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Abstract: The Altun orogenic belt is situated along the northern boundary of the Tibetan Plateau.
In this study, we present an analysis of the ore deposit, mineral composition, and carbon isotope
signatures of the Tugeman graphite deposit within the Altun orogenic belt. The graphite in the
Tugeman graphite deposit occurs within graphite-bearing schists and marble. Graphite enrichment is
observed in the ductile shear zone. The carbon isotope values of graphite range between−18.90‰ and
−10.03‰ (with an average value of −12.70‰). These values differ significantly from those observed
in organic matter and marine carbonates, suggesting the occurrence of a mixing process involving
reduced carbon fluid derived from biological organic material during regional metamorphism as well
as a potential influx of oxidized carbon fluid from external sources. In addition, the metamorphic
temperature of Tugeman graphite calculated from Raman spectroscopy is between 494 ◦C and 570 ◦C,
which indicates that the disordered material is transformed from greenschist-amphibolite facies
metamorphism to moderate-crystalline graphite. Combining the geological and carbon isotope
characteristics of the Tugeman graphite deposit, we argue that the Tugeman graphite deposit is a
regional metamorphic graphite deposit of biogenic origin, and during the late stage of metamorphism,
it underwent interaction with fluids.

Keywords: Altun orogenic belt; Tugeman; graphite deposit; carbon isotopes; fluid mixing

1. Introduction

The distinctive characteristics of graphite have made it a valuable component in
industrial materials. The rise of advanced materials like graphene has heightened interest
in the availability of graphite resources [1–3]. China, the United States, and the European
Union have all identified natural flake graphite deposits as a mineral that is critical to their
supply chain [2,4,5].

In terms of graphite production and export, China holds the top position globally [3].
Recently, many graphite deposits have been discovered in Xinjiang province, including
the Qitai County Huangyangshan, Yiwu County Tuerkuli, Qinghe County Kongkere and
Sujiquan, Dabuxun, and Sandeke graphite deposits [6]. Although graphite deposits are
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already mined in Xinjiang province, the metallogeny of these deposits is still poorly studied
so far. A comprehensive examination of the mineralization process of graphite deposits
has been of critical importance as industrial uses soar and the demand for the material
rises quickly.

The application of carbon isotope analysis plays a significant role in discerning the carbon
origins within diverse geological formations. This approach is extensively utilized in studying
the genesis of diamond [7,8], the evolutionary processes of life on our planet [9–13], and the
formation mechanisms of graphite [14–17], contributing to a comprehensive understanding of
these complex phenomena. The temperature-dependent effects of fractionation and the carbon
source have an impact on the composition of carbon isotopes [14]. With rising temperatures,
the fractionation of carbon isotopes between the two phases reduces [18–21], and prograde
metamorphism causes the metamorphic graphite to become heavier due to the release of
isotopically light methane [14]. Carbon isotope exchange has been reported and efficiently
used as a thermometer in all ranges of temperature conditions, up to ultra-high temperature
conditions, except for a third carbon-bearing phase in the system, such as CO2 fluid [20,22,23].
For instance, Ueno et al. [10] documented a distinct trend in the δ13C value of graphite
during the metamorphic process, specifically noting an elevation from −14‰ to −5‰ as
the rocks transformed from epidote-amphibolite facies to upper amphibolite facies. Each
different carbon reservoir is distinguished by different carbon isotope values. In general, the
carbon isotope values of organic matter, mantle, and marine carbonate range from −40‰
to −17‰ [24], from −7‰ to −3‰ [25], and from −2‰ to +4‰ [26], respectively. Carbon
obtained from organic matter is lighter compared to carbon derived from the mantle or
carbonates [14].

The carbon isotope information for graphite deposits and the ore-bearing khondalite
series was summarized by Chen et al. [27]. These data show that: (1) the carbon isotope
composition of graphite is correlated with the rock types; and (2) hydrothermal fluids
exert a profound influence on the fractionation and homogenization of carbon isotope
compositions of graphite and function as a pivotal medium for the circulation of carbon
throughout geological systems.

Recently, Ai et al. [28] and Sun et al. [29] have conducted carbon isotopic studies on
the Huangyangshan super-large graphite deposit in the Eastern Junggar orogenic belt. The
results of these studies demonstrate a striking similarity in the δ13C value between the
graphite deposit and the proximal strata, suggesting the source of carbon for the graphite
deposit is likely to come from the organic carbon in the proximal strata.

