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Abstract: Heavy metal(loid)s (HMs) in soils near mining sites often cause serious environmental and
health issues. Accurately assessing soil HM risks and identifying priority pollutants are crucial for
improving risk control efficiency with limited management costs and resources. Traditional determin-
istic assessments may yield biased results due to the imprecision and ambiguity of environmental
data and assessment processes. To compensate for the deficiencies of deterministic assessment, a
comprehensive probabilistic-fuzzy model was developed based on fuzzy theory, probability meth-
ods, the soil contamination risk (SCR) index, and a human health risk (HR) assessment framework.
According to this model, the soil HM risk status in a typical mining area in China was evaluated. The
results indicated that Cd and Cu significantly violated the relevant environmental guidelines and
were considered priority metals for environmental risk (ER). Notably, Cd’s hazard predominantly
manifested in a solid potential ecological risk (PER), whereas Cu’s environmental impact primarily
manifested as a soil contamination risk (SCR). From the perspective of HR, soil HMs already pose a
considerable threat to human health, with children facing greater HRs than adults. As was identified
as a priority element for HRs, with carcinogenic and non-carcinogenic risks reaching unacceptable
levels. Regarding general risk (GR), Cd and Cu ranked in the first gradient and As in the second
gradient. Overall, the accumulation of soil HMs—especially Cd, Cu, and As—in the study area
has posed a significant threat to the ecosystem and human health. The risks of other HMs (Pb, Zn,
Cr, and Ni) are relatively low, but the superimposed risks of multiple HMs should not be ignored.
The probabilistic–fuzzy model reduces the uncertainty of risk assessment, and the model integrates
the environmental and health risks of HMs, providing more comprehensive risk information. The
assessment results can serve as a reference for managers to develop targeted control strategies.

Keywords: soil heavy metal(loid)s; environmental and health risks; probabilistic fuzzy model;
uncertainties of risk; mining areas

1. Introduction

Soil heavy metal(loid) pollution (HMP) has emerged as a global problem in recent
decades, drawing the attention of environmental managers and researchers worldwide [1–3].
Heavy metal(loid) (HM) pollutants are non-degradable, persistent, and bioaccumulative,
posing a severe threat to the ecological environment and human health [4,5]. For example,
the excessive accumulation of HMs can impede plant growth and decrease land productiv-
ity [6]. Exposure to HMs through ingestion, inhalation, and dermal contact can result in
both non-carcinogenic and carcinogenic risks due to the potential damage that HMs can
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cause to humans’ internal organs and nervous systems [7]. Therefore, controlling the risk
of soil HMs is essential for human health and sustainable socioeconomic development.

Accurate pollution assessments can help managers determine the priority pollutants to
control, thereby improving the efficiency of risk management within resource constraints [8,9].
Various methods have been developed to assess the environmental and health risks of soil
HMs, such as the Nemerow integrated pollution index (NIPI), the potential ecological
risk index (RI), and the human health risk assessment model (HHRAM) [10–12]. These
methods play an essential role in the evaluation of soil HM risks. However, most previous
studies have primarily employed deterministic parameters to evaluate risks when using
these methods [13,14]. Uncertainty has traditionally been one of the main problems in risk
assessment due to the ambiguity and imprecision of environmental data [15,16]. Ignoring
uncertainties may cause one to underestimate or overestimate the actual risk [17,18]. Many
researchers have gradually recognized that previous deterministic assessments may lead to
biased risk management decisions [15,19,20].

Generally, uncertainty in risk assessment can be divided into two categories: stochastic
and fuzzy uncertainty [21,22]. Stochastic uncertainty arises from the inherent randomness
in nature, which mainly manifests in the spatial variability of HM concentrations and the
exposure differences of various receptors [15,23]. Fuzzy uncertainty stems mainly from the
vagueness and ambiguity in human thoughts about the parameters and results of HM risk
assessment [11]. In recent years, resolving the uncertainties in risk assessment has become
one of the research hotspots in soil HMs [15,24,25].

Probabilistic methods are commonly used to address stochastic uncertainty [26]. Fuzzy
methods can overcome fuzzy uncertainty by using a fuzzy membership function to char-
acterize the fuzziness of the evaluators’ thoughts [27,28]. Some studies on soil HM con-
tamination have verified the effectiveness of probabilistic and fuzzy methods in resolving
uncertainties [20,29]. Stochastic uncertainty and fuzzy uncertainty often coexist in HM risk
assessment [21,30]. It is difficult for a single probabilistic or fuzzy approach to simultane-
ously address the joint effects of stochastic and fuzzy uncertainty.

Furthermore, most existing studies tend to separate environmental and health risks
when assessing soil HM risks. However, such assessments may not help the relevant author-
ities accurately grasp the HM risk levels and identify critical contaminants. Incomplete risk
assessment results are likely to lead to poor management decisions [31,32]. For example,
over-designed remediation plans may result in wasted resources and money. Moreover,
the underestimation of risks may lead to inaction or limited action against pollution that
causes severe damage to the natural environment and human health. Fei et al. [33] and
Li et al. [34] pointed out in their study that the comprehensive assessment of ecological
and health risks can provide a more accurate reference for controlling HMP.

China is rich in mineral resources [35]. The exploitation of mineral resources has
caused severe damage to the ecological environment, primarily through soil HMP [11,36].
Government departments have taken active control measures. As of 2021, the exacerba-
tion trend of soil pollution in China was initially curbed, and the overall condition of
the soil environment nationwide remained stable. However, HMs continued to be the
primary pollutants affecting the quality of the soil environment [37]. The weak soil HM
risk management system and the severe soil HMP in mining areas are still the fundamental
contradiction in China’s soil eco-environmental protection. Therefore, this study proposes
an integrated probabilistic-fuzzy model to address the deficiencies mentioned above re-
garding the existing HM risk assessment to promote the construction and improvement
of the HM risk management system. First, the model can overcome stochastic and fuzzy
uncertainty in risk assessments. Furthermore, the model combines environmental and
health risk assessment methods, and the determined general risk can reflect the integrated
impact of HMs on the environment and human health.

