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Abstract: With the rapid development of modern geochemical analysis techniques, massive volumes
of data are being generated from various sources and forms, and geochemical data acquisition and
analysis have become important tools for studying geochemical processes and environmental changes.
However, geochemical data have high-dimensional, nonlinear characteristics, and traditional geo-
chemical data analysis methods have struggled to meet the demands of modern science. Nowadays,
the development of big data and artificial intelligence technologies has provided new ideas and meth-
ods for geochemical data analysis. However, geochemical research involves numerous fields such as
petrology, ore deposit, mineralogy, and others, each with its specific research methods and objectives,
making it difficult to strike a balance between depth and breadth of investigation. Additionally,
due to limitations in data sources and collection methods, existing studies often focus on a specific
discipline or issue, lacking a comprehensive understanding of the bigger picture and foresight for
the future. To assist geochemists in identifying research hotspots in the field and exploring solutions
to the aforementioned issues, this article comprehensively reviews related studies in recent years,
elaborates on the necessity and challenges of combining geochemistry and artificial intelligence, and
analyzes the characteristics and research hotspots of the global collaboration network in this field.
The study reveals that the investigation into artificial intelligence techniques to address geochemical
issues is progressing swiftly. Joint research papers serve as the primary means of contact within a
worldwide collaborative network. The primary areas of focus in the ongoing research on the inte-
gration of geochemistry and artificial intelligence include methodologies for analyzing geochemical
data, environmental modifications, and mineral prospectivity mapping. Geochemical data analysis
is currently a significant focus of research, encompassing a range of methods including machine
learning and deep learning. Predicting mineral resources for deep space, deep Earth, and deep sea
is also a pressing topic in contemporary research. This paper explores the factors driving research
interest and future trends, identifies current research challenges, and considers opportunities for
future research.

Keywords: geochemistry; big data; artificial intelligence; knowledge graph; analysis of cooperation
network; CiteSpace

1. Introduction

Geochemistry is a field that examines the chemical makeup and transformations
occurring in the Earth’s interior and surface. It has a crucial function in addressing nu-
merous fundamental Earth science challenges. Geochemical data analysis holds immense
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significance in comprehending the Earth system, identifying mineral reserves, monitor-
ing the environment, and predicting earthquakes and volcanic activity, amongst others,
thereby offering a data-supported foundation for Earth’s scientific research and associated
applications. Since the 1990s, scientists have endeavored to combine geochemical data
with computer technology, augmenting the efficiency and precision of geochemical data
analysis. Turing Award winner Jim Gary postulates that scientific inquiry has traversed
four paradigms: the empirical paradigm, the theoretical paradigm, the computational
paradigm, and the data-driven paradigm. Over the past decade, scientific research has
shifted from being problem-driven to data-driven, leading to the emergence of the fourth
paradigm of scientific discovery: data-intensive scientific discovery [1]. In recent times, the
utilization of big data and artificial intelligence algorithms has transformed geology [2–4].
The integration of big data and artificial intelligence techniques with geochemistry has
become a prominent research topic in the geochemistry field due to technological advances.
This research includes an array of data types, such as geochemical and literature data, and
encompasses various fields, including Earth science, environmental science, and informa-
tion science. Through the application of big data analytics and methods, scientists have
achieved significant advances in geochemical data analysis research. One such achievement
includes the accurate classification of lithology [5], as well as distinguishing the rock’s
tectonic environment [6–8], mineral classification [9–11], the genesis of ore deposits [12–14],
and mineral prospectivity mapping [15,16].

In previous studies, researchers obtained a large volume of geochemical data on de-
posits, minerals, rocks, soil, etc., through sampling analysis. Currently, there are various
methods for the analysis of geochemical data to identify the frequency and spatial char-
acteristics of these data, including classical statistics such as mean ± k [17], probability
plot [18], exploratory data analysis [19], multivariate statistics [20], geostatistics [21], and
fractal and multifractal models [22–24]. However, these data possess high-dimensionality
and nonlinear characteristics, and traditional methods have limited ability to handle large
volumes of multidimensional data. The information contained in multidimensional space
has largely remained unexplored, posing a challenge for geochemical data analysis. With
the development of big data and artificial intelligence technologies, machine learning
algorithms have increasingly been applied to the field of geochemistry, providing a new
perspective for the interpretation of geochemical data. Previous studies have highlighted
various methods such as random forests [25,26], support vector machines [27,28], one-class
support vector machines [29–31], neural networks [32,33], metric learning [34], and deep
learning [35–41]. These studies have demonstrated the tremendous potential of artificial
intelligence technologies, accelerating new discoveries and innovative solutions in the field
of geochemistry.

