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Abstract: Conducted within the scope of geochemical exploration in eastern Thailand, this study aims
to detect geochemical anomalies and potential mineral deposits. The objective was to interpret intricate
spatial dispersion patterns and concentration levels of deposit pathfinder elements, specifically arsenic
(As), copper (Cu), and zinc (Zn), using a comprehensive array of stream sediment geochemistry data.
Methodologies involved integrating multifractal properties and traditional statistics, facilitated by
the GeoDAS and ArcGIS platforms as instrumental analytical tools. In total, 5376 stream sediment
samples were collected and evaluated, leading to the development of an in-depth geochemical map.
The results indicated distinct geological units marked by substantially elevated average values of the
aforementioned elements. Identification of geochemical anomalies was achieved through the spatial
distribution method and the subsequent application of the spectrum-area (S-A) multifractal model. An
intriguing link was found between high As concentrations and gold deposits in the area, suggesting As
as a viable pathfinder element for gold mineralization. The anomaly maps, generated from the stream
sediment data, spotlighted potential zones of interest, offering valuable guidance for future mineral
exploration and geological inquiries. Nonetheless, it is vital to recognize that the increased values
noted in these maps may be influenced by regional geological factors, emphasizing the necessity for
a diverse set of analytical methods for accurate interpretation. This study’s significance lies in its
pioneering use of the S-A multifractal model in geochemical data analysis. This innovative approach
has deepened our comprehension of geochemical dispersion patterns and improved the precision of
mineral exploration.

Keywords: eastern Thailand; geochemical exploration; pathfinder elements; stream sediment;
spectrum-area (S-A) multifractal model; pathfinder elements

1. Introduction

Geochemical exploration is essential in identifying undiscovered mineral deposits [1–4].
It uses multiple methods to analyze data, revealing the geographic patterns of geochemical
markers, identifying related elements, and detecting geochemical anomalies due to min-
eralization processes [5–7]. To investigate these processes, a regional geochemical survey
is needed. Regional geochemical surveys are crucial in both environmental and mineral
exploration studies [8–10]. They provide baseline data about the distribution and abundance
of elements and compounds in a region, serving as a reference point for future studies.
In environmental studies, these surveys help assess the environmental quality, monitor
changes over time, and evaluate the effectiveness of mitigation measures [11]. In mineral ex-
ploration, they identify areas with economically valuable minerals by creating geochemical
maps that highlight anomalous zones [12]. Overall, regional geochemical surveys provide
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essential information for understanding the environment, identifying mineral deposits,
refining geological models, and making informed decisions about land use. These surveys
also contribute to geologic mapping efforts and aid in land use planning and resource man-
agement. Geochemical anomalies have become more significant in the process of regional
mineral prediction in recent decades. Geochemical element distribution patterns at the
surface are the result of several primary and secondary geological processes [13,14].

In recent decades, there have been significant advancements in the processing of
geochemical data, revolutionizing our understanding of Earth’s processes, environmental
changes, and resource assessments. This process involves several crucial steps, includ-
ing data quality control, normalization, transformation, statistical analysis, visualization,
geo-statistics, data integration, and computational modeling. Through these methods,
data reliability is ensured, enabling effective comparison, interpretation, exploration of
relationships and trends, visualization of results, analysis of spatial patterns, integration of
data from multiple sources, and simulation of geochemical processes. Researchers have
extensively studied state-of-the-art methods for processing geochemical exploration data
over the past several decades [15]. The field has witnessed the introduction of various
advanced mathematical and statistical techniques to analyze geochemical data explo-
ration [16,17]. These methods have transitioned from traditional and multivariate statistics
to more sophisticated approaches, such as fractal/multifractal models [18,19] and machine
learning/deep learning [7]. Geochemistry relies on conventional statistical methods to
decipher and interpret the properties of geochemical elements. Traditional statistics, such
as classical statistics, have been instrumental in identifying geochemical anomalies using
various methods [20–24]. Several successful traditional techniques have been applied to
analyze geochemical data. While traditional methods, including multivariate statistics, are
commonly employed to define thresholds and distinguish subpopulations [23,25], they
often overlook the spatial information and autocorrelation structure present in geochemical
data. These methods can be seen as non-spatial statistical tools. To address this limitation,
spatial statistical methods, such as the moving average technique, have been developed to
incorporate the spatial aspect of geochemical data analysis.