One of the six major Cu processing bases (Tonglushan mine) in China was selected
for a case study in this study. The research results can support quantifying regional soil
HM risks and the identification of priority control factors. This study mainly includes



Minerals 2023, 13, 1389 3 of 18

the following: (1) assessing probabilistic environmental risks and probabilistic health
risks using a Monte Carlo simulation; (2) realizing a probabilistic-fuzzy environmental
and health risk assessment based on probabilistic risk assessment results and a fuzzy
membership function; (3) aggregating probabilistic-fuzzy environmental and health risks
into probabilistic-fuzzy general risks based on a fuzzy logic reasoning system.

2. Materials and Methodology
2.1. Research Framework

This study evaluated the general risks of HMs from environmental quality and human
health perspectives. Figure 1 illustrates the probabilistic-fuzzy general risk assessment
framework. The framework comprises two modules: (1) a probabilistic risk assessment,
which uses an algorithm from statistical sampling theory to overcome the stochastic un-
certainty in the risk assessment; (2) a probabilistic-fuzzy integrated assessment based on a
fuzzy reasoning system. The latter module is designed to mitigate the fuzzy uncertainty
and achieve the aggregation of environmental and health risks.
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Figure 1. Theoretical framework of the probabilistic-fuzzy model.
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The probabilistic risk assessment analyzes the hazards to human health and the
soil environment from exposure to HMs, including a probabilistic environmental risk
assessment and a probabilistic health risk assessment. Monte Carlo simulation is one
of the most widely used methods for probabilistic risk assessment [38,39]. Uncertainty
parameters from a Monte Carlo simulation are brought into the environmental and health
risk assessment models for the probabilistic environmental and health risk assessment.
The probabilities of environmental and health risks violating the corresponding guidelines
set by the government are determined as the probability of environmental risk (PER) and
probability of health risk (PHR), respectively. PER and PHR are utilized as raw data for the
probabilistic-fuzzy integrated assessment.

The probabilistic-fuzzy integrated assessment consists of three parts: (1) fuzzification
of the probabilistic risk assessment results; (2) aggregation of the fuzzy environmental risks
(FERs) and fuzzy health risks (FHRs); and (3) defuzzification of the probabilistic-fuzzy
general risks (PFGRs). First, PER and PHR are fuzzified using membership functions to
determine the FER and FHR. Then, the FER and FHR are aggregated into the PFGR using
logic operations and the developed fuzzy rule base. Finally, the PFGR is transformed into
a general risk score by the membership function (also known as “defuzzification”), thus
providing more accurate and intuitive references for managers to analyze the status of
HMP and determine the priority of controlling different HMs.

2.2. Probability-Based Risks
2.2.1. Environmental Risk (ER)

Soil contamination risk (SCR) and potential ecological risk (PER) are the focuses
of this study on the environmental impact of soil HMs [40]. This study evaluated the
environmental risks of seven mandatory HMs identified by China MEEP [41], namely Cd,
As, Pb, Cr, Cu, Ni, and Zn, using the Nemerow integrated pollution index (NIPI) and the
improved potential ecological risk index (NIRI) [42]. The calculations of the NIPI and the
NIRI are shown in Equations (1)–(4). The probability of the soil contamination risk (PSCR)
and the probability of potential ecological risk (PPER) were determined by combining the
Monte Carlo simulations.

Generally, when faced with resource and budget constraints, environmental managers
must prioritize mitigating factors that pose the greatest harm to environmental quality.
In the environmental risk management of soil HMs, the most critical issues to be addressed
are the worst effects of HMs on the soil environment. Therefore, the probability of the
environmental risk (PER) is determined by the values of PSCR and PPER.

PI =
Ci
Si

(1)

NIPI =

√(
PIi avg

)2
+ (PIi max)

2

2
(2)

Ei
r = Ti

r × PIi (3)

NIRI =

√√√√(
Ei

r max
)2

+
(

Ei
r avg

)2

2
(4)

where PI and Ei
r are the single-element soil contamination and potential ecological risk

indices, respectively; Ci is the HM concentration based on the probability simulation; Ti
r

is the toxicity response factor of the HMs; Si is the benchmark value for calculating PI,
which is taken from the risk screening values for soil environmental quality specified by
the China’s MEEP [41]. PIiavg and PIi max are the mean and maximum values of PI for all
HMs at one sampling site, respectively. PI > 1 indicates that the HM concentration exceeds
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the risk screening value specified by China MEEP. However, the risk screening value is a
relatively conservative standard [41]. In previous studies [10,11], many researchers used the
risk screening values developed by the MEEP as the benchmarks for calculating PI (NIPI)
and Ei

r (NIRI). They pointed out that a PI (NIPI) value greater than 2 or an Ei
r (NIRI)

value greater than 40 means that the threat of HMs to soil ecosystems cannot be ignored.
When PI (NIPI) is less than 2 or Ei

r (NIRI) is less than 40, the risk is often considered
tolerable or negligible.

Therefore, PI (NIPI) = 2 and Ei
r (NIRI) = 40 were set as the thresholds for controlling

the SCR and PER, respectively. The proportion exceeding these thresholds was used to
determine the probability of soil contamination risk (PSCR) and the probability of potential
ecological risk (PPER). PSCR and PPER were then processed with the MAX operation to
obtain PER for HMs, as shown in Equation (5):

PER = Max(PSCR, PPER) (5)

2.2.2. Health Risk (HR)

The human health risk assessment model (HHRAM) proposed by USEPA [43] was
applied to evaluate the potential health risks of soil HMs. According to the model guide-
lines, the health risks were classified into non-carcinogenic risk (NCR) and carcinogenic
risk (CR). NCR refers to the non-carcinogenic health effects of chronic exposure, such as
teratogenic and genetic effects [44]. CR is the incremental probability that an individual
will develop lifelong cancer due to exposure to carcinogenic HMs [45].

