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Abstract: With the recent introduction of handheld instruments for field use, laser-induced break-
down spectroscopy (LIBS) is emerging as a practical technology for real-time in situ geochemical
analysis in the field. LIBS is a form of optical emission spectroscopy that is simultaneously sensitive
to all elements with a single laser shot so that a broadband LIBS spectrum can be considered a
diagnostic geochemical fingerprint. Sets of LIBS spectra were collected for seven obsidian centers
across north-central California, with data processed using multivariate statistical analysis and pattern
recognition techniques. Although all obsidians exhibit similar bulk compositions, different regional
obsidian sources were effectively discriminated via partial least squares discriminant analysis. Ob-
sidian artifacts from seven archaeological sites were matched to their putative sources with a high
degree of confidence.

Keywords: laser-induced breakdown spectroscopy; LIBS; obsidian; geochemical fingerprinting;
multivariate analysis; chemometrics; artifact provenance determination

1. Introduction

Geochemical analysis of obsidian can provide insights into artifact production and
past trade patterns [1–3]. Handheld laser-induced breakdown spectroscopy (LIBS) has
emerged as a practical technology for in situ geochemical analysis because it is capable of
rapid and minimally destructive determination of the elemental composition of geological
and archeological materials in the field under ambient environmental conditions. Since
LIBS is simultaneously sensitive to all elements, and particularly sensitive to light elements
which are difficult to determine using other methods (e.g., H, Li, Be, B, and C), a single laser
shot may be used to measure the spectral intensity of specific elements for quantitative
analysis or record the broadband LIBS emission spectrum that is a unique compositional
signature, i.e., a geochemical fingerprint. Studies on the analysis of geological materials
such as marble [4], flint [5], pozzolan [6], glass [7–10], and particularly obsidian [11–14]
demonstrate that distinguishing compositional characteristics can be recognized via LIBS
analysis. The objective of this study is to use multivariate chemometric analysis of LIBS
broadband spectra to determine obsidian artifact provenance via comparison with a spectral
library for samples of known origin, with a focus on the specific application of handheld
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LIBS to discriminating of obsidian sources and determining the provenance of obsidian
artifact sites in California.

2. Background
2.1. Obsidian

Obsidian is a natural glass of volcanic origin formed when highly viscous silica-rich
magma is extruded onto the Earth’s surface and cools so rapidly that mineral crystallization
is precluded [15]. Obsidian glass fractures conchoidally with sharp edges because of its
disordered atomic structure and, therefore, was widely used by indigenous peoples to
produce tools, weapons, and decorative objects. Typically forming from highly silicic
rhyolite magma on the margins of lava domes, and less commonly as extrusive lava
flows [16], it is only rare volcanic events that produce obsidian of the high quality required
for tool making. As a consequence of the need to obtain obsidian and its relatively restricted
occurrence, obsidian was traded widely by Indigenous peoples across California and the
adjacent Mojave Desert and western Great Basin physiographic provinces within the
region known as the California Culture Area [17] and frequently transported far from
its original geological source [18]. Hence, there has been a long-standing and continuing
interest within the archaeological community in linking obsidian artifacts to their geological
source as a means of understanding resource procurement patterns, distribution networks,
cultural contacts, and movements of people. Because obsidian is common in volcanic
areas worldwide, forming when silicic-rich magma is extruded onto or near the Earth’s
surface where it rapidly chills to glass against air, water, or colder rock [15], the conclusions
reached in this manuscript are clearly relevant for future studies of both geological and
archaeological obsidian as well.

2.2. Geochemical Fingerprinting

Obsidian sources tend to occur in relatively discrete locations, although geological
erosion can produce fluvial deposits in which obsidian transported away from a source
region is present as clasts of sufficient size and quality to be worked for tools. It may be
possible to assign an obsidian sample to a source on the basis of its visual characteristics or
physical texture in some rare instances [19,20], but, in general, geochemical information is
necessary for reliable source determination. The provenance attribution of obsidian to a
geological source relies on the concept of geochemical fingerprinting [21,22], which typically
employs the measurement of small differences in the chemical or isotopic composition
to accomplish discrimination of samples with similar bulk composition. The concept of
geochemical fingerprinting via LIBS has been validated through a series of investigations
using both benchtop and handheld LIBS systems for a variety of geological materials,
including obsidian (e.g., [11–14,23–30]).

As a high-silica rhyolite glass, obsidian has a broadly similar major element chemistry
regardless of location because the processes of assimilation and fractional crystallization
within intracrustal magma chambers [31] produce rhyolite under certain geological circum-
stances. This is illustrated in Table 1 for five of the obsidian sources analyzed in this study
(Figure 1).