Univariate statistics have become standard in understanding the distribution attributes
of geochemical elements, assisting in pinpointing pathfinder elements, and interpreting
their dynamics. Meanwhile, spatial data analysis methods, such as geo-statistics [26]
and fractal analysis [27], have gained popularity as frequency-space-based approaches.
These methods, often augmented with Geographic Information Systems (GIS), facilitate
the modeling and quantification of spatial discrepancies in geochemical data. Important
concepts in non-linear and complexity sciences, fractal and multifractal models have found
recognition in geosciences [18,26–30] and have been developed for analyzing geochemical
data. These models serve as potent tools in identifying geochemical anomalies and setting
geochemical baselines in diverse studies, such as concentration-area (C-A) model [31,32],
spectrum-area (S-A) model [33–35], and singularity analysis [3,36–38].

In this study, classical statistics and multifractal properties are used in analyzing stream
sediment geochemistry data for the region. The aim is to distinguish local anomalies from
the complex geological background and summarize them to generate a geochemical map.
The map provides insights into the concentration values of deposit pathfinder elements,
which have multiple chemical element populations and complex spatial dispersion patterns.
The primary focus lies in applying advanced GIS techniques [19,39], specifically utilizing the
GeoDAS and ArcGIS platforms, to delineate promising areas with anomalies of pathfinder
elements [40–47] associated with gold (As, Cu, and Zn) in eastern Thailand.

2. Geological Settings

The study area is located in the eastern region of Thailand. As illustrated in Figure 1,
eastern Thailand has a varied topography, with numerous low-relief areas interrupted by
linear hills and ridges. Cenozoic strike-slip faults have influenced these landforms to trend
NW–SE [48]. The area is characterized by a series of sedimentary basins, volcanic rocks,
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and granitic intrusions that record a complex tectonic history [49] involving the Sibumasu
terrane, Chanthaburi terrane, and Indochina terrane [50–52]. During the Permo–Triassic
period, a volcanic arc system [53] existed in the Chanthaburi terrane, which is characterized
by its location, sandwiched between the Indochina and Sibumasu continental blocks.
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The Chanthaburi terrane is a distinct fragment of the Sukhothai Arc, as identified by
Sone and Metcalfe (2008) [54]. Noted for its I-type granitic plutons and radiometrically
linked to the Triassic–Jurassic eras, the terrane is defined by its boundaries with the In-
dochina and Sibumasu blocks, outlined by the Sa Kaeo Suture [55] and the Klaeng tectonic
line, respectively. This terrane is home to a diverse range of marine sediments from the
Carboniferous and late Permian–Triassic periods, all with rich fossil records, as well as
deep-water Triassic sediments and younger Mesozoic continental sediments [54,56–58].
Additionally, the Klaeng tectonic line, a significant fault, speaks to a past of tectonic activity
and collision between the Sibumasu block and the southern Sukhothai Arc. This fault
line exhibits several geological characteristics, including mylonitic gneisses and low-grade
metamorphic rocks [59].



Minerals 2023, 13, 1297 4 of 20

The Chanthaburi terrane also includes various sedimentary deposits. Carboniferous
sediments found in three major limestone hills exhibit similarities with Early Carboniferous
fauna found in other parts of Thailand and Laos. The terrane also houses late Permian–
Triassic sediments, particularly those discovered in the Sukpaiwan Formation. These
deposits contain a diverse range of fossils that establish a stratigraphic continuity from the
late Permian to the Middle Triassic [58,59]. The terrane also contains Triassic sediments
from deeper marine environments, as represented by the Pong Nam Ron Formation and
the Noen Po Formation, inclusive of cherts from the Late and Middle Triassic [60–62].
Furthermore, it hosts younger Mesozoic continental sediments, conspicuous in southeast
Thailand, which have been connected to the Jurassic–Cretaceous Khorat Group [63–67].