This study considered three exposure pathways: oral ingestion, dermal exposure,
and inhalation [46]. The Monte Carlo method was used to simulate uncertain parameters
in the health risk model [20,47]. The details of the HHRAM and calculation parameters are
presented in Text S1 and Tables S1–S3 in the Supplementary Material.

Mining areas are sites with a high incidence of soil HMP. We determined the thresholds
for controlling HRs caused by HMs based on the technical guidelines for risk assessment
proposed by China MEEP [48]. The NCR was considered unacceptable when the HI
(THI) exceeded 1. Meanwhile, a value of CR or TCR above the risk threshold 5 × 10−5

indicated an unacceptable carcinogenic risk. Therefore, we determined the probability of
non-carcinogenic risk (PNCR) and carcinogenic risk (PCR) based on the probability distribu-
tions of the HI and CR (threshold: HI = 1, CR = 5 × 10−5).

The NCRs of seven HMs and the CRs of four HMs (As, Pb, Cr, and Ni) were evaluated
in this study. These four HMs have been widely recognized as causes of CR in previous
studies and identified by the MEEP as intervention elements for agricultural soils [41,49].
The health risks were separately assessed for adults and children (6–18 years), considering
the physiological and behavioral differences in the population. Finally, higher values of
PNCR and PCR for adults and children were determined as the probability (PHR) of violating
the health guidelines, as shown in Equation (6). The PER and PHR values obtained from the
probabilistic environmental and health risk assessment were further processed with fuzzy
techniques to quantify the probabilistic-fuzzy general risks of the HMs.

PHR = MAX(PNCR, PCR) (6)

2.3. Probabilistic–Fuzzy General Risk (PFGR) Assessment
2.3.1. Fuzzification of the Probabilistic Risk

There is ambiguity in an assessor’s perception of the risk assessment index, which
leads to fuzzy uncertainty in the risk results. Therefore, this study used fuzzy techniques to
overcome the ambiguity and imprecision of human judgment in the risk assessment process.
The fuzzification of risk is the first step in resolving the uncertainty. The fuzzy membership
function can systematically transform human perception or linguistic variables into the
corresponding membership levels. According to the fuzzy membership function, PER and
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PHR are mapped to different fuzzy risk sets to determine the fuzzy environmental and
health risks. A fuzzy set can be expressed as follows.

F(x) = {(x, µx
F), x ∈ X}, µx

F : X → [0, 1] (7)

where X is a universal set of variable x, F(x) is a fuzzy set of X, and µx
F is the degree

of membership for x in F(x). The value of µx
F ranges from 0 to 1, and a higher value

of µx
F indicates a stronger association between x and F(x). Fuzzy sets are represented

by membership functions. Figure S1 shows the triangular and trapezoidal membership
functions defined by fuzzy numbers (a, m, b) and (a, m, n, b).

The fuzzy membership function is an important means of achieving the fuzzification
of risk assessment results. We developed a fuzzy membership function for the proba-
bilistic environmental and health risks by referring to relevant risk guidelines and survey
reports [50,51], as shown in Figure S2. This fuzzy membership function can map PER and
PHR to five fuzzy risk sets: low (L), low–moderate (L-M), moderate (M), moderate–high
(M-H), and high (H). The membership levels of PER and PHR in the different risk sets
represent the FER and FHR. For example, if the calculated probability of a multi-element
integrated risk violating environmental guidelines is 0.70 (PER = 0.7), the environmental
risk can be partially considered as M-H (µER

M-H = 0.50) and H (µER
H = 0.50). Therefore,

the FER can be expressed as (µER
M-H = 0.50, µER

H = 0.50). If the calculated probability of
violating the health guidelines for a single element is 0.85 (PHR = 0.85), the health risk of
the element can be fully determined to be H (µHR

H = 1.00).

2.3.2. Fuzzy Risk Aggregation and De-Fuzzification

The purpose of constructing the indicator of “general risk (GR)” is to characterize the
comprehensive risk of HMs to the environment and health. Currently, there is no quantita-
tive mathematical model for combining these two risks. This study used fuzzy reasoning
to determine the GRs of the HMs. The fuzzy reasoning process included qualitative and
quantitative methods. First, a fuzzy rule base was developed based on expert judgments
and related research results, and it contained 25 fuzzy rules, as shown in Table S4. As men-
tioned in Section 2.3.1, each value of PER and PHR was mapped to one or two fuzzy risk
sets so that up to four different “fuzzy environmental risk-fuzzy health risk” (FER–FHR)
combinations could be generated. The developed fuzzy rules qualitatively determined
the general risk level of these FER–FHR combinations. The aggregated probabilistic-fuzzy
general risks (PFGRs) were identified according to five fuzzy levels: low (L), low–moderate
(L-M), moderate (M), moderate–high (M-H), and high (H), as shown in Figure S3.

Fuzzy rules can only qualitatively determine the fuzzy level of the PFGR. The member-
ship level of the PFGR in a fuzzy risk set is determined by fuzzy logic operations. The whole
reasoning process consists of two fuzzy logic operations. First, the AND operation de-
termines the membership level of the PFGR formed by different FER–FHR combinations.
Then, the OR operation aggregates all PFGRs formed by the FER–FHR combinations into
the final PFGR. The final PFGR is represented as a new combined fuzzy set.

The representational form of the fuzzy set cannot provide intuitive references for risk
control. A de-fuzzification operation transforms the final combined fuzzy set for the PFGR
into a general risk score of 0–100. As shown in Equation (8), the horizontal coordinate of the
gravity-based centroid of the final fuzzy set for the integrated general risk is determined as
the general risk score. The lower the score, the lower the general risk of HMs in the region.
The relevant departments can directly judge the status of HMP in the soil based on the
general risk score and can identify priority pollutants. This study suggests HMP control
measures according to the general risk score, as shown in Table S5.