The Tugeman graphite deposit was discovered by the No. 3 Geological Party, Xinjiang
Bureau of Geology and Mineral Exploration and Development. The geological character-
istics and prospecting indicators of ore deposits are the main contents of recent research.
However, there are few studies on the genetic model and carbon source of graphite deposits.

This paper presents a comprehensive study of the geological and carbon isotope
composition of graphite from the Tugeman graphite deposit. This study aims to enhance our
understanding of the ore-forming conditions and characteristics of the Tugeman graphite
deposit, which will undoubtedly facilitate the identification and discovery of graphite
deposits in this region.

2. Geological Setting

The Altyn Tagh extends east–west for c. 1000 km and is sandwiched between the
Qilian and Kunlun Orogenic Belts and the Tarim and Qaidam blocks [30]. It is adjacent
to the Tarim Basin on the north and delimited by the Altyn left-lateral strike-slip fault
on the south. The Altyn Tagh has a complex history that includes the formation of an
Archean–Paleoproterozoic continental nucleus [31,32], Mesoproterozoic passive margin
development, Neoproterozoic rifting, early Paleozoic subduction and collision [33,34], late
Paleozoic erosion and local shallow-marine sedimentation [35], Triassic extensional, and
left-lateral strike-slip deformation during the Late Jurassic–Early Cretaceous [36–38]. These
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processes resulted in the formation of a composite orogenic belt consisting of geological
complexes that originated at different times and tectonic backgrounds [39,40].

The Altun orogenic belt consists of three tectonic units (Figure 1a): the North Altun
subduction–accretion belt, the Central Altun block, and the South Altun subduction–collision
belt. The North Altun subduction–accretion belt consists mainly of early Paleozoic ophiolites
(e.g., the 490–450 Ma Qiashikasayi ophiolite; [41,42]), volcanic granitic rocks, high-pressure
blueschists [43], flysch deposits, and I- and S-type granites (520–400 Ma; [44–48]).

The main rock types in the Central Altun block were formed in the Altun Group of the
Paleoproterozoic and the Calymmian, Ectasian, and Stenian periods of the Mesoproterozoic
and the Tonian period of the Neoproterozoic [49,50]. The Altun Group is a metamorphic
complex dominated by amphibolite facies, which have long been regarded as part of the
Tarim metamorphic basement [51]. The Mesoproterozoic–Neoproterozoic rocks are mainly
composed of clastic rock, carbonate rock, and a small amount of volcanic rock, which was
derived from the stable continental margin environment with shallow metamorphism,
and the carbonate rocks contain stromatolites [51]. The degree of metamorphism of rocks
is relatively low, and the aluminum-rich metamorphic rocks mainly consist of biotite,
muscovite, garnet, plagioclase, K-feldspar, quartz, amphibole, and calcite, the metamorphic
basic rocks consist of amphibole, pyroxene, plagioclase, and quartz. In addition, these
rocks have undergone regional thermal flow dynamometamorphism of high greenschist
facies—low amphibolite facies [52].

The South Altun subduction–collision belt features the Southern Altun HP-UHP
metamorphic belt, which serves as a characteristic early Paleozoic subduction-collision
belt. This metamorphic belt encompasses a range of rock types, such as garnet-bearing
pelitic gneiss, kyanite-garnet, and granitic gneisses [53]. Furthermore, the presence of the
Southern Altun ophiolite belt provides evidence of early Paleozoic subduction and collision
within the Southern Altun region [53].
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Figure 1. (a) Location of Altun Tagh and adjoining regions; (b) schematic distribution of main geo-
tectonic units in Altun Tagh and East Kunlun; (c) geological sketch map of the Altun orogenic belt 
(the figures are modified after Li et al. [54]); and (d) Tugeman graphite deposit (after [55]). 

3. Geology of the Tugeman Graphite Deposit and Petrography Descriptions 
The Tugeman area is located in the middle of the Central Altun block, and the Tuge-

man graphite deposit was discovered in the southwestern part of the Tugeman area. The 
main outcropping strata in the Tugeman graphite ore district are the Archaean Milan 
Group (Ar1–2) and the upper lithologic segment of the Yinggelike structure ophiolite mé-
lange flysch sheet (Pt2). The Archaean Milan Group, with an area of ~1.5 km2, is exposed 
in the south of the study area. Its elongation direction is primarily NE–SW, where a fault 
contact occurs with the upper lithologic segment of the flysch of the overlying Yinggelike 
structure ophiolitic complex. The main lithology of the outcrop is marble with garnet pla-

Figure 1. (a) Location of Altun Tagh and adjoining regions; (b) schematic distribution of main
geotectonic units in Altun Tagh and East Kunlun; (c) geological sketch map of the Altun orogenic belt
(the figures are modified after Li et al. [54]); and (d) Tugeman graphite deposit (after [55]).