The base of the granitic belt in Thailand is composed of the Western, Central, and
Eastern belts [68], as shown in Figure 2. Eastern Thailand incorporates the Triassic granite
found in the Central belt, referred to as the Sibumasu terrane. This type of terrane is
classified as S-type granite. Additionally, the Chanthaburi terrane, classified as I-type
granite, is known as the Triassic granite in the Eastern belt. Notably, gold deposits are
related to the I-type granite found in the Chanthaburi Terrane [60,69], while heavy minerals
are associated with the S-type granite [69–71].
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This area has several significant mineral deposits, which align with the Central metal-
logenic province [69]. Some base metals, including chromium, tungsten, gold, silver, and
copper [72], are primarily found in association with Permo–Triassic volcanic rocks and
Triassic granitic intrusions, which are believed to have been emplaced during the collision
of the Indian and Eurasian Plates [73]. Additionally, gemstones and silica sand deposits are
present in the east corner of the country, and recent exploration has also shown that gold
potential is also high [74]. Finally, in the Gulf of Thailand, numerous Tertiary basins are the
source of natural gas and petroleum (Figure 2).

3. Methodology
3.1. Geochemical Data

The total collected samples were 5376 stream sediment samples (Figure 3) from stream
systems in eastern Thailand, with a density of a sample per 5 km2. The data were collected
under the Department of Mineral Resources in Thailand (DMR), covering 34,380 km2 of ter-
ritory, with multi-element analyses of 12 elements, with elements As (arsenic), Ba (barium),
Co (cobalt), Cr (chromium), Cu (copper), Fe (iron), Mg (magnesium), Mn (manganese), Ni
(nickel), Pb (lead), V (vanadium), and Zn (zinc). The samples were collected from active
stream sediment [75,76] consisting of clay to sand-sized particles along a 30–50 m stretch
of the stream. The sediment sample was prepared by sieving it to provide 2–3 kg of the
80-mesh fraction for analysis. Large samples were necessary to minimize the “nugget
effect”, which refers to small-scale variations in the element concentration within a sam-
ple. A multi-element analytical methodology and a unified data quality monitoring of
the procedure were used to analyze the sediment samples. Each sample was digested in
a modified aqua regia solution and analyzed by using a Parkin Elmer Optima 5300 DV
spectrometer (Norwalk, CT, USA) via inductively coupled plasma optical emission spec-
trometry (ICP-OES) [77] for 12 elements, with numbers in parentheses denoting detection
limits: As (2 ppm), Ba (3 ppm), Co (1 ppm), Cr (1 ppm), Cu (2 ppm), Fe (30 ppm), Mg
(50 ppm), Mn (1 ppm), Ni (1 ppm), Pb (4 ppm), V (1 ppm), and Zn (7 ppm).

3.2. Descriptive Statistics

Various measures were used in the statistical analysis, including the maximum value
(Max), minimum value (Min), average value, mean value (X), standard deviation (SD),
and coefficient of variation (CV). These measures are essential for understanding the
behavior of geochemical elements in the study area and comparing datasets. A high
SD indicates that the data points are widely spread out from the mean, while a low SD
indicates that the data points are tightly clustered around the mean. The SD is useful for
comparing the variability of two or more datasets or determining whether a particular data
point is statistically significant or unusual relative to the rest of the data [78]. Elements’
concentrations within these samples were considered because these elements represent the
mineralization composition in this region [33].

3.3. The Spectrum-Area (S-A) Multifractal Model

The S-A model was developed by Cheng et al. in 1999 and 2012, and is a help-
ful method for identifying mixed geochemical patterns in complex geological environ-
ments. This model separates geochemical anomalies from the background based on distinct
anisotropic scaling properties in the frequency domain, which has been a powerful tool to
decompose mixed geochemical patterns [31,79]. The S-A model employs spectral analysis.
The spatial distribution of orebodies can be better understood using these novel models.
To create a new method that can not only distinguish between anomalies and background
but also reveal information on the anisotropic scale invariance of geochemical patterns,
Cao and Cheng (2012) merged the S-A model and generalized scale invariance using a
power-law function that describes the relationship between the spectral energy density
value (S) and the area in units (A) of the wave number, with a threshold ≥ S, and with
spectral energy density values above S on the power density plane [80].
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The equation of the S-A model is:

A (≥S) α S−2d/β (1)

where S is the spectral energy density value, A (≥S) is the area with a threshold larger than
or equal to S, β is an anisotropic scaling exponent, d is a parameter representing the degree
of the overall concentration, and ∝ denotes proportionality.

