatial and temporal relationships. The crystallization age of albite granites is 21.9 Ma,
which is younger the crystallization age of 23.6 Ma two-mica granites. Albite granites
have lower content of TiO2, CaO and MgO, Ba, Sr, 87Sr/86Sr(i) ratio, εNd(t) values, and
higher content of Rb than that of the two-mica granites; these imply a continuous magma
fractional crystallization process from two-mica granites through muscovite granites to
albite granites and pegmatites.

Wu et al. (2017) reported the typical characteristics of highly fractionated granite,
including geology, petrology, mineralogy, rare metal metallogeny, and geochemistry. In
terms of geology and petrology, both aplite and pegmatite are important petrological indi-
cators to identify magmatic differentiation; meanwhile, albite granite is generally thought
as the product of extreme fractionation of a granitic magma. In the Lalong Dome, al-
bite granite and pegmatite are widely exposed in the core and middle unit of the dome.
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In terms of mineralogy, elbaite, lepidolite, or lithium-bearing muscovite is the most im-
portant mineralogical mark for highly fractionated granite. At the same time, beryl and
columbite–tantalite are typical minerals in highly fractionated granite. In the Lalong Dome,
although elbaite and lepidolite have not yet been discovered, lithium-bearing muscovite
and columbite–tantalite widely occur in the albite granite and pegmatite. Beryl is always
widely hosted in pegmatite. In terms of rare metal metallogeny, the most fractionated
granite is often called rare metal granite, since it is closely associated with mineralization
of Li, Be, Nb, Ta, Rb, Cs, W, Sn, and REEs. In the Lalong Dome, Be–Nb–Ta rare metal ore
bodies are mainly hosted by albite granite and pegmatite. In terms of geochemistry, most
highly fractionated granites are characterized by strong peraluminous. During magmatic
differentiation, concentrations of Cr, Ni, Co, Sr, Ba, and Zr, decrease, while Li, Rb, and Cs
increase. Meanwhile, Zr/Hf = 26 could be used to distinguish magma and hydrothermal
granitic systems [69]. Highly fractionated granites are characterized by the decreasing
concentrations of REEs, more negative Eu anomalies, and REE tetrad effects [70]. In the
Lalong Dome, two-mica granite, muscovite granites, albite granites, and pegmatites are
peraluminous. Albite granites have lower content of Ba, Sr, 87Sr/86Sr(i) ratio, εNd(t) values,
and higher content of Rb (Figure 14A,B) and REEs than that of two-mica granites. All Zr/Hf
ratios of these leucogranites are less than 26. Except for two-mica granites (TE1,3 < 1.1), the
TE1,3 values in muscovite granites, albite granites, and pegmatites are more than 1.10.
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In short, two-mica granites, muscovite granites, albite granites, and pegmatites in
the Lalong Dome are all highly differentiated granites, among which albite granites and
pegmatites are more differentiated (Figure 14A–D).

7.3. The Relationship between Highly Fractionated Leucogranites and Nb–Ta–Be Rare Metal
Mineralization in the Lalong Dome

Rare metal granites are often highly evolved granites, characterized by a specific
geochemical signature, such as elevated concentrations in fluxing elements (Li, F, B, P), sig-
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nificant depletions in REE, Y, Ca, Fe, Ba, and Sr and marked enrichments in rare lithophile
elements and metals (Be, Nb, Ta, Sn, Cs, Rb, and W) [6,8,18,71–75]. These features make
them important sources of a wide range of commodities, including strategic metals, indus-
trial minerals, and gemstones. Rare metal granites with specific geochemical signatures
are the result of combined magmatic and hydrothermal processes. Three main stages are
recognized in the genesis of most rare metal granites: (1) the magmatic stage, which is
characterized by crystal fractionation and accessory/minor mineral saturation; (2) the
magmatic–hydrothermal transition stage is characterized by fluid-melt element partition-
ing; and (3) the hydrothermal process, corresponding to the segregation and collection
of magmatic fluids in the intragranitic vein system, and followed by metasomatic trans-
formations and a late sulphide stage [6,71,76–79]. Ballouard et al. (2016) proposed that
the Nb/Ta ratio of ~5 in the peraluminum granite can serve as a transition value be-
tween normal magmatic differentiation and magmatic–hydrothermal interactions. When
whole-rock Nb/Ta value is below ~5, the rare metal granites system begins to enter the
magmatic–hydrothermal transition stage, which commonly shows evidence of important
metasomatism such as albitization and greisenization.