3. Geology of the Tugeman Graphite Deposit and Petrography Descriptions

The Tugeman area is located in the middle of the Central Altun block, and the Tugeman
graphite deposit was discovered in the southwestern part of the Tugeman area. The main
outcropping strata in the Tugeman graphite ore district are the Archaean Milan Group
(Ar1–2) and the upper lithologic segment of the Yinggelike structure ophiolite mélange
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flysch sheet (Pt2). The Archaean Milan Group, with an area of ~1.5 km2, is exposed in the
south of the study area. Its elongation direction is primarily NE–SW, where a fault contact
occurs with the upper lithologic segment of the flysch of the overlying Yinggelike structure
ophiolitic complex. The main lithology of the outcrop is marble with garnet plagioclase
gneiss. The upper lithologic segment of the Yinggelike structure ophiolite complex flysch is
largely exposed in the north of the study area, with an area of ~2.5 km2, extending in an
NE–SW direction.

No obvious intrusive rocks are exposed in the study area. In the southern part of the
mine area, there is an NE trending fault with a strike of N54E–S54W. The northern part of
the fault contains the upper part of the ophiolite flysch of the Yinggelike structure and is
made up of biotite plagioclase schist. The southern part of the fault contains the cleaved
marble of the Archaean Milan Group. The fault fracture zone is about 50 m wide, and
graphite mineralization is common in the fracture zone.

The graphite ore body occurs in the fracture zone that flanks the F1 fault on both sides,
and the ore-bearing lithology is mainly schist and marble. There are four graphite ore
bodies in the study area (namely C1, C2, C3, and C4; Table 1). The resources of the four
graphite ore bodies can reach 1,836,700 tons, and the average grade of the deposit is 5.03%,
which is a small crystalline graphite deposit.

Table 1. Geological characteristics of the graphite ore body from the Tugeman area.

Graphite
Ore

Body

Long
(m)

Thickness
(m)

Fixed Carbon
Grade

Ore-Bearing
Lithology Occurrence Types of

Graphite Other Features

C1 550 2.91 5.24%–6.35% Schist and
marble 308◦–325◦∠75◦–78◦ Flake-crystalline

graphite

Graphite distribution
along foliation,

accompanied by pyrite
in graphite ore

C2 394 3.45 4.64%–7.46% Schist and
marble 304◦–325◦∠75◦–82◦ Flake-crystalline

graphite

Graphite distribution
along foliation,

accompanied by pyrite
in graphite ore

C3 386 2.64 2.95%–3.96% Schist and
marble 310◦–318◦∠70◦–73◦ Flake-crystalline

graphite

Graphite distribution
along foliation,

accompanied by pyrite
in graphite ore

C4 603 2.54 2.95%–5.59% Schist and
marble 300◦–315◦∠71◦–77◦ Flake-crystalline

graphite

Graphite distribution
along foliation,

accompanied by pyrite
in graphite ore

Graphite is mainly present in the Tugeman graphite deposit within graphite-bearing
schists and marble, and the occurrence of graphite in these rocks is predominantly char-
acterized by disseminated flakes (Figure 2). The graphite-bearing schists are mainly com-
posed of feldspar (20%–30%), quartz (40%–45%), biotite (20%–30%), muscovite (15%–20%),
graphite (5%–10%), and pyrite (1%–3%, Figure 3d,e). Tugeman graphite is generally a
flake-crystalline graphite with an irregular distribution along foliation. The thickness is
generally smaller than 1 mm, and the thickness of the graphite aggregates is generally
smaller than 10 mm.
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schist; (f,g) hand specimen and microphotograph of marble; and (h,i) hand specimen and micro-
photograph of limonite quartzite. The coin in the picture is 2.5 cm in diameter. Gr = graphite; Qtz = 
quartz; Cal = calcite; Pl = plagioclase; Mus = muscovite. 
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Figure 2. (a) Field photograph of the C1 graphite ore body; (b) Field photograph of the contact
relationship between C1 graphite ore body and country rock.
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Figure 3. (a) The A–B geological section in the Tugeman graphite deposit; (b,c) hand specimen and
microphotograph of leptynite; (d,e) hand specimen and microphotograph of graphite-bearing schist;
(f,g) hand specimen and microphotograph of marble; and (h,i) hand specimen and microphotograph
of limonite quartzite. The coin in the picture is 2.5 cm in diameter. Gr = graphite; Qtz = quartz;
Cal = calcite; Pl = plagioclase; Mus = muscovite.
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4. Analytical Methods
4.1. Carbon Isotope Test