The field of geochemistry encompasses a wide range of research areas, ranging from
the microscale of atoms and molecules to the macroscale interactions within various spheres
of the Earth system. The scale of this research makes geochemistry a challenging field that
requires extensive data analysis and computation. The application of big data technology
can assist geochemists in collecting, processing, and analyzing data more efficiently. For
example, the real-time monitoring and data collection of chemical substances in global soil,
water, and atmosphere can facilitate more accurate predictions and control of their impacts
on the environment and human health [42–44]. Additionally, big data can be utilized in the
development and optimization of geochemical models, enabling researchers to simulate
and predict chemical processes within the Earth system more accurately [45–47]. At the
same time, the application of artificial intelligence can further enhance the efficiency and
precision of geochemical research. Techniques such as machine learning and deep learn-
ing can automatically identify and predict patterns and trends in geochemical processes.
For instance, artificial intelligence can assist researchers in automatically classifying and
identifying outliers in geochemical data, reducing human errors and improving research
precision [48–52].
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With the emergence of an increasing number of big data methods, the integration of
geochemistry with big data and artificial intelligence has become increasingly prominent,
demonstrating the vitality of intelligent research in geochemistry. Simultaneously, as global-
ization continues to advance, international collaboration in the field of research has become
more prevalent. By analyzing the structure and dynamic changes of global collaboration
networks, insights can be gained into the development trends and frontier hotspots within
the field of geochemistry. However, geochemical research encompasses numerous subfields,
such as ore deposits, petrology, and mineralogy, each with its specific research methods and
objects. This diversity results in challenges in attaining a comprehensive understanding
of the depth and breadth of research. Furthermore, existing research often focuses on
specific areas or issues due to limitations in data sources and collection methods, lacking a
global perspective and future foresight. To gain in-depth insights into the current develop-
ment of the integration of geochemistry with big data and artificial intelligence, this paper
provides a comprehensive review of recent relevant studies. Through in-depth analysis
and mining of the related literature and data, it summarizes the research progress of big
data and artificial intelligence methods in geochemistry (including mineralogy, petrology,
and ore deposits). It also reveals the characteristics of the global collaboration network
in the integration of geochemistry with big data and artificial intelligence, as well as the
frontier and hotspots in this field. The purpose of this paper is to provide valuable reference
information for related research fields, offer new perspectives and ideas to researchers, and
promote the deep integration and development of geochemistry with big data and artificial
intelligence. The rest of this paper is organized as follows: Section 2 presents the selection of
data and research methods. Section 3 analyzes the characteristics of cooperation networks
in research. Section 4 discusses the analysis of research hotspots. Section 5 concludes the
paper and provides future prospects.

2. Data and Methods
2.1. Data Resources

This study aims to investigate the latest research trends in the field of geochemistry–
big data–artificial intelligence (GC-AI) over the past decade. To achieve this, we conducted
a literature search using the Web of Science database with the following keywords: “geo-
chemi*,” “mineralogy,” “petrology,” “Ore deposit,” “data science,” “data-driven,” “big
data,” “artificial intelligence,” “machine learning,” “deep learning,” “neural network,”
“big data analysis,” and “big data method.” The search was limited to articles published
between 1 January 2013 and 1 August 2023. Initially, we retrieved 2707 articles. After
removing duplicates, we ended up with a final dataset of 2421 articles.

2.2. Methods

Bibliometric analysis enables the visualization of knowledge map characteristics in
specific fields, providing insights into the development and trends of scientific research.
The most commonly used bibliometric visualization software programs include CiteSpace
(version 5.4), VOSviewer, and HistCite, which can effectively illustrate the evolving trends
in a particular field over time. VOSviewer, while lacking cluster labeling and supporting
only one clustering algorithm, has its own strengths. Similarly, HistCite offers fewer visual-
ization analysis methods. Meanwhile, CiteSpace stands out with its clear developmental
background, efficient relationship visualization, and comprehensive analysis and display
of bibliometric data.