Table 1. Representative major and minor element chemistry for obsidian reported in the literature
for the five California obsidian sources sampled in this study. Major element abundances are given
as weight percent oxide values and trace element concentrations are given as part per million
concentrations.

Obsidian Source/Locality SiO2 TiO2 Al2O3 MgO CaO Na2O K2O Ba Rb Sr Zr Reference

Medicine Lake Highlands 72.20 0.03 12.50 0.06 0.40 4.23 4.47 35 147 13 147 [32]

Cougar Butte 75.40 0.20 13.50 0.24 0.85 3.89 4.64 765 134 81 183 [32]

Grasshopper Flat 75.00 0.24 13.50 0.36 0.91 3.82 4.80 765 148 84 214 [32]
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Table 1. Cont.

Obsidian Source/Locality SiO2 TiO2 Al2O3 MgO CaO Na2O K2O Ba Rb Sr Zr Reference

Little Sand Butte 73.00 0.27 13.90 0.35 1.25 4.01 4.33 865 154 115 230 [33]

Glass Mountain 73.10 0.28 14.10 0.38 1.25 3.94 4.35 858 150 118 229 [33]

North Coast Ranges

Calistoga Domes 74.32 0.21 13.37 0.41 1.05 4.43 4.05 574 155 47 230 [34]

Sugarloaf 73.53 0.34 10.56 0.08 0.28 4.79 4.05 141 81 164 171 [34]

Long Valley/Mono-Inyo

Glass Mountain 77.05 0.07 12.58 0.03 0.44 3.96 4.68 <20 nd <20 100 [35]

Glass Mountain 77.00 0.05 12.90 nd 0.28 4.14 4.45 79 270 nd 99 [36]

Glass Mountain 76.90 0.05 12.70 nd 0.32 4.48 4.49 60 245 nd 109 [36]

Mono Craters 76.38 0.07 12.65 0.01 0.56 4.06 4.67 30 nd <20 120 [35]

Mammoth Mountain 70.37 0.33 15.73 0.26 0.77 5.67 4.78 1644 116 140 419 [37]

Glass Creek Flow 73.98 0.15 14.07 0.11 0.83 3.97 5.28 355 156 38 235 [38]

Deadman Creek 70.73 0.37 15.47 0.42 1.34 4.27 4.96 1182 126 178 358 [38]

Obsidian Dome 73.70 0.14 14.35 0.02 0.82 4.34 5.29 348 158 40 220 [39]

Bodie Hills

Bald Peak 76.67 0.10 13.30 0.18 0.78 2.31 5.93 66 321 154 80 [40]

Del Monte Canyon 75.18 0.20 13.40 0.35 1.52 3.24 4.25 881 126 305 66 [41]

Del Monte Canyon 72.95 0.26 14.08 0.77 2.07 3.36 4.46 934 135 347 106 [41]

Bodie Hills 73.99 0.21 14.11 0.44 1.39 3.52 4.87 724 183 256 108 [41]

Bodie Creek 72.09 0.26 15.14 0.57 2.12 3.82 4.31 877 196 412 139 [41]

Aurora Creek 75.46 0.18 13.58 0.36 1.12 3.33 4.86 976 187 139 109 [41]

Rock Springs Canyon 76.26 0.13 13.48 0.10 0.75 3.57 4.88 650 167 115 98 [41]

Coso

West Cactus 76.90 0.06 12.41 <0.01 0.35 4.45 4.40 8 330 3 105 [42]

East Sugarloaf 76.60 0.08 12.42 <0.01 0.36 4.36 4.24 nd 235 nd 90 [42]

South Sugarloaf 76.40 0.09 12.56 0.02 0.44 4.32 4.58 312 270 7 110 [42]

Joshua Ridge 76.70 0.09 12.45 0.02 0.41 4.34 4.61 55 210 11 135 [42]

Cactus Peak 76.40 0.05 12.43 <0.02 0.37 4.44 4.36 13 255 5 90 [42]

Because of this similarity in bulk composition, small variations in minor and trace
element composition at the 10s to 100s ppm level have been widely used for obsidian source
discrimination and provenance determination [15,43–49]. The determination of obsidian
trace element character has provided an important tool in assessing prehistoric trading
patterns across the Great Basin (e.g., [50–53]).