The carbon isotopes of graphite were analyzed using a Delta V Advantage isotope
ratio mass spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) at the Laboratory
for Stable Isotope Geochemistry, Institute of Geology and Geophysics, Chinese Academy of
Sciences. Sample powders were decarbonated by pouring them into 6 N HCl for 24 h. After
neutralization, the dried samples were transferred into tin capsules and underwent combus-
tion within the EA autosampler. The CO2 gas that was produced was fed into the mass spec-
trometer to measure its isotopic composition. Isotopic values of organic carbon are quanti-
fied using the Vienna Pee Dee Belemnite (VPDB) standard (δ13Ccarb) and expressed in per
mil notation (‰) and calculated by the formula δ13C‰ = [(Rsample/Rstandard) − 1] × 103,
where R = 13C/12C. Sucrose (C12H22O11) with a known isotopic composition was used
as the standard to monitor the analytical quality. Repeated measurements (n = 9) ob-
tained a reproducibility (2σ) of ± 0.15‰. For detailed analytical procedures, please refer to
Zhu et al. [17].

4.2. Raman Spectroscopy Test

The micro-Raman microscopy analysis was conducted utilizing the DXR3xi Raman
spectrometer, manufactured by Thermo Fisher Scientific (Waltham, MA, USA), with a 50×
objective lens. The analysis focused on a graphite sheet contained within a meticulously
prepared, polished thin section at Sanming University. The experimental setup entailed
specific conditions as follows: the excitation source emitted light with a wavelength of
532 nm, facilitating the collection of Raman signals within the spectral range spanning
from 50 to 3400 cm−1 while maintaining a laser power of 40 mW. To ensure accuracy
and precision, the spectrometer underwent regular calibration using a silicon standard,
performed prior to each analysis. The spectrum was evaluated and decomposed using
Peak Fit Version 4.12 (SeaSolve Software, Inc., San Jose, CA, USA).

5. Results
5.1. Carbon Isotope Compositions of Graphite

Since C1 and C2 orebodies are in Pt2 (the C1 and C2 orebodies have similar charac-
teristics), and C3 and C4 orebodies are in Ar1–2 (the C3 and C4 orebodies have similar
characteristics), we selected C1 and C3 orebodies for the carbon isotope test. Table 2 and
Figure 4 present a comprehensive overview of the carbon isotope results pertaining to
graphite samples derived from C3 and C1 ore bodies. Among them, twelve samples (de-
noted as G1–G12) were obtained from the graphite ore body C3, while eight samples (iden-
tified as G13–G20) originated from the graphite ore body C1. This study presents a compar-
ative analysis of the carbon isotopic compositions of graphite deposits in various geograph-
ical locations, including two graphite metallogenic belts surrounding the North China
Craton [15,27], as well as groundwater, terrestrial carbonate, and atmospheric CO2 [56].
Additionally, comparisons are made with graphite deposits from Heilongjiang [57,58],
Shandongsheng [59], the periphery of the Qaidam Basin [56], Isukasia (Greenland) [10,60],
Sargur (India) [61], Thodupuzha-Kanjirappally (Southern India) [62], the Anatectic Com-
plex of Toledo in Central Spain [63], the Kerala Khondalite Belt in Southern India [64–66],
Borrowdale in the UK [67–69], Huelma in Spain [68,70], New Hampshire in the USA [71,72],
and the Black Hills in the USA [73,74].
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Table 2. Carbon isotope values of the graphite-bearing rocks in the Tugeman graphite deposit.