ScoreGR =

∫
xµx

Fdx∫
µx

Fdx
(8)



Minerals 2023, 13, 1389 7 of 18

2.4. Study Area and Materials
2.4.1. Study Area and Sampling

The mining area investigated in this study is located in Tonglushan, Daye City, Hubei
Province, and is one of the world’s oldest mining regions. The mining area hosts large-scale
and high-grade mineral resources, primarily copper-rich and iron-rich ores, such as copper
ore, copper–iron ore, iron ore, and copper–sulfur ore. The ore minerals include chalcopyrite,
pyrite, bornite, chalcocite, magnetite, and hematite. The stratigraphy within the study area
predominantly originated from the Early Cretaceous and Holocene. The central region
of the study area is dominated by Early Cretaceous quartz diorite, while the periphery
consists of Holocene lacustrine deposits and alluvial sediments. Mining activities in
the Tonglushan mine can be traced back to approximately 3000 years ago. The mining
industry’s development has propelled the region’s socio-economic growth; however, it has
unavoidably caused severe soil HMP. Through preliminary field surveys, 17 villages within
3 km of Tonglushan were delineated as within the formal investigation area. Soil sampling
was conducted in December 2020.

The soil sampling process strictly adhered to the “Technical Specification for Soil Envi-
ronment Monitoring (HJT 166–2004)” developed by China MEEP [52]. Before sampling, we
prepared the sampling work maps and the necessary tools for soil collection. This sampling
primarily focused on agricultural soils, and the region mainly cultivated common crops, so
we collected soil samples from the tillage layer (0–20 cm). Given the hilly terrain prevalent
in the study area, each sampling point was set up with 10–15 subpoints using the S-shaped
layout. Soil from each subpoint was thoroughly mixed, and a 1 kg composite sample was
obtained using a quartering technique. The collected composite soil samples were placed
into polyethylene sample bags, labeled, and registered in a sample log. A handheld GPS
device (Garmin GPSMAP 631sc, Switzerland) was employed to record the geographical
coordinates (as shown in Figure S4) and sampling timestamps for each sample. Sixty
composite soil samples were gathered and stored in soil storage containers and transported
to the laboratory.

2.4.2. Chemical Analysis

After air-drying the soil samples in the laboratory, the removal of stones and debris
was carried out. Subsequently, the dried soil samples were ground and passed through
a 20-mesh sieve to obtain the test soil samples. Following the guidelines specified by
China’s MEEP, the pH of all samples was determined using a pH meter (Leici, PHSJ–3F,
Shanghai, China). After completing the pH measurements, the soil samples underwent
complete digestion using aqua regia (3:1 HCl/HNO3). The digestion process was conducted
in a microwave digestion apparatus (Sineo, SH60A, Shanghai, China) and consisted of
three steps. First, the temperature was raised to 120 °C within 7 min and held for 3 min.
Then, the temperature was raised to 160 °C within 5 min and held for 3 min. Finally,
the temperature was raised to 190 °C within 5 min and held for 25 min. An electric hotplate
(Sineo, ECH–20, Shanghai, China) was employed to drive the acidity of the digested liquid
to obtain the test solution. Subsequently, heavy metal(loid) concentrations were measured
using inductively coupled plasma mass spectrometry (ICP–MS, Agilent 7500C, Santa Clara,
CA, USA) [53].

Regarding quality assurance/quality control (QA/QC), analysis was conducted on
blank samples, duplicate samples, and standard reference materials. The standard refer-
ence materials used, GSS–11, GSS–13, GSS–14, GSS–18, and GSS–19, were sourced from
the China National Research Center for Geoanalysis. The differences between the de-
tected concentrations and certified values of the standard materials were all less than 10%.
The spike recoveries fell within the range of 96.3%–106.2%. The relative deviations for
duplicate samples were all less than 5%. Three measurements were retained for each
sample, and the average value was taken as the final analytical result. This study primarily
focused on the mandatory elements for screening agricultural land pollution risk in China
(GB15618–2018) [41], which include Cd, As, Pb, Cr, Cu, Ni, and Zn. Following the analysis
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of all composite soil samples, one outlier sample was removed, resulting in the retention of
59 analytical results, as shown in Supplementary Material Table S6.

3. Results and Discussion
3.1. Probabilistic Environmental Risk Assessment

This study analyzed the environmental risk from two perspectives: soil contamination
risk (SCR) and potential ecological risk (PER). The assessment results can reflect the hazards
of HMs to soil ecology and the extent to which HMs violate environmental guidelines.
The probabilistic environmental risk assessment of the HMs was completed by combining
the Monte Carlo model and the environmental risk indexes. As mentioned in Section 2.2.1,
PI(NIPI) = 2 and Ei

r(NIRI) = 40 were the thresholds for controlling the SCR and PER,
respectively. To facilitate the comparative risk analysis, we mapped the critical values of
the SCR and PER to 1.0, and the remaining values were mapped in equal proportions.

Table 1 summarizes the descriptive statistics of the probabilistic environmental risk
assessment results. Regarding the single-element risk, Cu and Cd were the HMs with the
highest SCR and PER values, respectively. Their mean and median values exceeded the
corresponding thresholds of risk control. The probability of soil contamination risk (PSCR)
for Cu was 62.34%. The probability of potential ecological risk (PPER) for Cd was 64.55%.
One of China’s six productive Cu mines (Tonglushan mine) is in this study area. With the
support of abundant mineral resources, a complete mining–beneficiation–smelting system
was established.

In our previous traceability research conducted on soil HMs in this region, Cu and
Cd were identified as indicative elements of mining and smelting industrial sources, re-
spectively, [40]. Copper ore is the most dominant product of the mine. Frequent mining
operations lead to a significant migration of HMs—especially Cu—into the soil environ-
ment [54]. The combustion of fossil fuels often exacerbates the accumulation of Cd in the
soil. Cd is typically present in trace amounts in fossil fuels, especially coal [55], and smelt-
ing operations in the study area require a substantial amount of coal as an energy source.
Cd from coal can adhere to coal ash and waste particles during the smelting process, conse-
quently accumulating in the soil. In addition, Cd is also a commonly associated element
in copper ores [56]. The improper disposal of waste during ore processing can lead to an
increase in Cd concentration in the soil. The combined influence of these factors resulted
in a significantly higher environmental risk for Cu and Cd in this region compared to
other HMs.