The following are the steps for applying the S-A model: (1) Turn the gridded data into
the frequency domain by using the fast Fourier transformation, (2) establish the power
spectrum of the data, (3) compute A(S) to find the region with a threshold greater than
or equal to S, and (4) make an S-A log–log plot. (5) Before creating the filter, choose the S
threshold value (breakpoints in the log–log plot). (6) Then, an inverse fast Fourier technique
is used to transform the resulting power spectra. In step 5, there can be two filters: the low-
and high-pass filters result in the creation of two maps, the first of which is the anomaly
map and the second of which is the background map.

Minerals 2023, 13, x FOR PEER REVIEW 6 of 21 
 

 

a 30–50 m stretch of the stream. The sediment sample was prepared by sieving it to pro-

vide 2–3 kg of the 80-mesh fraction for analysis. Large samples were necessary to mini-

mize the “nugget effect”, which refers to small-scale variations in the element concentra-

tion within a sample. A multi-element analytical methodology and a unified data quality 

monitoring of the procedure were used to analyze the sediment samples. Each sample 

was digested in a modified aqua regia solution and analyzed by using a Parkin Elmer 

Optima 5300 DV spectrometer (Norwalk, CT, USA) via inductively coupled plasma optical 

emission spectrometry (ICP-OES) [77] for 12 elements, with numbers in parentheses de-

noting detection limits: As (2 ppm), Ba (3 ppm), Co (1 ppm), Cr (1 ppm), Cu (2 ppm), Fe 

(30 ppm), Mg (50 ppm), Mn (1 ppm), Ni (1 ppm), Pb (4 ppm), V (1 ppm), and Zn (7 ppm). 

 

Figure 3. Location of 5376 stream sediment samples with a density of a sample per 5 km2, covering 

34,380 km2 of territory, with multi-element analyses of 12 elements, with elements As, Ba, Co, Cr, 

Cu, Fe, Mg, Mn, Ni, Pb, V, and Zn. 

Figure 3. Location of 5376 stream sediment samples with a density of a sample per 5 km2, covering
34,380 km2 of territory, with multi-element analyses of 12 elements, with elements As, Ba, Co, Cr, Cu,
Fe, Mg, Mn, Ni, Pb, V, and Zn.



Minerals 2023, 13, 1297 7 of 20

4. Results and Discussion
4.1. Descriptive Statistics

Descriptive statistics of pathfinder elements for gold deposits (As, Cu, and Zn) are
shown in Table 1. The high coefficient of variation (CV) values for As, Cu, and Zn con-
centrations (183.61%, 159.75%, and 302.55%, respectively) indicate the extremely variable
concentrations of these elements. The CV values were used for the description of global
variability. These statistical findings suggest that eastern Thailand comprises a variety
of geochemical environments and has undergone a variety of different geological events
over geological time, that resulted in complex ore-forming processes. Some of the values,
particularly the incredibly high values, might fit fractal or multifractal distributions. Then,
based on SPSS, the fractal distribution histograms and a quantile–quantile (Q-Q) plot were
used for visualizing the distribution of geochemical data. For the distribution histograms
(log 10), three elements, As, Cu, and Zn, had high skewness values, indicating that these
data were not normally distributed and contained outliers, showing clearly positively
skewed distributions, indicating that some data points in this dataset were inclined toward
the distribution with high values. The skewness of As, Cu, and Zn was 16.74, 31.25, and
6.86, respectively. Based on their Q-Q plots, they were not normally distributed [2] because
the point dots departed from the normal straight lines (Figure 4).

Table 1. Descriptive statistics for elements of 5376 stream sediment geochemical data points of As,
Cu, and Zn, used in eastern Thailand.

Elements N Max 1 Min 1 X 1 SD 1 CV% Skewness

As 5376 534.50 <DL 2 7.05 12.95 183.61 16.74
Cu 5376 1760.00 <DL 20.26 32.36 159.75 31.25
Zn 5376 6657.00 <DL 46.45 140.53 302.55 6.86

1 The units of elements are ppm. 2 DL = Detection limits (As = 2 ppm, Cu = 2 ppm, Zn = 7 ppm).
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Figure 4. Distribution histograms of As (a), Cu (c), and Zn (e) concentrations in the stream sediments
have high skewness values, indicating non-normal distribution, outliers, and positive skewness.
Q−Q plots of As (b), Cu (d), and Zn (f) indicate that they were not normally distributed.