All of the common analytical techniques used to determine obsidian chemical com-
position (e.g., electron microprobe analysis, optical emission spectroscopy, X-ray fluores-
cence spectrometry [XRF], instrumental neutron activation analysis, inductively coupled
plasma mass spectrometry, scanning electron microscopy with energy dispersive X-ray
spectroscopy, and particle-induced X-ray emission) are time-consuming laboratory-based
techniques that, with the exception of XRF, cannot be used in the field. Analysis of obsidian
via handheld XRF analysis over the past decade has shown promise for obsidian prove-
nance attribution [54–59]. However, portable XRF analysis is limited by its inability to
analyze important elements of low atomic weight present in low concentration (e.g., Li, Be,
B, C, Na, and Mg). By contrast, because every element in the periodic table has one or more
emission lines in the ultraviolet, violet, visible, and near-infrared spectral regions between
200 and 900 nm, analysis via LIBS simultaneously captures the full elemental composition
of a sample with a single laser pulse and, therefore, is particularly suitable for obsidian
analysis.

Beginning with the work of Parks and Tieh [43], Jack and Carmichael [60], and Jack [61],
geochemical analysis has become a standard means of investigating obsidian artifact prove-
nance in California. Although small obsidian occurrences can be of uniform chemical
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character, it is not uncommon for obsidian domes and flows associated with large vol-
canic centers like those in Medicine Lake Highlands, Long Valley/Mono-Inyo, and the
Coso Range of California (Figure 1) to have sufficient compositional heterogeneity to be
distinguished on the basis of their trace element character [33,36,38,42]. Thus, there is
currently extensive geological and archaeological literature demonstrating that California
obsidian centers are generally of sufficiently distinct character to be distinguished on the
basis of their chemical composition (e.g., [15,42,62–65]). Variations in trace element compo-
sition, commonly evaluated on bivariate elemental or element ratio plots, have been used
routinely in this context, but advanced statistical analysis is becoming a more common
approach [11,12].
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3. Obsidian Sources and Archeological Sites in North-Central California

Obsidian is found extensively across California, with more than 50 different sources
documented in the US Obsidian Source Catalog of the Northwest Research Obsidian Studies
Laboratory [64]. Many of these occurrences were exploited for tools by prehistoric popu-
lations. Archaeological evidence suggests that the conveyance of obsidian occurred over
great distances within the California Culture Area [18,65–67] and that separate trading obsid-
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ian networks amongst prehistoric people in northern and south-central California [50,68].
It is generally considered that obsidian acquisition/use patterns in California shifted over
time [69,70] in response to both geological and climatic factors [71] and persisted into the
colonial period. For example, Native American people living at Mission San José (ca. CE
1797–1840) acquired obsidian using long-distance conveyance, i.e., geographic displace-
ment from its place of origin, from distant source areas as well as through recycling of
archaeological artifacts [72].

Archaeological studies within the Great Basin region have determined that eight pre-
dominant obsidian sources between the Bodie Hills and Death Valley were exploited by
prehistoric populations (Figures 1 and 2); Mt. Hicks and Truman/Queen in westernmost
Nevada and Bodie Hills; Mono/Inyo Craters, Glass Mountain, and Casa Diablo in the
Long Valley area; and Fish Springs, the Saline Range, and the Coso Range in eastern Cali-
fornia [19,50,70,73–78]. A pattern of obsidian source utilization and conveyance has been
recognized, with primary trade west across the Sierra Nevada from sources latitudinally
parallel to the Owens Valley. The Bodie Hills source dominates archaeological assemblages
in the northern area [18], with obsidian from the Casa Diablo site in Long Valley predomi-
nant in the southern area [18,79], although a variety of other sources are represented [80,81].
Within archaeological contexts in the southern San Joaquin Valley and throughout southern
California, obsidian derived from the Coso Range is most abundant [18,50,52,53,82,83].
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In this study, we analyzed obsidian from seven prominent geological sources: the
Medicine Lake Volcanic Center in northern California, the North Coast Ranges in west-
central California, plus the Bodie Hills, Long Valley Caldera and Mono-Inyo Craters area,
Fish Springs, the Saline Range, and the Coso Range in east-central California (Figure 1).
With the exception of three obsidian tools from the Long Valley area, the obsidian artifacts
included in this study (Figure 1) were debitage collected from anthropological contexts at
six sites in east-central California and a single site in western California. These samples are
from collections curated by California State University-Bakersfield and the US Bureau of
Land Management.

3.1. Medicine Lake Highlands, Northern California

Following the retreat of the Pleistocene glaciers from the southern Cascade Mountains,
Holocene volcanism at the Medicine Lake Highlands volcanic center in Modoc and Siskiyou
Counties (Figure 1) produced about 7.5 km3 of lava [84,85] that displays a broad range
of composition from 47 to 75 wt.% SiO2, with obsidian (>70% SiO2) erupted at 12 widely
dispersed locations. Prominent obsidian localities include Crater Glass Flow, Glass Flow,
Glass Mountain, Glass Mountain North, Glass Mountain South, Grouse Hill, Little Glass
Mountain, Grasshopper Flat, Lost Iron Wells, and Cougar Butte. Extensive chemical
analysis of the volcanic rocks of the Medicine Lake Highlands by Donnelly–Nolan [32]
documents minor and trace element variability among these different obsidian sources.