Table 1. Descriptive statistics of the probabilistic environmental risk assessment results.

Element
Soil Contamination Risk (SCR)

PSCR (%)
Potential Ecological Risk (PER)

PPER (%) PER (%)
Mean Median 90th P Mean Median 90th P

As 0.77 0.66 1.33 23.12 0.39 0.33 0.67 2.49 23.12
Cd 1.61 0.96 3.50 48.05 2.36 1.44 5.16 64.55 64.55
Cr 0.22 0.21 0.32 0.00 0.02 0.02 0.03 0.00 0.00
Pb 0.35 0.25 0.71 4.54 0.09 0.06 0.18 0.00 4.54
Cu 1.91 1.32 3.95 62.34 0.48 0.33 0.98 9.56 62.34
Ni 0.13 0.11 0.23 0.00 0.03 0.03 0.06 0.00 0.00
Zn 0.46 0.39 0.81 4.92 0.02 0.02 0.04 0.00 4.92

Total 2.01 1.47 3.81 73.60 1.76 1.10 3.71 54.41 73.60

Except for Cu and Cd, only the 90th percentile of the SCR for As exceeded the risk
control threshold. Compared to these elements (Cu, Cd, and As), the other HMs were at
relatively low environmental risk. From the multi-element total risk perspective, the mean
and median values of SCR and PER exceeded the corresponding risk thresholds, and the
total SCR was higher than the total PER. The sensitivity analysis of the Monte Carlo
simulation showed that Cu and Cd contributed 62% and 37% of the variance in the multi-
element total SCR assessment, respectively. Moreover, Cd contributed 98% of the variance
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in the multi-element total PER. In summary, Cu and Cd were the primary elements to be
controlled in the study area regarding environmental risk.

Figure 2a–g show the probability distribution of the single-element SCR and PER. It
can be seen that the SCR of Cr and Ni and the PER of Cr, Pb, Ni, and Zn did not exceed 1
(after equal proportional mapping). Figure 2h shows the probability distributions of the
total SCR and PER for the seven elements. The probability distribution curve can intuitively
reflect the probability of the SCR and PER exceeding the risk control threshold. PSCR and
the PPER were substituted into Equation (5) to determine the probability of environmental
risk (PER).
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Figure 2. Single-element (a–g) and multi-element (h) probabilistic soil contamination risks and
potential ecological risks.

As shown in Table 1, the environmental risk of Cr and Ni was negligible. The PER
values of the five remaining elements decrease in the following order: Cd (64.55%) > Cu
(62.34%) > As (23.12%) > Zn (4.92%) > Pb (4.54%). The probability of multi-element total
environmental risk (PTER) for the seven elements was 73.60%. In Section 3.3, the single-
element PER and multi-element PTER are mapped to different fuzzy risk sets according to
the fuzzy membership function in Figure S2 and, thus, transformed into probabilistic-fuzzy
environmental risks.

3.2. Probabilistic Health Risk Assessment

Table 2 summarizes the probabilistic health risk assessment results for non-carcinogenic
and carcinogenic effects. It can be seen that children face higher NCR and CR than adults.
Comparing the NCR of the seven HMs, we found that the mean and median HI values for
adults and children decreased in the following order: As > Cr > Pb > Cu > Cd > Ni > Zn.
The mean and median CR values for four carcinogenic elements were ranked as follows:
As > Cr > Cd > Pb. Compared with their NCR rankings, the CRs of As and Cr remained
the same, but Pb and Cd swapped places. We speculate that this was related to differences
in the processing of the exposure pathway for Pb in the NCR and CR assessments. The rel-
evant guidelines do not provide the carcinogenic slope factor for Pb through the dermal
pathway. Some previous studies also did not consider the CR of Pb via the dermal route.
Therefore, in this study, the carcinogenic effects of Pb via the dermal route were temporarily
ignored. However, the NCR assessment of Pb did consider the risk via the dermal route,
which may be the main reason for the lower ranking of Pb in the CR assessment. However,
it was undisputed that As posed the highest health risk.
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Table 2. Descriptive statistics of non-carcinogenic and carcinogenic health risks based on the Monte
Carlo simulation.

HMs Age

Non-Cancer Risk (NCR, Represented by HI) Cancer Risk (CR)

Mean Median
90th

Percentile Mean Median
90th

Percentile

As Children 5.97 × 10−1 4.12 × 10−1 1.08 × 100 2.85 × 10−5 1.77 × 10−5 5.94 × 10−5

Adults 1.24 × 10−1 1.02 × 10−1 2.24 × 10−1 2.06 × 10−5 1.52 × 10−5 4.45 × 10−5

Cd Children 7.56 × 10−3 3.19 × 10−3 1.49 × 10−2 3.30 × 10−6 1.19 × 10−6 6.58 × 10−6

Adults 1.59 × 10−3 8.61 × 10−4 3.60 × 10−3 1.39 × 10−6 6.00 × 10−7 3.26 × 10−6

Cr Children 1.16 × 10−1 8.78 × 10−2 1.95 × 10−1 1.85 × 10−5 1.25 × 10−5 3.49 × 10−5

Adults 2.26 × 10−2 2.03 × 10−2 3.60 × 10−2 1.11 × 10−5 9.17 × 10−6 2.24 × 10−5

Pb Children 9.03 × 10−2 5.07 × 10−2 1.79 × 10−1 2.35 × 10−7 1.35 × 10−7 6.11 × 10−7