Serial No. Samples No. Mineral δ13C ‰ (VPDB)

Samples from the C3 ore body

1 G1 Graphite −11.05
2 G2 Graphite −10.03
3 G3 Graphite −10.60
4 G4 Graphite −10.32
5 G5 Graphite −10.71
6 G6 Graphite −10.50
7 G7 Graphite −10.86
8 G8 Graphite −12.35
9 G9 Graphite −10.22
10 G10 Graphite −12.43
11 G11 Graphite −10.94
12 G12 Graphite −11.58

Samples from the C1 ore body

13 G13 Graphite −18.66
14 G14 Graphite −14.83
15 G15 Graphite −15.35
16 G16 Graphite −11.41
17 G17 Graphite −18.90
18 G18 Graphite −11.39
19 G19 Graphite −12.87
20 G20 Graphite −18.90
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Basin [56], Jiao–Liao–Ji belt [75], Jiamusi Block, Inner Mongolia [15,27], Isukasia (Greenland) [10,60],
Sargur (Inida) [61], Thodupuzha-Kanjirappally (Southern India) [62], Anatectic Complex of Toledo
(Central Spain) [63], Kerala Khondalite Belt, Southern India [64–66], Borrowdale (UK) [67–69], Huelma
(Spain) [68,70], New Hampshire (USA) [71,72], Black Hills (USA) [73,74], Bogala (Sri Lanka) [25,76,77],
Kahatagaha-Kolongaha (Sri Lanka) [76], and Digana (Sri Lanka) [25,78] are shown for comparison.
δ13C value ranges of biogenic, mantle, and carbonate materials sourced from [24,25,79]. The data for
graphite deposits from China (green) and other countries (blue) are displayed in the Supplementary
Table S1.

The carbon isotopic values (δ13C) exhibited considerable variability in the graphite
samples obtained from Tugeman, ranging from−18.90‰ to−10.03‰ (average of−12.70‰,
standard deviation of 2.92). The δ13C values of graphites from the C3 ore body range from
−12.43 to −10.03‰ (average of −10.97‰, standard deviation of 0.75), and the carbon
isotopic composition (δ13C) of graphite in the C1 ore body exhibits a marginal reduction
when compared to the graphite sample in the C3 ore body, varying from−18.90 to−11.39‰
(average of −15.29‰, standard deviation of 3.04).

5.2. Graphite Raman Spectroscopy

Figures 5 and 6d exhibit the Raman spectra analysis of graphite particles derived
from the Tugeman graphite deposits. Raman spectra encompass both first- and second-
order regions, as depicted in Figure 5 [80,81]. The first-order Raman spectra reveal the
presence of three prominent peaks, namely D1, D2, and G, in the Tugeman graphite deposits
(Figures 5 and 6d). D1 peaks are observed within the range of 1346 to 1352 cm−1, while
G peaks exhibit a narrow range of 1571 to 1580 cm−1. A faint D2 peak can be observed
adjacent to the lower-right side of the G peak, ranging from 1610 to 1622 cm−1 (Table 3). The
ID/IG (R1; IntensityD1-band/IntensityG-band) for the C3 and C4 ore bodies varies between
0.25 and 0.27 (average value of 0.26) and 0.11 and 0.30 (average value of 0.24), respectively.
The D1/(D1 + G + D2) (R2) peak area ratio varies between 0.32 and 0.33 (average value of
0.33) and 0.16 and 0.33 (average value of 0.28) for the C3 and C4 ore bodies, respectively.
Furthermore, the Tugeman graphite sample demonstrates four peaks in the second-order
regions, namely S1, S2, S3, and S4 (Figure 5). Among these, S2 manifests as the most intense
peak within the range of 2697–2719 cm−1 (Table 3). On the other hand, the intensities of
S1 and S3 are exceptionally low, nearly approaching zero (Figure 5). Since the D3 and
D4 peaks are usually present in poorly crystallized graphite [80,81], and the S2′ peaks are
only present in highly crystallized graphite [82], the absence of the D3 (1320 to 1350 cm−1),
D4 (1500 to 1550 cm−1), and S2′ (2681 to 2690 cm−1) [56] peaks in the Tugeman graphite
deposit indicates that the graphite obtained from the Tugeman graphite deposit does not
correspond to either poorly crystalline or highly crystalline graphite [80–82]. Therefore, we
conclude that the degree of graphite crystallization within Tugeman graphite deposits is
moderate. The full width at half maximum (FWHM) of the G peak, as determined using
the Lorentz function, ranges from 23 to 29 cm−1, while the FWHM of the S2 peak varies
from 67 to 82 cm−1 (Table 3).
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Table 3. Quantitative parameters of Raman spectroscopy of graphite samples in the Tugeman
flake-graphite deposit.