Obsidian from the Medicine Lake Highlands was a principal trade item and has
been found as far distant as the northwestern California coast [86]. From XRF analysis,
Hughes [87] was able to distinguish between the Glass Mountain, Lost Iron Wells, and
Grasshopper Flat obsidian sources on the basis of Sr-Zr variability. Analysis of obsidian
artifacts from the Squaw Creek and Lorenzen archaeological sites demonstrated that ob-
sidian from the Medicine Lake Highlands was being utilized for tools 8000 years ago by
Indigenous peoples in northern California and was a principal trade item that has been
found as far away as the northwestern coast and central valley of California [88].

3.2. North Coast Ranges

The North Coast Ranges consist of two parallel sets of mountains trending north from
San Francisco to northern Humboldt County (Figure 1). Obsidian here occurs in Napa and
Sonoma Counties and originated in the Sonoma volcanic field that produced a range of
mafic through silicic volcanic as a consequence of phreatomagmatic ash flows to dome
complex events occurring over the last 8 million years [34,89]. Obsidian fragments from
the volcanic field are found as clasts in the gravels of younger alluvial deposits along the
fringes of the volcanic domain. The three sites were sampled in this study: Annadel, Franz
Valley, and Napa Glass Mountain. The Annadel obsidian source is a quarry located in
Annadel State Park near Santa Rosa in Sonoma County, where dark, grey to black-banded
obsidian with a matte luster typically occurs as small pieces within a matrix of deeply
weathered brecciated perlite [90]. The obsidian source at Napa Glass Mountain, located near
St. Helena in Napa County, occurs in a matrix of tuff and perlite and is usually observed
as relatively small pieces throughout the ashy matrix [91]. This obsidian is typically dark
black and opaque, with a glossy to vitreous luster. Pumice-bearing ash flow tuffs outcrop
in an extensive area around the Franz Valley in Napa County [91], where a small dome is
characterized by green-brown obsidian with a vitreous luster that is similar to the Annadel
source in composition but chemically distinct from Napa Valley obsidians by elevated
Sr and Ba concentrations [92]. Several studies have concluded that both local sources in
the northern Coast Ranges, as well as more distant sources in the eastern Sierra Nevada,
contributed to the obsidian present at archaeological sites in the greater San Francisco Bay
area [51,61,92,93] and that obsidian from local sources dominated during colonial time
compared to earlier pre-historic era [18,94,95]. It is notable that projectile points of Franz
Valley obsidian are documented at site CA-MRN-307 [96], whereas obsidian artifacts from
site CA-SMA-113 in the Quiroste Valley Cultural Preserve, some 150 km to the south of the
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Sonoma Volcanic Field, have been attributed to the Annadel source in Napa Valley on the
basis of Sr-Zr and Rb-Sr elemental composition [97].

3.3. East-Central California

The geology of east-central California is characterized by Tertiary volcanic overlying
pre-Cretaceous granitic rock that intruded into a basement of older gneiss and schist [98,99].
Present-day topography reflects a complex landscape shaped primarily by Tertiary-Late
Pleistocene volcanism and episodic erosion during the Oligocene, Miocene, and Pliocene
epochs. Volcanic rocks include plugs, lava flows, and tuffs that are predominately dacitic
but range in composition from basalt to rhyolite [100]. Several large occurrences of glassy
obsidian associated with late Cenozoic to recent volcanism are present on the eastern side of
the Sierra Nevada [50,101,102]. From north to south, these include the Bodie Hills, Mount
Hicks, Truman Meadows/Queen Valley Mono Craters, Glass Mountain, and Casa Diablo
locations in Mono County, plus the Fish Springs, Saline Range, and Coso Range in Inyo
County. A variety of archaeological studies detail the expedient and local use of obsidian
from a variety of sources, including those exhibiting lower-quality toolstone-grade material.
However, a small number of obsidian quarries supplied most of precolonial west-central
and southwestern California [19,61,70,73–75,77]. While many variables likely influenced
the distribution of obsidian prehistorically, geographic proximity seems to have been a
major driver, with the distance decay model explaining obsidian distributions fairly well.