4.2. Spatial Distribution of As, Cu, and Zn

Anomaly areas with high stream sediment As concentrations (>24.00 ppm,
95th percentile), represented by red shading, are delineated in Figure 5. In total, anomalies
can be divided into three zones in NW–SE orientations. Zone I is located in the western
part of the study area of the Sibumasu Terrane, composed of granitic rocks (Trgr) and
the sedimentary rocks of Carboniferous–Permian (CP), covered mostly by Quaternary
sediment (Q). Zone II may be associated with the granitic rocks’ (Trgr) intrusion and is
located in the middle part of the study area of the Chanthaburi Terrane, composed of
the Precambrian sedimentary rocks (PE), Upper Carboniferous (C2), Permian–Triassic
mixed marine (PTr), Triassic Noen Phuyaiyeu Formation (Trn), and Jurassic–Cretaceous
Khorat Group (JK). Zone III is located in the eastern part of the study area, covering the
Chanthaburi Terrane and the Indochina Terrane, which was emplaced by the granitic rocks
(Trgr), Permian–Triassic volcanic rock (PTrv), and the sedimentary rocks, Early–Middle
Permian Limestone Sa Kaeo Suture Melange (Ps-2).
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Strong stream sediment anomaly zones in Figure 5, with their Cu concentrations
(>50.50 ppm, 95th percentile), are indicated by red shading. Anomalies can be split into
three zones overall in NW–SE orientations. Zone I is located in the western part of Sibu-
masu Terrane and is associated with Granitic rocks (Trgr) and the sedimentary rocks
Carboniferous–Permian (CP). Zone II is located in the middle of the study area of Chan-
thaburi Terrane and is associated with the Precambrian sedimentary rocks (PE). Zone III is
located in the eastern part of the study area of the Indochina Terrane, associated with the
intrusive rocks, Permian volcanic (Pv).

Anomaly regions with strong stream sediment Zn (Figure 5) contents (>100 ppm,
95th percentile) are indicated by red stippling. In total, the anomalies can be divided into
two zones. Zone I in NW–SE orientations is located in the western part of Sibumasu Terrane
and is associated with granitic rocks (Trgr), as well as the Precambrian sedimentary rocks
(PE) and Carboniferous–Permian (CP). Zone II is located in the middle of the study area of
Chanthaburi Terrane, covered mostly by Quaternary sediment (Q).

The elements were statistically distributed across the geological units, including Qua-
ternary (Q), Cretaceous Sau Khua Formation (Ksk), Jurassic–Cretaceous Khorat Group (JK),
Jurassic–Cretaceous Lam Thup Formation (JKl), Jurassic–Cretaceous Phra Wihan Forma-
tion (JKpw), Jurassic Phu Kradung Formation (Jpk), Triassic Pong Nam Ron Formation
(Trpn), Triassic Noen Phuyaiyeu Formation (Trn), Permian–Triassic mixed marine (PTr),
Early–Middle Permian Limestone Sa Kaeo Suture Melange (Ps-2), Early–Middle Permian
Limestone (Ps-1), Early–Middle Permian Saraburi Group [55], Carboniferous–Permian
(CP), Upper Carboniferous (C2), Lower Carboniferous (C1), Devonian–Carboniferous
(DC), Silurian–Devonian (SD), Precambrian (PE), basalt deposits (Qbs), granitic rock (Trgr),
Permian–Triassic volcanic (PTru, PTrv), and Permian volcanic (Pv) [81]. Table 2 summa-
rizes these units, and their distribution characteristics were analyzed to determine the
distribution of elements.
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Figure 5. Raster maps were created from the total concentration values of As (a), Cu (c), and Zn (e)
in 5376 samples. The color classes are based on the following percentiles of raw data: 50, 75, 90, and
95 content. Stream sediment values show 95th percentile concentrations of As (b), Cu (d), and Zn (f).
Anomalies represented by red shading overlayed with the geologic map can be divided into the
zones of anomalies in NW–SE orientations.
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Table 2. Statistical parameters for As, Cu, and Zn (ppm) of the geological unit in eastern Thailand.