Sample
D1-Bands/cm−1 G-Band/cm−1 D2-Bands/cm−1

Peak
Position

Band
Area FWHM Peak

Value

Peak
Posi-
tion

Band
Area FWHM Peak

Value

Peak
Posi-
tion

Band
Area FWHM Peak

Value

C4-1 1352 2150 52 39 1576 4301 27 148 1622 1175 71 16
C4-2 1349 649 54 11 1579 1365 24 54 1612 230 34 6
C4-3 1350 441 48 9 1580 759 25 29 1616 139 29 4
C4-4 1350 841 47 17 1579 1441 24 56 1615 264 34 7
C4-6 1346 2714 56 46 1571 12,985 29 417 1610 1243 30 39

C3-2-4 1348 25,045 53 441 1578 43,385 23 1762 1612 7434 32 220
C3-2-1 1349 2482 49 48 1579 4347 23 175 1612 741 29 24
C3-3-1 1347 13,307 54 233 1577 24,681 25 933 1612 3699 29 118

S2-band/cm−1 ID/IG D1/(G + D1 +
D2) S2/G Peak Metamorphic

Temperature/◦C

Peak
Position

Band
Area FWHM Peak

Value
R1 Intensity

Ratio R2 Area Ratio Area
Ratio Formula (1) Formula (3)

2719 5051 75 63 0.26 0.28 1.17 516 527
2705 1697 80 20 0.21 0.29 1.24 512 523
2704 1336 78 16 0.30 0.33 1.76 494 503
2702 2599 81 30 0.30 0.33 1.80 494 503
2697 7209 67 102 0.11 0.16 0.56 570 590
2701 57,821 82 663 0.25 0.33 1.33 494 503
2704 6075 77 74 0.27 0.33 1.40 495 504
2698 29,031 82 331 0.25 0.32 1.18 499 508
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in the Tugeman graphite deposit. a—plane-polarized; b and c—reflected light.

6. Discussion
6.1. Carbon Source of the Tugeman Graphite Deposit

Anomalously high carbon burial played a crucial role in reducing friction strength and
lubricating compressive deformation, which allowed crustal thickening to build Palaeo-
proterozoic mountain belts [83,84]. The earth’s carbon reservoirs primarily consist of three
principal sources: organic matter, sedimentary carbonates, and mantle-derived igneous
carbon [14,16,85]. Each of these sources is distinguished by a different isotopic value.
Organic matter typically has carbon isotope ratios between −40‰ and −17‰ [24], with
an average δ13C value of −27‰ [9]. The δ13C values of marine carbonate rocks generally
tend to be relatively heavier, falling within the range of −2‰ to +4‰ [26,86]. In compari-
son to marine carbonates, mantle-derived carbon has a somewhat lower carbon isotope
composition (δ13C = −5‰ ± 2‰) [25].
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The origin of graphite has been explored in many studies using carbon isotope analy-
sis [15,16,27,85]. For instance, Chen et al. [27] conducted a comprehensive analysis of the
carbon isotope characteristics within the North China Craton. Their study revealed substan-
tial variability in the carbon isotope values of graphite deposits in Jiamusi (δ13C = −24.4 ~
−16.8‰) and Inner Mongolia (δ13C = −25.66 ~ −6.42‰), as depicted in Figure 4. Notably,
the carbon isotopic composition of these deposits exhibits similarities with the graphite
found in the Kerala Khondalite Belt [75]. Furthermore, graphite deposits from New Hamp-
shire (USA) [71], Huelma (Spain) [68], Borrowdale (UK) [67–69], and Black Hills (USA) [74]
all have biogenic carbon isotope signatures (Figure 4).