CiteSpace, as an information visualization analysis program, is used for exploring
latent knowledge within scientific research [53,54]. It includes cooperative network analysis
and keyword analysis. The cooperative network analysis reveals the collaborative rela-
tionships between different countries/regions and institutions in the field, while keyword
analysis involves co-occurrence, cluster, and burst analysis. Co-occurrence and cluster
analysis unveil the key topics, keywords, and frontier knowledge, while burst analysis
identifies research hotspots and potential future trends [55,56]. In this study, CiteSpace ver-
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sion 5.4 was utilized for bibliometric analysis in the GC-AI field, and the research workflow
is depicted in Figure 1.
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3. Analysis of Research Network Cooperation
3.1. Parameter Settings

CiteSpace has several important parameters and terminology, and adjusting these
parameters plays an important role in the analysis of the knowledge graph.

3.1.1. G-Index

The G-index is an index based on citations, which sorts all papers by an author in
descending order according to citations, and the largest g value is determined such that the
total citations of the top g papers are not less than g2. Typically, a higher G-index indicates
a greater influence of the author in the field. The formula is as follows:

g2 ≤ k∑i≤g ci, k ∈ Z+ (1)

The value of k is positively correlated with the number of nodes.

3.1.2. Top N and Top N%

Top N refers to the selection of the top N citations based on their citation counts,
which can be used for analyzing important studies. Top N% refers to the percentage of
citations selected.
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In this study, the analysis of collaboration networks resulted in a g-value of 15, while
the k-value for the literature citation network was 5. The top N and top N% values were
set to 50 and 10%, respectively.

3.1.3. Centrality

Centrality is a metric defined for each node within a network, measuring the likelihood
of the node being on any shortest path within the network. It is used to identify and quantify
the importance of nodes, and nodes with high centrality are often key hubs connecting two
different domains.

3.1.4. Pruning

Pruning is a data processing method used to filter out unimportant nodes and edges.
This includes using path-finding algorithms such as Pathfinder, minimum spanning tree
algorithms such as Minimum Spanning Tree, and network slicing algorithms such as Prun-
ing Sliced Networks to trim nodes for better display of the core structure and main features
of the research network. This study is centered around a small-scale network structure. It
is worth noting that certain algorithms, such as MST, may not yield a singular solution,
resulting in multiple potential pruning scenarios, which could introduce ambiguity in the
analysis findings. In contrast, Pathfinder offers a distinct pruning solution that enhances the
stability and replicability of the analysis. Moreover, Pathfinder selectively retains nodes of
higher significance within the knowledge network, facilitating the improved identification
of key nodes. Consequently, Pathfinder was selected for node pruning in this study.

3.2. Analysis of Publications

A statistical analysis of the annual distribution of literature data exported from WOS
was conducted to reflect the development trend of research regarding big data and ar-
tificial intelligence in the field of geochemistry. As shown in Figure 2, research in this
field before 2017 was in a stable and ascending stage, with a small number of average
publications ranging between 100 and 160 papers. Since 2017, the number of publications
has shown a clear upward trend, with a rapid increase every year. In 2022, the number of
publications reached 370, which is 3.7 times that of 2013, indicating that research on this
topic has progressed rapidly and has attracted increasing attention and emphasis from
researchers. Figure 3 presents the data distribution pattern in the field of GC-AI, with a
total of 583 countries/regions, 7318 institutions, and 544 journals with 2421 publications.
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3.3. Cooperative Network of Countries/Regions

Analyzing the cooperative networks among countries/regions using CiteSpace allows
us to comprehend the cooperative relationships in a specific research field across different
nations. This analysis helps us identify countries with a high level of cooperative awareness
and cooperation, thus inferring the international collaborative characteristics of the field.
Figure 4 depicts the cooperative network of country/region-based research in the GC-AI
field, with Table 1 presenting the top 10 countries/regions based on publication output.

From Figure 4 and Table 1, it is evident that the main research countries are the United
States, China, Germany, the United Kingdom, Australia, and Canada. The United States
ranks first with 729 papers, followed by China (620 papers), and Germany ranks third with
290 papers. The United Kingdom (270 papers) ranks fourth, with Australia (254 papers)
rounding out the top five. The international cooperation among these countries is closely
interwoven and exhibits a substantial level of cooperation. Furthermore, Table 1 reveals that
Germany (0.23), the United Kingdom (0.16), and Canada (0.15) show the highest centrality,
indicating their relative prominence within the cooperative network of countries/regions.

The findings demonstrate that the field of GC-AI exhibits a high level of research
proficiency and internationalization, with the cooperative network of countries for research
in this field characterized by close and diverse ties.
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Table 1. Top 10 countries/regions in publications.