Geological
Unit

Samples (N)

Elements

As Cu Zn

X SD CV X SD CV X SD CV

Total 5376 7.05 12.95 1.84 20.26 32.36 1.60 46.45 140.53 3.03

Q 2447 7.40 15.91 2.15 16.55 43.47 2.63 57.38 206.49 3.60
Ksk 32 2.83 4.38 1.55 31.12 12.62 0.41 47.47 11.23 0.24
Jk 132 5.94 10.82 1.82 6.61 6.24 0.94 13.83 12.16 0.88
Jkl 5 6.00 6.27 1.04 10.14 8.07 0.80 11.60 8.73 0.75

JKpw 49 2.07 1.21 0.58 6.14 4.38 0.71 23.87 14.83 0.62
Jpk 60 5.94 10.82 1.82 6.61 6.24 0.94 13.83 12.16 0.88

Trpn 1207 6.16 8.97 1.46 22.37 12.45 0.56 38.89 18.35 0.47
Trn 313 6.73 6.86 1.02 26.10 15.82 0.61 40.16 21.93 0.55
PTr 100 19.74 17.35 0.88 17.32 7.69 0.44 32.79 17.32 0.53
Ps-2 201 19.74 17.35 0.88 17.32 7.69 0.44 32.79 17.32 0.53
Ps-1 37 3.50 6.21 1.78 15.30 12.10 0.79 27.05 18.32 0.68
Ps 3 5.11 2.80 0.55 22.29 18.69 0.84 22.48 16.95 0.75
C2 67 22.33 14.80 0.66 15.40 6.35 0.41 39.62 31.68 0.80
DC 291 4.43 6.17 1.39 30.39 29.64 0.98 33.99 19.45 0.57
SD 26 9.03 8.43 0.93 15.71 17.57 1.12 23.96 17.47 0.73
Qbs 49 5.98 6.41 1.07 29.65 11.21 0.38 61.04 33.97 0.56
Trgr 153 9.24 12.49 1.35 15.20 12.79 0.84 36.71 27.80 0.76
PE 67 7.05 12.95 1.84 20.26 32.36 1.60 46.45 140.53 3.03

PTrv/Ptru 131 8.53 11.65 1.37 41.54 22.71 0.55 45.11 20.01 0.44
Pv 6 7.67 2.66 0.35 108.50 27.29 0.25 69.83 10.03 0.14

The average values (X) of As in Upper Carboniferous (C2), Permian–Triassic mixed
marine sedimentary rocks (PTr), and Early–Middle Permian Limestone Sa Kaeo Suture
Melange (Ps-2) were 22.33 ppm, 19.74 ppm, and 19.74 ppm, respectively, which are higher
than the average value of the whole unit, but the coefficient (CV) was low, showing weak
activity, and rich in As. The coefficient of variation (CV) in Precambrian (PE), Jurassic
Phu Kradung Formation (Jpk), and Early–Middle Permian Limestone (Ps-1) was 1.84 ppm,
1.82 ppm, and 1.78 ppm, respectively, and the Quaternary (Q) in the eastern part had the
highest value of 2.15 ppm, which shows that the active migration ability of As is strong.

The average values (X) of Cu in Permian volcanic (Pv), Permian–Triassic volcanic (PTru,
PTrv), Early–Middle Permian Limestone Sa Kaeo Suture Melange (Ps-2), and Devonian–
Carboniferous (DC) were 108.50 ppm, 41.54 ppm, 31.12 ppm, and 30.39 ppm, respectively,
which are higher than the average value of the whole unit, and the coefficient (CV) was
low, where Permian volcanic (Pv) was the lowest, showing very weak activity and strong
stability. The coefficient of variation (CV) in Precambrian (PE) and Silurian–Devonian (SD)
was 1.60 ppm and 1.12 ppm, respectively, and the Quaternary (Q) in the eastern part had
the highest value of 2.63, which shows that the active migration ability of Cu is strong.

Zn’s average values (X) in Permian volcanic (Pv), basalt deposits (Qbs), and the Quater-
nary (Q) were 69.83 ppm, 61.04 ppm, and 57.38 ppm, respectively, which are higher than the
average value of the whole unit, and the coefficient (CV) was low, where Permian volcanic
(Pv) was the lowest, showing very weak activity and strong stability. The coefficient of
variation (CV) in the Quaternary (Q) and Precambrian (PE) was 3.60 ppm and 3.03 ppm,
respectively, which shows that the active migration ability of Zn is strong.