Adults 1.23 × 10−2 8.12 × 10−3 2.59 × 10−2 1.21 × 10−7 6.78 × 10−8 2.81 × 10−7

Cu Children 2.77 × 10−2 1.52 × 10−2 5.92 × 10−2

Adults 3.64 × 10−3 2.26 × 10−3 7.81 × 10−3

Ni Children 5.22 × 10−3 3.82 × 10−3 9.11 × 10−3

Adults 7.55 × 10−4 6.52 × 10−4 1.33 × 10−3

Zn Children 2.85 × 10−3 1.77 × 10−3 5.12 × 10−3

Adults 3.66 × 10−4 2.77 × 10−4 7.19 × 10−4

Total Children 8.47 × 10−1 6.10 × 10−1 1.45 × 100 5.06 × 10−5 3.40 × 10−5 9.78 × 10−5

Adults 1.66 × 10−1 1.43 × 10−1 2.80 × 10−1 3.32 × 10−5 2.69 × 10−5 6.77 × 10−5

Overall, NCR and CR’s mean and median values for all elements do not exceed the
respective risk thresholds (HI: 1.0 × 100, CR: 5.0 × 10−5). Only the 90th percentile of As risk
exposure for children reached 1.08 × 100 (HI) and 5.94 × 10−5 (CR). Figure 3a,b show the
cumulative probability distribution curves of the single-element NCR and CR, respectively.
The probability distribution characteristics indicated that all single-element NCRs faced by
adults were acceptable.

The statistics showed that about 11.69% of the As NCRs for children exceeded the
guideline threshold. The NCRs of all other HMs for children and adults were below the
corresponding thresholds. In addition, about 7.41% and 13.58% of the As CRs for adults
and children, respectively, exceeded 5.0 × 10−5, and about 4.71% of the Cr CRs for children
exceeded 5.0 × 10−5. These risks must be taken seriously and controlled.

On the one hand, tracing the sources of HMs in the soil can enable the development
of targeted management strategies for controlling key risk elements, thus preventing the
continued accumulation of HMs at the source. It is worth noting that controlling the sources
addresses the issue of incremental HMs in the soil. Soil remediation is key to solving the
existing stock of HMs in the soil. Local governments must actively engage in and promote
soil management activities, such as the passivation of HMs or the introduction of specific
plants to absorb HMs from the soil and their subsequent centralized treatment.

The CR for Cd was acceptable, with a 90th percentile above 1.0 × 10−6 but less than
5.0 × 10−5. Meanwhile, the 90th percentile of the Pb CR was less than 1.0 × 10−6, which was
negligible. In summary, the single-element health risks of the other HMs were acceptable
or negligible, except for As and Cr.

The multi-element integrated health risk is also an essential indicator for risk control
due to the superimposed effect of heavy-metal hazards [49]. As reported by Yang et al. [57],
the multi-element integrated risk may exceed the guideline thresholds even if all single-
element health risks do not violate health guidelines. Table 2 shows that the 90th percentile
of the multi-element total health risk exceeded the corresponding thresholds for all exposure
scenarios except for the adult NCR.

Figure 3c,d illustrate the cumulative probability distribution curves for the multi-
element total non-carcinogenic risk (TNCR) and the total carcinogenic risk (TCR). It can
be seen that the multi-element TNCR faced by adults was acceptable (THI < 1). However,
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about 20.78% of the TCR for adults was unacceptable. For children, about 22.42% and
33.03% of the TNCR and TCR, respectively, exceeded the tolerable limits.

As described earlier, children were at a higher health risk than adults, similar to the
findings of some previous studies on the health risk assessment of soil HMs [58]. The health
risk assessment model indicates that children’s lower body mass is one of the reasons why
they are at higher risk. Additionally, children’s lower resistance to HMs, as well as their
geophagia and xenophagia, may also be associated with their higher risk [8,59]. Parents
should monitor their children to avoid excessive contact with contaminated soil and
improve their child’s hygiene. These measures will effectively reduce their potential health
risks from soil contamination.

0 . 0 1 . 0 × 1 0 - 4
2 . 0 × 1 0 - 4

3 . 0 × 1 0 - 4
4 . 0 × 1 0 - 40

2 0

4 0

6 0

8 0

1 0 0

C a r c i n o g e n i c  R i s k T C R

M e a n = 5 . 9 3 × 1 0 - 5
M e a n = 3 . 3 2 × 1 0 - 5

6 6 . 9 7
7 9 . 2 2

0 1 2 3 40

2 0

4 0

6 0

8 0

1 0 0

N o n - c a r c i n o g e n i c  R i s k T H I

M e a n = 1 . 6 6 × 1 0 - 1

M e a n = 9 . 3 2 × 1 0 - 1

7 7 . 5 8

0 1 2 3 40
2 0
4 0
6 0
8 0

1 0 0

    A d u l t s
    C h i l d r e n

Cu
mu

lati
ve 

PR
.(%

) A s

N o n - c a r c i n o g e n i c  R i s k s  ( H I )

C a r c i n o g e n i c  R i s k s  ( C R )

a .

b .

M e a n  =  1 . 2 4 × 1 0 - 1

M e a n  =  5 . 9 7 × 1 0 - 1

U n a c c e p t a b l e
A c c e p t a b l e

c .

d .