No. Counts Counts/Total Countries Centrality

1 729 30.1% USA 0.1
2 620 25.6% China 0.02
3 290 12.0% Germany 0.23
4 270 11.2% England 0.16
5 254 10.5% Australia 0.13
6 226 9.3% Canada 0.15
7 176 7.3% France 0.12
8 150 6.2% Italy 0.12
9 92 3.8% Iran 0.03
10 83 3.4% Spain 0.07

3.4. Cooperative Network of Research Institution

In conducting an analysis of the institutional cooperation network in the GC-AI field,
it is observed that there is extensive cooperation between universities, as well as between
universities and research institutions (Figure 5). This cooperative network is primarily composed
of academic institutions such as universities and research institutes, with three main cooperative
groups emerging: China, Europe, and the United States. However, these groups exhibit distinct
geographical divisions, with the most cooperation within institutions being limited to the
same country, and international cooperation across borders being relatively scarce. The top
10 institutions based on publication output are listed in Table 2, with China University of
Geosciences (193), Chinese Academy of Sciences (185), and Centre National de la Recherche
Scientifique (122) occupying the top three positions. Among them, the Helmholtz Association
demonstrates the highest centrality (0.32), followed by the National Aeronautics and Space
Administration and UDICE French Research Universities, with centrality values of 0.27 and
0.24, respectively. These centrality values signify their gross influence, rich research expertise,
and available resources in the field.

Minerals 2023, 13, x FOR PEER REVIEW 7 of 15 
 

 

Table 1. Top 10 countries/regions in publications. 

No. Counts Counts/Total Countries Centrality 
1 729 30.1% USA 0.1 
2 620 25.6% China 0.02 
3 290 12.0% Germany 0.23 
4 270 11.2% England 0.16 
5 254 10.5% Australia 0.13 
6 226 9.3% Canada 0.15 
7 176 7.3% France 0.12 
8 150 6.2% Italy 0.12 
9 92 3.8% Iran 0.03 

10 83 3.4% Spain 0.07 

3.4. Cooperative Network of Research Institution 
In conducting an analysis of the institutional cooperation network in the GC-AI field, 

it is observed that there is extensive cooperation between universities, as well as between 
universities and research institutions (Figure 5). This cooperative network is primarily 
composed of academic institutions such as universities and research institutes, with three 
main cooperative groups emerging: China, Europe, and the United States. However, these 
groups exhibit distinct geographical divisions, with the most cooperation within institu-
tions being limited to the same country, and international cooperation across borders be-
ing relatively scarce. The top 10 institutions based on publication output are listed in Table 
2, with China University of Geosciences (193), Chinese Academy of Sciences (185), and 
Centre National de la Recherche Scientifique (122) occupying the top three positions. 
Among them, the Helmholtz Association demonstrates the highest centrality (0.32), fol-
lowed by the National Aeronautics and Space Administration and UDICE French Re-
search Universities, with centrality values of 0.27 and 0.24, respectively. These centrality 
values signify their gross influence, rich research expertise, and available resources in the 
field. 

 
Figure 5. Cooperative network of research institutions. 

Table 2. Top 10 institutions in publications. 

No. Count Institutions Centrality 
1 193 China University of Geosciences 0.11 
2 185 Chinese Academy of Sciences 0.13 
3 122 Centre National de la Recherche Scientifique (CNRS) 0.07 
4 113 Helmholtz Association 0.32 
5 89 China Geological Survey 0.04 

Figure 5. Cooperative network of research institutions.

Table 2. Top 10 institutions in publications.

No. Count Institutions Centrality

1 193 China University of Geosciences 0.11
2 185 Chinese Academy of Sciences 0.13
3 122 Centre National de la Recherche Scientifique (CNRS) 0.07
4 113 Helmholtz Association 0.32
5 89 China Geological Survey 0.04
6 87 UDICE French Research Universities 0.24
7 81 University of California System 0.17
8 61 University of Chinese Academy of Sciences 0.01
9 53 United States Department of the Interior 0.1
10 53 United States Geological Survey 0.1
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4. Discussion of Research Hotspots
4.1. Keywords Clustering

High-frequency and highly central keywords illustrate the focal points of most authors
within a given time period, indicating the research hotspots and frontiers. The co-occurrence
network of keywords is shown in Figure 6, where nodes represent keywords and the size
of each node represents the frequency of co-occurrence. The color of the lines between
nodes reflects the chronological order of their appearance. It can be observed that the
research hotspots in the GC-AI field include climate change, water, geochemical models,
geochemical evolution, sediments, machine learning, and mineral prospectivity mapping.
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Based on the analysis of the graph data, the top 10 keywords with centrality in GC-AI
research literature are presented in Table 3. It can be observed that there are three nodes
with centrality values above 0.2 and six nodes with centrality values above 0.15. These
nodes can be considered core nodes within the GC-AI field, reflecting the significance
and influence of these keywords in the research domain. These keywords govern the
development trends in this field.