In the Lalong Dome, the geochemical results show that the differentiation index
(Di) gradually strengthens from two-mica granite, muscovite granite, and albite granite–
pegmatite, in which albite granite to pegmatite are highest, the Di value can reach 94
(Figure 15A–C). The differentiation index Di = Q (quartz) + Or (orthoclase) + Ab (albite) +
Ne (nepheline) + Lc (leucite) + Kp (kalsilite), and those content was calculated by CIPW.
REE tetrad effects gradually strengthened (Figure 15A), in addition to two-mica granite,
the TE1,3 values of muscovite granite, albite granite, and pegmatite albite granite are all
greater than 1. In addition, the Eu* value and (La/Yb)N ratio decreased gradually from
two-mica granite, muscovite granite, and albite granite–pegmatite, indicating that the
crystallization differentiation increased successively (Figure 15D). The high differentiation
and hydrothermal evolution of granitic magmas are usually the key mechanisms for the
gradual enrichment and mineralization of rare metal elements and volatiles [80,81]. With
the ongoing of granitic magma fractional crystallization, a composition of residual magma
that is close to eutectic forms; this magma is characterized by the enrichment in Na, K,
Al, and Li, Rb, Cs, Be, Nb, Ta, volatile H2O, P, and B. Roda-Robles et al. (2018) reported
petrogenetic relationships between Variscan granitoids and Li–(F–P)-rich aplite–pegmatites
in the Central Iberian Zone. Two-mica peraluminous leucogranites and P-rich highly
peraluminous granites are interpreted to derive mainly from the partial melting of highly
peraluminous, Ca-poor and P-rich Neoproterozoic metasediments. The melts are presumed
to evolve through being favored by a high content in fluxing components, such as Li,
F, B, P, and H2O, which contributed to the lowering of viscosity, solidus temperature,
and polymerization degree, which is in parallel to the increasing of the diffusion rates
and mobility of the highly fractionated melts. Idoia Garate-Olave et al. (2020) discussed
the whole-rock composition of the distinguished lithotypes in the Tres Arroyos Granitic
Aplite–pegmatite Field (Central Iberian Zone, Spain); they asserted that it reflects similar
tendencies to mineral chemistry, supporting a single path of fractional crystallization
from the parental Nisa–Alburquerque monzogranite up to the most evolved Li-rich aplite–
pegmatites. Therefore, leucogranites in the Lalong Dome belong to rare metal granite.
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Both the Nb/Ta and K/Rb ratios can be used to identify the metallogenic potential of
rare metal granites [6,79]. Nb/Ta < 5 and K/Rb < 150 indicate good metallogenic potential
of rare metal granites. The ratios of Nb/Ta and Zr/Hf decreased gradually from two-mica
granite, muscovite granite, and albite granite–pegmatite, and the ratios of albite granite and
pegmatite were less than 5 and 18, respectively. They fall in the area of rare metal granite
(Ta–Cs–Li–Nb–Be–Sn–W) (Figure 16A). In the Nb/Ta–K/Rb diagram, the Nb/Ta and K/Rb
ratios of albite granite and pegmatite are less than 5 and 150, respectively, indicating that
albite granite and pegmatite belong to rare metal granites and have excellent potential
for rare metal mineralization (Figure 16B). In addition, from two-mica granite, muscovite
granite, and albite granite–pegmatite, Sn and Cs content in these leucogranites gradually
increase with the decrease in the Nb/Ta ratio, also showing that the mineralization potential
of rare metal increases gradually with the increase in crystallization differentiation, and the
potential of albitite granite and pegmatite is the highest (Figure 16C,D).

The Lalong albite granite-type Be–Nb–Ta rare metal ore bodies are hosted by albite
granite and pegmatite, which are also plotted in the magmatic–hydrothermal domain,
suggesting that albite granite and pegmatite not only experienced the magmatic process,
but also experienced the magmatic–hydrothermal transition process as well as a later
hydrothermal process. Be–Nb–Ta rare metal in the magmatic stage generates the pre-
concentrations and preliminary enrichment and can be hydrothermally redistributed to
form large economic deposits during the magmatic–hydrothermal stage (Figure 17).
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7.4. Economic Potential of Rare Metal Leucogranites in the Tethyan Himalaya

Two leucogranite zones have been recognized in the Himalayan orogenic belt: the
higher Himalayan leucogranite zone and the Tethyan Himalayan leucogranite zone. Both
leucogranites in Higher and Tethyan Himalaya are often highly evolved granites and are
named as rare metal granites, with Li, Be, Nb, Ta, W, and Sn mineralization. In the higher
Himalayan granite, Qin et al. (2021) reported that there are dozens of spodumene pegmatite
dikes in the Qiongjiagang area, and prospective Li2O resources are estimated at 1,012,500
tons, which suggested that the predicted lithium resources have reached a super large
scale. Spodumene, elbaite, and lepidolite have been identified in the highly fractionated
leucogranites and associated pegmatites in Pusila area near Mount Everest in the higher
Himalaya [58].