Comparing an element’s concentration in a specific sample or location to its corre-
sponding Clarke value [82] yields insights into whether that element’s abundance deviates
from the crustal average. As reference values, Earth’s crust averages were around 1.5 ppm
for As, 50 ppm for Cu, and 75 ppm for Zn [83]. To quantify this, we computed the con-
centration coefficient by dividing the elements’ sample concentrations by their Clarke
values, resulting in the following coefficients: As (4.70), Cu (0.40), and Zn (0.62). These
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coefficients hold significant implications for mineralization. A coefficient greater than 1, as
exemplified by As at 4.70, signifies enrichment compared to the crust, indicating geologi-
cal processes potentially linked to gold mineralization. Conversely, coefficients be-low 1,
such as Cu (0.40) and Zn (0.62), suggest depletion, implying a region less influ-enced by
typical geology and mineralization processes associated with these elements.

4.3. Determining Thresholds Using the S-A Model

The decomposed geochemical maps were produced by IDW using the S-A method,
which was applied to each raster map: anomalies and backgrounds of the distributions for
As, Cu, and Zn were built up using the inverse distance weighting (IDW) interpolation
method [84], by ArcGIS software (Figure 6). One of the most widely used moving-average
interpolation methods is IDW, which works under the concept that within-observations’
values have more effect on interpolated values than distant observations’ values. The IDW
approach has the benefit of being easy to use and understand, and it is also simple to apply.
The main issue is from the weights being determined solely based on location and ignoring
the variance of the results [85]. The failure to consider the local features of data is a typical
flaw in moving-average interpolation techniques such as IDW. Then, the power spectrum
densities (S) were calculated for the elemental distributions. The S-A multifractal model
was used to decompose complex geochemical patterns into constituent anomalous and
background patterns [84], and it was implemented with the aid of GeoDAS software [34].
The power spectrum density (S) and the area (A) that is greater than or equal to S could be
fitted with two straight lines using the least square method.

The S-A plot, consisting of S versus the number of cells greater than or equal to S,
could be fitted by three straight lines using the least square method. The three straight lines
represent the geochemical noise, anomaly, and background, respectively [3]. Then, these
three components were converted to the spatial domain by an inverse Fourier transforma-
tion. The decomposed maps show the spatial distribution of the geochemical anomaly and
the geochemical background of As, Cu, and Zn.
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Using the S-A approach, the geochemical map of As concentration (Figure 6) was
divided into two spatial components. The As geochemical map was converted into the
frequency domain using a Fourier transform. The relationship between A (≥S) and S is
shown on an As log–log scale (Figure 6a). The data can be fitted with three straight-line
segments using the least squares method [86]. These segments represent three power energy
spectrum ranges, each distinguished by a unique scaling property of the S–A relation. There
are three ranges of S: left (S ≤ 4138), middle (4138 < S ≤ 20,606), and right (S ≥ 20,606).
The last segment displays a short-range spectrum of high frequencies. Two filters were
defined using two distinct ranges of S, separated by the threshold value S = 20,606: an
anomaly filter with S < 20,606 (Figure 6b) and a background filter with S > 20,606 (Figure 6c).
These filters are irregularly shaped to preserve the anisotropy and interior structure of the
two-dimensional power energy spectrum, which they represent. The two maps are the
result of applying the two filters obtained from the S-A plot to the Fourier-transformed
functions, and then converting them back into the spatial domain.

The geochemical map of Cu concentration (Figure 7) was decomposed into two spatial
components using the S-A method. The Cu geochemical map was converted into the
frequency domain using a Fourier transform. The relationship between A (≥S) and S is
shown on an As log–log scale (Figure 7a). There are three ranges of S: left (S ≤ 3488), middle
(3488 < S ≤ 114,777), and right (S ≥ 114,777). The last segment displays a short-range
spectrum of high frequencies. Two filters were defined using two distinct ranges of S,
separated by the threshold value S = 114,777: an anomaly filter with S < 114,777 (Figure 7b)
and a background filter with S > 114,777 (Figure 7c).
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S (log base e) for Cu. (b) The decomposed map anomaly component of Cu. (c) The decomposed map
background component of Cu.