Based on an investigation of carbon isotope compositions of graphite from diverse
graphite-bearing rock types in the Kerala Khondalite Belt of Southern India, it has been
observed that the graphitization process of organic matter within sedimentary deposits,
subjected to regional high-grade metamorphism, yields graphite with lighter and more
widely dispersed isotopic signatures (δ13C = −32.09 ~ −17.51‰) in metapelites [14,64,65].
Conversely, graphite occurring within pegmatites and shear zones typically exhibits heavier
carbon isotopes, with δ13C values ranging from −15.1 to −10.0‰ and −12.4 to −8.2‰,
respectively [16,64] (Figure 4). This graphite is believed to be the result of precipitation from
CO2-rich fluids derived from igneous rocks [64], and other studies suggest CO2 is derived
from carbonates during decarbonation reactions [87]. The graphite in the Heilongjiang
graphite-bearing magnetite deposit has heavy graphite carbon isotope values (−7.4 to
−1.0‰), which is interpreted to be a result of metamorphic decomposition of primarily
deposited siderite under strong reducing conditions [57] (Figure 4). The heavier δ13C
values (−9.25 to −5.61‰) of Sri Lankan graphite confirm that graphite mineralization
is not associated with granulite facies metamorphism of supracrustal rocks but likely
represents a magmatic origin, which is the precipitation reaction between carbon dioxide
and methane in the C-O-H fluid [76]. The graphite in the Isukasia metasediments also
has heavy graphite carbon isotope values (−17.3 to +1.8‰; [10]; Figure 4). Regarding
the reason for the heavy carbon isotope value of graphite, Ueno et al. [10] proposed two
explanations: (1) graphite exchanges isotopes with carbonate or CO2-rich fluids; and
(2) regional metamorphism.

In some cases, the bimodal distribution of δ13C values indicates the potential presence
of multiple graphite carbon sources within a given mineral deposit [58]. Graphite deposits
exhibiting distinct δ13C values, diverging from those associated with organic matter and
global marine carbonates, suggest the occurrence of a mixing phenomenon involving COH
fluids released through organic matter degassing as well as CO2-rich fluids derived from
sedimentary carbonate layers during periods of intense metamorphism [10,15].

Because the Tugeman graphite deposit occurs in the shear zone, the δ13C value of the
graphite ranges from −18.9‰ to −10.0‰ (Figure 4). These carbon isotopic characteristics
are consistent with those of Thodupuzha-Kanjirappally and shear zones (Figure 4) [64],
displaying values marginally above the average δ13C of organic matter and below the
average δ13C of marine carbonate rocks worldwide. Therefore, the slightly higher δ13C
value than the average value of organic matter may be due to the effect of tectonic activities,
which promote the occurrence of migmatization and eventually lead to a more enriched
δ13C carbon isotope. However, the δ13C values of the C3 ore body are higher than those of
the C1 ore body, which may be caused by the fact that there are more shear zones near the
C3 ore body than the C1 ore body.

6.2. Metallogenic Process of the Tugeman Graphite Deposit

Graphite deposits can be categorized into three types based on their primary host rock
types: regional metamorphic type, contact metamorphic type, and hydrothermal type [88].
Regional metamorphism mainly occurs in the orogenic belt, so the study of the orogenic
belt has become one of the focuses of the genetic research of graphite deposits [83,84]. The
host rock of the graphite deposit in the Tugeman area comprises a series of metamorphic
rocks formed by regional metamorphisms, such as schist, marble, and leptynite [55]. The
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ore body occurrence is consistent with the country rock and the flake graphite’s overall
zonal distribution along schistosity.

In addition to experiencing initial formation and subsequent metamorphic alteration,
ore deposits are prone to being influenced by other metamorphic and deformation pro-
cesses [89]. Within the mineralization system, the enrichment and/or thickening of miner-
alization can be attributed to internal and external ductile reactivation [90].

The formation of graphite involves either “graphitization” of biogenic material during
metamorphism or precipitation from C-bearing fluids. Under geologically reasonable
metamorphic conditions, GCOH fluids (graphite-saturated C-O-H fluid) are basically
composed of H2O, CO2, and CH4 [91,92]. Solid carbon (graphite) can be precipitated from
C-bearing fluids such as those containing CO2, CO, and/or CH4 in crustal environments [91,
93–96]. Studies of carbonaceous material found in natural fluid inclusions have also been
reported [97,98]. Graphite can precipitate out in the fluid inclusion by changing the pressure,
temperature, hydrogen fugacity (f H2), and oxygen fugacity (f O2) of the natural C-O-H
fluid inclusions [99,100]. In addition, 12C-enriched CH4 and 13C-enriched C (solid) can be
formed by devolatilization reactions of organic matter [75]. The δ13C values (ranging from
−18.9‰ to −10.0‰) of the Tugeman graphite deposit are different from those of organic
matter, indicating a mixture of reduced carbon fluids derived from biogenic organic matter
and oxidized carbon fluids during regional metamorphism. Consequently, we propose
that the migration of oxidized components (CO2), combined with the mixing of reduced
components (methane and other organic matter), resulted in the precipitation of graphite
veins along fault orientations (Figure 7). The graphite may have formed as a result of the
following chemical reaction:

CH4(g) + CO2(g) = 2C(gr) + 2H2O(g). (1)Minerals 2023, 13, x FOR PEER REVIEW 14 of 20 
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Based on an integration of the carbon isotope composition and the characteristics of
the host rock in the Tugeman graphite deposit, it is inferred that the Tugeman graphite
deposit is a regional metamorphic graphite deposit of organic origin, and the characteristics
of superposition fluid and tectonic transformation are obvious in the later period of the
deposit. Among them, the two fluid mixing reactions (1) in the late stage of the Tugeman
graphite deposit are similar to the main formation mechanism of the Sri Lanka graphite
deposit, which is known for its high purity and crystallinity [76].

6.3. Degree of Metamorphism in Graphite

The transition from low-crystalline carbonaceous materials to well-crystallized graphite
involves a number of stages. As metamorphism progresses, the degree of structural disorder
in carbonaceous material will decrease. This structural development is considered an irre-
versible process, rendering the material unaffected by retrograde metamorphism [101,102].
Consequently, the temperature recorded by the material reflects the maximum temperature
value within the metamorphic thermal history. Raman spectroscopy serves as an in situ,
nondestructive analytical technique capable of elucidating the crystal characteristics of
graphite across different metamorphic grades [103]. After undergoing various metamor-
phic grades, graphite granules’ Raman spectrum peaks change [82,104], primarily affecting
the D1, G, and S1 bands as metamorphism intensifies [102]. The R1 and R2 ratios allow the
determination of peak metamorphic conditions [82,101], as both R1 and R2 decrease with
increasing metamorphic grade [26,84]. The R1 (<0.5) and R2 (<0.5) ratios of the C3 and C4
ore bodies indicate a higher degree of graphitization. Previous research has demonstrated
the efficacy of Raman spectroscopy in determining the peak temperature of carbonaceous
materials [101]. In this study, alongside qualitative observations of the Raman spectrum
of graphite, the peak temperature was quantitatively determined using the calculation
formula proposed by Beyssac et al. [101], as it is best suited for regional metamorphic
terrain [105]. The formula is as follows:

T (◦C) = − 445 × R2 + 641, (2)

where the area ratio is:
R2 = [D1/(G + D1 + D2)]. (3)

Additionally, for the sake of facilitating comparative analysis, we have incorporated
the temperature estimation calculation proposed by Aoya et al. [106]. The formula is
as follows:

T (◦C) = 91.4R22 − 556.3R2 + 676.3. (4)

The geothermometer utilized in this study has an estimated error range of ± 50 ◦C.
Applying the formula to five graphite samples derived from the Tugeman graphite de-
posit, the determined peak temperatures range from 494 to 570 ◦C (Table 3). According to
Stüwe [107], this temperature falls within the range of the lower amphibolite facies and
the greenschist facies. This is basically consistent with the early metamorphic conditions
(580–520 ◦C) and the retrograde temperature of the late greenschist facies (500–450 ◦C)
obtained by Liu et al. [39] in the northern Altun high-pressure metamorphic rock belt. Con-
sequently, considering the qualitative analysis of Raman spectra alongside the quantitative
data analysis, it can be inferred that the graphite within the study area originates from the
metamorphism occurring within the greenschist-lower amphibolite facies.

7. Conclusions

1. The graphite enrichment zone in the Tugeman region predominantly occurs within
the ductile transition zone. The carbon isotopic values of graphite exhibit a significant
range (δ13C = −18.90 to −10.03‰) with an average of −12.70‰, suggesting the formation
of graphite through a mixture of reduced carbon fluids derived from biogenic organic
matter and oxidized carbon fluids;
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2. Considering the characteristics of the ore body as well as mineral and graphite
carbon isotope characteristics, the Tugeman graphite deposit is a regional metamorphic
graphite deposit of organic origin, and the characteristics of superposition fluid and tectonic
transformation are obvious in the later period of the deposit;

3. The graphite within the Tugeman graphite deposit is formed under the conditions
of greenschist-lower amphibolite facies metamorphism, with peak temperatures ranging
from 494 ◦C to 570 ◦C.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/min13101328/s1, Table S1: Carbon isotope composition of graphite
from representative graphite deposits around the world. References [10,15,16,22,25,27,56–65,67–78,83,
87,100,105,108–119] are cited in the supplementary materials.
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