Table 3. Top 10 keywords for centrality.

No. Count Centrality Keywords

1 165 0.27 Model
2 109 0.24 Geochemistry
3 50 0.22 Sediments
4 69 0.18 Area
5 97 0.16 Water
6 90 0.15 South China
7 42 0.14 Constraints
8 36 0.14 Climate change
9 37 0.1 Machine learning

10 57 0.1 Mineral prospectivity mapping

Meanwhile, in this study, K-means clustering and LSI algorithms were employed
to conduct network analysis on the keywords. The silhouette coefficient was utilized to
evaluate the similarity between elements within the clusters. Ranging from 0 to 1, the
silhouette coefficient measures the compactness of samples within the cluster and the
separation between clusters. A value greater than 0.5 indicates a reasonable clustering,
while a value exceeding 0.7 suggests a well-defined and convincing cluster. Figure 7
illustrates seven clusters in the order of 0 to 6, namely “machine learning” (0.8) for cluster
#0, “climate change” (0.794) for cluster #1, “rare earth elements” (0.705) for cluster #2,
“geochemistry” (0.673) for cluster #3, “mineral prospectivity mapping” (0.883) for cluster
#4, “uranyl” (0.864) for cluster #5, and “deep sea” (0.909) for cluster #6. The size of
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clusters and their corresponding silhouette coefficients are summarized in Table 4. It can
be observed that clusters 0, 1, and 2 contain the largest number of keywords, resulting in
compact samples within the clusters and well-separated samples between clusters. All
seven clusters have silhouette coefficients greater than 0.5, with six of them exceeding 0.7,
indicating that this method successfully achieved the clustering of the GC-AI field with
favorable performance.
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Table 4. Silhouette ranking for keyword clustering.

Clusters Count Silhouette

Machine learning 62 0.8
Climate change 55 0.794

Rare earth elements 54 0.705
Geochemistry 30 0.673

Mineral prospectivity mapping 29 0.883
Uranyl 20 0.864

Deep sea 14 0.909

4.2. Keyword Timeline

To elucidate the developmental trajectory of this field, we conducted a timeline analysis
of keyword progression. Figure 8 illustrates the progression of seven clusters during the
past decade. Based on the law of timeline development, it can be inferred that the field
of GC-AI has expanded into two crucial directions, from the advancement of research
techniques to the breakthrough of exploration areas. This indicates the incessant strides
made by the field in terms of theorization and application.

1. In the initial phase of GC-AI, researchers concentrated on utilizing rule-based tech-
niques to recognize and categorize patterns and characteristics in geochemical data
applications, including Bayesian networks and decision trees, among others. The
field of geochemical artificial intelligence started to shift from rule-based methods
to machine learning with the emergence of artificial intelligence (AI) technologies.
Machine learning techniques enable automatic learning of data features and patterns
without the need for manual feature design and selection, thus saving time. Some
examples of these techniques include random forest, artificial neural networks, deep
neural networks (i.e., deep learning), and others.

2. In recent years, the study and implementation of geochemical artificial intelligence
have broadened to encompass various domains. These involve deploying machine
learning algorithms for ore formation prophecy, the automated detection and pre-
diction of groundwater contamination, the quantitative examination of rare earth
elements’ distribution patterns, climate change forecasting and prevention, and more.
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Currently, the application domain is expanding continuously, and investigations on
the deep Earth, deep space, and deep sea are the primary focus of upcoming research.
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4.3. Keyword Brust Analysis

The field of GC-AI has undergone research priorities and changes at different time
periods. To ascertain research hotspots in this field, a keyword burst analysis was un-
dertaken. The burst word detection function was implemented to scrutinize keywords
that had significantly changed in frequency in short-term research articles, demonstrating
research topic hotspots at various time periods and exploring future research development
trends. This study identified 37 keywords that had experienced bursts (Figure 9). “Strength”
denotes the burst strength of the burst term, while “Begin” and “End” signify the start and
end years of the burst term, respectively. The blue section denotes the timeline, while the
red section reflects the significance and focus of keywords in this field of research. A longer
burst length implies that the popularity of the keyword is sustained for a longer duration,
thus indicating a stronger research front. From the diagram, it can be observed that the
greatest surge in GC-AI research was in the areas of climate, fluid flow, and sediments.
However, their research popularity has waned, suggesting that these were the most popular
research subjects in the early stages of this field.