0 . 0 0 0 . 0 3 0 . 0 6 0 . 0 90
2 0
4 0
6 0
8 0

1 0 0 C d

M e a n  =  1 . 5 9 × 1 0 - 3

M e a n  =  7 . 5 6 × 1 0 - 3

0 . 0 0 . 2 0 . 4 0 . 6 0 . 80
2 0
4 0
6 0
8 0

1 0 0 C r

M e a n  =  2 . 2 6 × 1 0 - 2

M e a n  =  1 . 1 6 × 1 0 - 1

0 . 0 0 . 2 0 . 4 0 . 6 0 . 80
2 0
4 0
6 0
8 0

1 0 0 P b

M e a n  =  1 . 2 3 × 1 0 - 2

M e a n  =  9 . 0 3 × 1 0 - 2

0 . 0 0 . 1 0 . 2 0 . 3 0 . 40
2 0
4 0
6 0
8 0

1 0 0

Cu
mu

lati
ve 

PR
.(%

) C u

M e a n  =  3 . 6 4 × 1 0 - 3

M e a n  =  2 . 7 7 × 1 0 - 2

0 . 0 0 0 . 0 1 0 . 0 2 0 . 0 30
2 0
4 0
6 0
8 0

1 0 0
N i

M e a n  =  7 . 5 5 × 1 0 - 4

M e a n  =  5 . 2 2 × 1 0 - 3

0 . 0 0 0 . 0 1 0 . 0 2 0 . 0 30
2 0
4 0
6 0
8 0

1 0 0 Z n

M e a n  =  3 . 6 6 × 1 0 - 4

M e a n  =  2 . 8 5 × 1 0 - 3

0 . 0
5 . 0 ×

1 0 -
5

1 . 0 ×
1 0 -

4

1 . 5 ×
1 0 -

4

2 . 0 ×
1 0 -

4
0

2 0
4 0
6 0
8 0

1 0 0

Cu
mu

lati
ve 

PR
.(%

) A s

M e a n  =  2 . 0 6 × 1 0 - 5

M e a n  =  2 . 8 5 × 1 0 - 5

0 . 0
1 . 0 ×

1 0 -
5

2 . 0 ×
1 0 -

5

3 . 0 ×
1 0 -

5

4 . 0 ×
1 0 -

5
0

2 0
4 0
6 0
8 0

1 0 0
C d

M e a n  =  1 . 3 9 × 1 0 - 6

M e a n  =  3 . 3 0 × 1 0 - 6

0 . 0
5 . 0 ×

1 0 -
5

1 . 0 ×
1 0 -

4

1 . 5 ×
1 0 -

4

2 . 0 ×
1 0 -

4
0

2 0
4 0
6 0
8 0

1 0 0
C r

M e a n  =  1 . 1 1 × 1 0 - 5

M e a n  =  1 . 8 5 × 1 0 - 5

0 . 0
6 . 0 ×

1 0 -
7

1 . 2 ×
1 0 -

6

1 . 8 ×
1 0 -

6

2 . 4 ×
1 0 -

6

3 . 0 ×
1 0 -

6
0

2 0
4 0
6 0
8 0

1 0 0
P b

M e a n  =  1 . 2 1 × 1 0 - 7

M e a n  =  2 . 3 5 × 1 0 - 7

Figure 3. Cumulative probability distribution of health risks: single-element non-carcinogenic risk (a),
single-element carcinogenic risk (b), multi-element total non-carcinogenic risk (c), multi-element total
carcinogenic risk (d).

The NCR and CR were processed with the MAX operation to determine the probability
of health risk (PHR), as shown in Equation (6). The results showed that the PHR values for
As and Cr were 13.58% and 4.71%, respectively. The probability of the multi-element total
health risk was 33.03%. Comparing the assessment results for the environmental and health
risks, we observed an interesting phenomenon. Cu and Cd had the highest environmental
risk but did not pose serious health risks. This is because the toxicity coefficient of Cu in
humans is relatively low. Furthermore, although Cd has a higher toxicity coefficient, Cd
in soil is not easily absorbed into the human body through various exposure routes such
as oral ingestion, dermal exposure, and inhalation. On the contrary, As and Cr are more
likely to cause harm to the human body through these three exposure pathways than Cd.
In particular, As can easily enter the human body through skin contact and inhalation. This
is the primary reason why As and Cr, despite their relatively lower environmental risks,
result in greater health risks. As Yuan et al. [60] suggested, the HMs that contribute less to
soil contamination pose the most significant health risks. This phenomenon also reflects
the heterogeneity of the risks of different HMs [33]. Therefore, it is necessary to consider
the comprehensive hazards of HMs when developing risk control strategies.



Minerals 2023, 13, 1389 12 of 18

The adverse effects of HMs in soils are complex and widespread. Compared to urban
and coal mining areas, soil HMP in non-ferrous metal mining areas is often more severe and
difficult to manage [8]. Currently, scholars have provided abundant technical support for
controlling HMP. However, management costs (e.g., money and time) are still significant
factors limiting the control of HMP [61,62]. The lack of information on HM risks can lead
to a waste of resources in the risk control process. To increase the effectiveness of unit costs,
managers must fully consider the comprehensive environmental and health impacts of
HMs when developing strategies [32,63]. In Section 3.3, we will assess the general risk
of HMs using fuzzy methods based on the probabilistic environmental and health risk
assessment results.

3.3. General Risk Based on Probabilistic–Fuzzy Assessment

The first step in the general risk (GR) assessment is to transform the probabilistic
environmental and health risks into fuzzy environmental risk (FER) and fuzzy health risk
(FHR). According to the fuzzy membership function in Figure S2, the PER and PHR values
determined in the probabilistic environmental and health risk assessment were mapped to
different fuzzy risk sets. Then, the FER and FHR were aggregated into general risk through
fuzzy reasoning.

Taking As as an example, the PER and PHR values were determined to be 23.12%
and 13.58% in the probabilistic environmental and health risk assessments, respectively.
Figure S2 shows that the risks of As were mapped to the environmental risk fuzzy sets of
L-M and M and the health risk fuzzy sets of L and L-M. The membership levels of As in
different fuzzy sets were calculated according to the membership function in Figure S1.
The fuzzy environmental risk (µER

L-M = 0.85, µER
M = 0.15) and fuzzy health risk (µHR

L = 0.30,
µHR

L-M = 0.70) were included. Thus, four different FER–FHR combinations were generated
(as shown in Figure 4).