The S-A approach was used to divide the geochemical map of Zn concentration
(Figure 8) into two spatial components. Using a Fourier transform, the Zn geochemical
map was transformed into the frequency domain. The relationship between A (≥S) and S
is shown on an As log–log scale (Figure 8a). There are three ranges of S: left (S ≤ 12,889),
middle (12,889 < S ≤ 850,339), and right (S ≥ 850,339). The last segment displays a short-
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range spectrum of high frequencies. Two filters were defined using two distinct ranges of S,
separated by the threshold value S = 850,339: an anomaly filter with S < 850,339 (Figure 8b)
and a background filter with S > 850,339 (Figure 8c).
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The decomposed pattern obtained from the concentration map of arsenic (As) using the
background filter revealed variations in As concentration values in the background, which
could indicate favorable geological conditions for the occurrence of gold mineralization.
Overlaying the known gold deposits on a background map shows that these deposits are
located within areas characterized by high background As values found around intrusive
and sedimentary rocks in the central (zone II) and eastern parts (zone III). The anomaly map
suggests high mineral deposit potential in areas with NW–SE-trending faults and mapped
intrusions [87]. Most of the As anomaly map shows that high values followed around
intrusive rocks in the middle zone, Chanthaburi terrane, and along NW–SE-trending
faults/fractures, which are favorable areas for mineral deposits. These results of the As
element anomaly assessment of pathfinder elements for gold deposits may indicate the
potential relationship with the gold deposits in the study area. The integrated anomalies of
As occur around the intrusions and in the vicinity of faults in the center. However, the As
anomalies occurring in the western part of the study area are not relative to gold deposits
and may be caused by the high background concentration values of the intrusive rock of
the Sibumasu terrane, which is divided by the tectonic line NW–SE trend. As anomaly
assessment and pathfinder elements for gold deposits support this potential [88,89], and
further investigation of gold anomalies around intrusions and faults is recommended.

Similar maps with distinctive features were generated using copper (Cu) and zinc
(Zn) data. These two maps are also displayed in Figures 7 and 8, depicting the NE–SW
distribution characteristics of the area. Interestingly, with the high concentrations observed
in the geochemical maps of the study area, most of the anomalies did not align with
the presence of the known gold deposits in the western part (zone I). Instead, they were
primarily distributed in the western part around the intrusive and sedimentary rocks of
the Sibumasu terrane. The central (zone II) showed that the high anomaly value followed
around the Precambrian rocks (PE).

5. Conclusions

1. Stream sediment geochemical data analysis provides a robust means to identify
potential mineral deposits across a large region. Traditional statistical methods may
fail to account for spatial variability in complex geological settings, but incorporating
the S-A multifractal model helps to better interpret the data. This approach provides
an enhanced understanding of the geological processes, furthering our ability to
pinpoint exploration targets. Through statistical analysis, this study uncovered a
distinct distribution of elements such as As, Cu, and Zn across various geological
units. These findings offer crucial insight into the dynamic interactions of elements
within different geological contexts, revealing the migration abilities of these elements
in specific units. Overall, the study demonstrated that the S-A multifractal model
provides a powerful tool for analyzing stream sediment geochemical data. This
approach helps to identify specific geological processes that contribute to patterns
in the data, improving the understanding of statistical results and the regularity of
changes in these properties in spatial and temporal domains. This information proves
valuable in identifying precise exploration targets for mineral deposits.

2. By applying the S-A multifractal model and the inverse distance weighting (IDW)
method, this research has successfully decomposed geochemical maps into anomalous
and background patterns. The anomaly map for As, in particular, showed a strong
correlation with the gold deposits in the study area, indicating its potential as a reliable
indicator for identifying gold deposits. While geochemical maps derived from stream
sediment data offer an initial understanding of element distribution, it is important
to exercise caution during interpretation due to potential influences from regional
geological factors.

3. Here, we created prediction maps, pinpointing areas of interest associated with
pathfinder elements within the gold deposit zones and beyond. These maps can
guide mineral exploration by narrowing down target areas for further investigation.
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This study underlines the importance of utilizing a variety of analytical methods for
accurate results, acknowledging that regional geological factors can contribute to
elevated values unrelated to mineralization.
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