From the perspective of evolutionary trends, burst words emerged during three inten-
sive periods, namely 2013–2014, 2016–2018, and 2019–2021, indicating the development
of research areas and methods. In the field of GC-AI, specific keywords such as “model”
and “evolution” burst relatively early. The appearance of these keywords suggests that
researchers in the field have been interested in using data analysis techniques to address
geochemical problems since the early stages. Over time, novel keywords, including “artifi-
cial neural networks” and “support vector machine”, have gradually surfaced, highlighting
the field’s emphasis on artificial intelligence methods. Initially, research efforts were di-
rected towards studying climate, crust, rocks, and other related areas. Nevertheless, with
the advent of breakthroughs in research technology and the demands of social develop-
ment, there is now an emerging focus on mineral resource research, which has become a
hot topic in the field.
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4.4. Discussion

Scientific research is currently experiencing its fourth paradigm [1], and data science
has brought about significant advancements in various industries. Big data mining and
artificial intelligence are necessary research topics for advances in geosciences [2,3,45].
Geochemical analysis based on big data has been gradually acknowledged by geochemical
researchers in recent years due to the intersection of geochemistry and data science [57–60].
The use of a global cooperative network has emerged as the primary model for cooperation
in the field of geochemistry and artificial intelligence. An examination of pertinent research
and data reveals that this model displays characteristics of multidisciplinary intersection,
spanning diverse data types such as geochemical and bibliographic data, and covering
varied fields, including Earth science, environmental science, and information science.
Simultaneously, the worldwide cooperative network is increasingly adopting co-authored
papers as the primary means of contact, leading to the creation of a network based on
regions, institutions, and themes. Consequently, these cooperative networks serve as a
platform for scientific researchers to connect and cooperate, endorsing the sharing and
refinement of scientific research resources and advancing innovation and the development
of scientific research.

Although the field of geochemical artificial intelligence has made many advances,
there are still many challenges and problems that need further research and resolution.
For example, how to improve the generalization and robustness of models, how to handle
imbalanced data distribution, and how to apply advanced algorithms to practical scenarios
are issues that need further research and resolution in this field [4,45,61–64]. In addition,
compared with other fields, research achievements and applications in geochemical artificial
intelligence are relatively limited, requiring more innovation and breakthroughs.

In the future, new geochemical artificial intelligence technologies and applications can
be further explored and developed. For example, generative models such as generative
adversarial networks can be used for geochemical data generation and processing, and
transfer learning technology can be applied to transfer models from other fields into
geochemistry. Strengthening international cooperation and communication in the field of
geochemical artificial intelligence to promote the development and application of this field
will make greater contributions to solving global environmental issues.
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5. Conclusions and Prospect

This article presents an all-encompassing evaluation of the status and research hot-
pots concerning the global cooperative network that merges geochemistry with artificial
intelligence. Through knowledge graph analysis of geochemistry and artificial intelligence
publications published within the past 10 years, we gained the following insights:

1. Research trend: Based on the analysis of publications in the literature, it was observed
that the research in this field witnessed a gradual increase before 2017, followed by a
notable surge in the number of publications thereafter, with a steep annual rise. By
2022, the volume of publications had surged to 3.7 times that of 2013, highlighting the
increasing significance of artificial intelligence techniques in the research toolbox of
geochemists. The study of artificial intelligence techniques for geochemistry is quickly
progressing within the GC-AI field.

2. Characteristics of cooperative network: A network analysis was conducted on the
national/regional and institutional cooperative network to uncover research collabo-
ration patterns in this area. The results indicate a high research standard and interna-
tionalization level. The cooperative network has the characteristics of being close-knit
and diverse. Research institutions from China, the United States, and Europe are
prominent in this field, with many cooperative relationships and research outcomes.
Notably, the National Aeronautics and Space Administration and Université libre de
Bruxelles exhibit a high level of research and impact.

3. Research hotspots: Through analysis of keyword co-occurrence networks and clus-
tering, timeline, and burst word detection, it was found that some clusters have
high relevance and similarity in the field of geochemical artificial intelligence. The
application of artificial intelligence technology for mineral resource prediction is cur-
rently a research hotspot, and deep space, deep Earth, and deep sea mineral resource
exploration will become future research trends.
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