The general risk levels of different FER–FHR combinations could be qualitatively
determined from the fuzzy rule base in Table S4. The AND operation was used to calculate
the membership level of the GR obtained from the FER–FHR combinations in the fuzzy set,
as shown in Figure 4. For example, when environmental risks were mapped to the fuzzy
set of L-M (µER

L-M = 0.85) and health risks were mapped to the fuzzy set of L (µHR
L = 0.30),

the general risk was determined to be L-M (µGR
L-M = 0.30). Figure 4c,f,i,l show the general

risk fuzzy sets aggregated from the four different FER–FHR combinations for As.
These four general risk fuzzy sets were then aggregated into the final combined fuzzy

set of probabilistic-fuzzy general risk (PFGR) with the fuzzy OR operation, as shown in
Figure 4m. The horizontal coordinate of the gravity-based centroid of the final combined
fuzzy risk set (Figure 4m) was determined as the general risk score for As. According to
Equation (8), the final general risk score for As was calculated to be 32.86. As suggested in
Section 2.3.2, this general risk score indicated that further investigation should be conducted
to determine more detailed information on As contamination.

The same fuzzy reasoning methods were used to quantify the general risk of other
HMs. Figure 5 shows the final combined fuzzy sets of PFGR and the general risk scores for
all HMs except for As. The multi-element total general risk score was 83.34, indicating that
the agricultural land in the study area requires comprehensive control and remediation
measures for HMP.

In terms of single-element risk, Cd was the element with the highest general risk.
The strong biotoxicity of Cd makes it a high-potential ecological risk to the environment.
The general risk of Cu was close to that of Cd. Although the biotoxicity of Cu is weaker than
that of other HMs, the accumulation of Cu in the soil was significant due to the presence of
a large Cu mine in the study area. Therefore, managers still need to pay attention to the
risks of Cu.
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Figure 5. Single-element (a–f) and multi-element (g) integrated general risk fuzzy sets and general
risk scores.

In general, the excessive accumulation of Cd and Cu has seriously threatened the over-
all environmental quality of the study area, resulting in the degradation of farmland and
yield reduction. As is second only to these two elements in terms of general risk. As noted
in Section 3.2, As is the element with the highest health risk in the study area, particularly in
terms of carcinogenic risk. During the soil sampling, we conducted interviews with nearby
farmers. Some respondents indicated that congenital diseases and cancers were more
common in some villages than others farther away from the mine. This high incidence may
be related to the health effects of HMs. Several studies have confirmed that industrial and
mining sites are associated with a wide range of diseases in the surrounding population,
with emissions of toxic elements significantly increasing their risk of non-carcinogenic and
carcinogenic diseases [11,64]. The general risk of the other four elements is lower than that
of Cd, Cu, and As. However, the enhanced monitoring of these elements is still needed to
prevent new exogenous inputs from increasing accumulation.

4. Conclusions

This work constructed an integrated probabilistic-fuzzy model that sheds new light
on soil HM risk assessment and identifying priority pollutants. The model combines
probabilistic methods, fuzzy methods, and a logical reasoning system. It can solve the
stochastic and fuzzy uncertainty in risk assessments and achieve the joint assessment of
environmental and health risks. This study assessed the general risk of soil HMs in a typical
Cu mining area in China. The main conclusions are as follows.

We assessed the risk of seven HMs in the soil within the study area from both en-
vironmental and health perspectives. Approximately 73.60% of the multi-element total
environmental risk and 33.03% of the multi-element total health risk violated their respec-
tive risk guidelines. The multi-element general risk score was 83.34, indicating an extremely
high-risk level. The single-element general risk (score) decreased in the following order:
Cd (73.69) > Cu (71.73) > As (32.86) > Zn (15.00) > Cr (14.80) > Pb (14.60) > Ni (10.83).
Cd, Cu, and As are the pollutants of primary concern, while the hazards of the other four
HMs on the environment and health are relatively lower. The risks of Cd and Cu are pre-
dominantly associated with soil environmental harm, as they are the leading contributors
to potential ecological risk (PER) and soil contamination risk (SCR). About 64.55% of the
PER of Cd and 62.34% of the SCR of Cu exceeded the thresholds of the environmental
guidelines. The risk of As primarily pertains to human health, especially its carcinogenic
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risk, which requires substantial attention. Due to differences in physiological characteristics
(e.g., body weight, skin, etc.) and behavioral habits, children faced higher health risks
compared to adults. Approximately 13.58% and 7.41% of the carcinogenic risk posed by
As to children and adults, respectively, exceeded the acceptable thresholds stipulated by
health guidelines. Overall, comprehensive remediation measures for soil HMP should be
implemented in the study area. Furthermore, it is essential to identify the sources of soil
HMs and develop source-oriented control strategies to prevent the exacerbation of risks.
Cd, Cu, and As are the primary targets for control in the comprehensive management of
soil heavy metal(loid) risks in this region. The other four HMs are less hazardous but still
require enhanced monitoring.

The complex background of HMP in mining areas usually poses a significant obstacle
to risk control. Accurately assessing risks and identifying priority pollutants can help
managers develop targeted strategies for improving the efficiency of risk control. The con-
structed probabilistic-fuzzy model and quantified general risk in this study can provide
decision support for managing the risk. However, the membership function in the model
may need to be improved through more investigations. In addition, the data employed in
this study for risk assessment were the total concentration of HMs in the soil, which may
lead to an overestimation of soil heavy metal(loid) risks. In future research endeavors, we
will concentrate on the speciation and bioavailability of soil heavy metal(loid) pollutants to
provide more precise risk assessment outcomes.
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Abbreviations
The following abbreviations are used in this manuscript:

HM Heavy metal(loid)
ER Environmental risk
HR Health risk
SCR Soil contamination risk
PER Potential ecological risk
CR Carcinogenic risk
NCR Non-carcinogenic risk
FER Fuzzy environmental risk
FHR Fuzzy health risk
PFGR Probabilistic-fuzzy general risk
TCR Multi-element total carcinogenic risk
TNCR Multi-element total non-carcinogenic risk
PER The probability of environmental risk violating the environmental guidelines
PHR The probability of health risk violating the health guidelines
PSCR The probability of soil contamination risk violating the environmental guidelines
PPER The probability of potential ecological risk violating the environmental guidelines
PCR The probability of carcinogenic risk violating the health guidelines
PNCR The probability of non-carcinogenic risk violating the health guidelines
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