The Tethyan Himalayan leucogranites are always exposed in the domes in the NHGDs.
In the Tethyan Himalayan granites, through exploration and evaluation, Li et al. (2017)
first discovered the super-large-scale Cuonadong skarn-type Be–W–Sn rare metal deposit
in the Cuonadong Dome in the eastern Himalayan belt. Later, Li and Be mineralization
and Nb–Ta–W mineralization have been reported in the Kuju leucogranites [20] and Xiaru
leucogranites from the Xiaru Dome [19], respectively. Wang et al. (2017) reported that
the Himalayan leucogranites are commonly related to the rare metal mineralization and
warrants future investigation. These important findings show that the Tethyan Himalayan
leucogranites have great potential for mineralization of rare metal such as Li, Be, Nb,
Ta, W, Sn, and Rb. There are three types of rare metal mineralization in the Lalong
Dome: skarn-type Be–Nb–Ta rare metal mineralization, albite granite-type Be–Nb–Ta
rare metal mineralization, and structure-hydrothermal-type W–Cu–Pb–Zn polymetallic
mineralization. The discovery of the Lalong albite granite Be–Nb–Ta rare metal deposit
not only enriches the metallogenic types and potential of the rare metal in the Tethyan
Himalaya, but also confirm that Himalayan leucogranites have considerable potential for
rare metal mineralization.

8. Conclusions

The field observations and geochronological and geochemical data for leucogranites
in the Lalong Dome demonstrate the following findings:

(1) Leucogranites in the Lalong Dome are composed of two-mica granite, muscovite
granite, albite granite, and pegmatite from core to rim. Albite granite-type Be–Nb–Ta
rare metal ore bodies are hosted by albite granite and pegmatite.

(2) In the Lalong Dome, two-mica granites, albite granites, and pegmatites yielded
monazite ages of 23.6 Ma, 21.9 Ma, and 20.6 Ma, respectively, which are interpreted
as the timing of crystallization of these leucogranites. The timing of crystallization
gradually becomes new from two-mica granites to albite granites and pegmatites,
and the crystallization differentiation of the magma lasted for 3 Ma (from 23.6 Ma
to 20.6 Ma). The timing of albite granite-type Be–Nb–Ta rare metal mineralization
occurred at 20.9 Ma with U–Pb columbite age.

(3) The Lalong leucogranites are crust-derived high-potassium calc-alkaline and pera-
luminous S-type granites; they were derived from muscovite dehydration melting
under the water-absent condition, which possibly resulted from the structural decom-
pression responding to the activity of STDS.

(4) Two-mica granites, muscovite granites, albite granites, and pegmatites in the La-
long Dome are all highly differentiated granites, among which albite granites and
pegmatites are more differentiated. Geochemical data imply a continuous magma
fractional crystallization process from two-mica granites through muscovite granites
to albite granites and pegmatite.

(5) Albite granite and pegmatite belong to rare metal granites and have excellent poten-
tial for rare metal mineralization. From two-mica granite, muscovite granite, albite
granite, to pegmatite, the mineralization potential of rare metal increases gradually
with the increase in crystallization differentiation, and the potential of albite granite
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and pegmatite is the highest. Albite granite and pegmatite not only experienced
magmatic process, but also magmatic–hydrothermal transition process as well as
a later hydrothermal process. Be–Nb–Ta rare metal in the magmatic stage gener-
ates the pre-concentrations and preliminary enrichment and can be hydrothermally
redistributed to form large economic deposits during the magmatic–hydrothermal
stage.

(6) Combined with the discoveries of other deposits in the Himalaya and the occurrence
of Be-, Nb/Ta-, and Li-bearing rare metal minerals in leucogranites, the discovery
of the Lalong albite granite Be–Nb–Ta rare metal deposit confirms that Himalayan
leucogranites have considerable potential for rare metal mineralization.
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columbite of Lalong albite granite obtained by LA–ICPMS; Table S3: Major- and trace-element compo-
sitions of leucogranities from Lalong Dome; Table S4: Sr–Nd isotopic compositions of leucogranites
from Lalong Dome.
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