3.3.1. Bodie Hills

The Bodie Hills are located on the western fringe of the Great Basin physiographic province
approximately 30 km north of Mono Lake in Mono County, California (Figures 1 and 2). The
underlying geologic structure of the Bodie Hills comprises Tertiary volcanics intruding onto
a Paleozoic and Mesozoic basement. Created during the middle to late Miocene time [103],
the Bodie Hills volcanic field is a large (>700 km2) and episodic eruptive complex [41]
located north of Mono Lake and east of Bridgeport. Four trachyandesite stratovolcanoes
formed along the margins of the volcanic field, and numerous silicic trachyandesite to
rhyolite flow dome complexes were erupted more centrally. The extant topography reflects
a complex geologic landscape shaped primarily by volcanism and episodic erosion during
the Oligocene–Pliocene time [98,104]. Natural obsidian occurrences in the Bodie Hills
area take two forms, either discrete terrace outcrops eroding from steep hillsides or as
fluvially/alluvially deposited lag flows [105].

The Bodie Hills contain one of the most archaeologically significant obsidian sources in
California prehistory. This obsidian source has a well-documented period of utilization that
began during the terminal Pleistocene/early Holocene and continued through the contact
period [106–108]. Obsidian artifacts from the Bodie Hills were extensively exported and
have been identified in archaeological deposits throughout northern California and into cen-
tral and southern California [95,105,108–110] and as far west as the Pacific coast [109,111].
The Bodie Hills obsidian source (CA-MNO-4527) was first described geochemically by Jack
and Carmichael [60] and archaeologically by Singer and Ericson [109], who identified the
minimal spatial extent of the geological obsidian deposit, noted the variation in obsidian
macro-attributes, and proposed a utilization curve based on an obsidian hydration analysis
of what they described as the main quarry area. That study identified the main source to
contain 8 km2 of culturally modified material derived from three primary outcrops. Subse-
quent research by Halford [105] identified eight additional primary outcrops in two loci,
termed Bodie Hills North and Bodie Hills West, as well as a substantial cobble flow trailing
from them. Field surveys during those studies identified 9 km2 of previously unreported
obsidian deposits. In total, 14 km2 of flakestone-viable obsidian deposits from 14 primary
outcrops have been identified within the Bodie Hills [105]. Singer and Ericson [109] did
not attempt to segregate obsidian subsources within the Bodie Hills deposit, although they
did note differences in obsidian macroscopic attributes and reasoned that these were likely
reflective of variations in trace chemical composition. Bettinger et al. [19] observed that
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Bodie Hills obsidian exhibits a dominant gray-green banding interspersed with clear bands
containing minute black and white phenocrysts. To date, there have been no attempts to
identify geochemically discrete subsources within the Bodie Hills obsidian source. It is
unknown if 7 of the 14 culturally significant outcrops sampled for this study represent a
uniform source or distinct subsources.

3.3.2. Long Valley Caldera and Mono-Inyo Craters

The Long Valley caldera and the Mono-Inyo Craters volcanic chain are located in
eastern California between the Sierra Nevada escarpment and the western edge of the
Basin and Range province (Figure 1). This region has been volcanically active over the
last 3.5 million years from late Tertiary times to the present due to crustal extension and
consequent decompression melting [112]. The first silicic eruptions that produced obsidian
occurred from 2.2 to 0.8 Ma (1 Ma = 106 years B.P.) in the vicinity of Glass Mountain within
the Long Valley caldera [112–114] formed from the eruption of the 600 km3 Bishop Tuff
760,000 years ago. The caldera-forming eruption was followed by Lookout Mountain’s early
rhyolites at 760 to 650 Ka (1 Ka = 103 years B.P.). Recent rhyolitic eruptions over the past
50,000 years produced the Mono-Inyo Craters lineament of some 30 rhyolite centers along a
volcanic chain localized along a narrow fissure system extending from north of Mammoth
Mountain through the western moat of Long Valley caldera to Mono Lake [112,115,116]
and include Obsidian Dome, Glass Creek Dome, Mono Craters, Wilson Bute, Deadman
Creek Dome, and Panum Crater obsidian sources sampled in this study. The majority of
these domes are Holocene in age, with the youngest eruptions occurring at the northern
end of the chain less than a thousand years ago [115,117].

Analogous to the situation at the Medicine Lake Highlands, a diversity of rhyolite
compositions erupted across the Long Valley/Mono–Inyo magmatic system. The Casa
Diablo obsidian source consists of many discrete outcrops comprising more than 8 km2

of geological exposure within more than 300 km2 of the caldera, occurring as obsidian
eroding from the margins of resurgent rhyolitic domes, as secondary deposits of water-
worn obsidian cobbles within Pleistocene lake sediments, and as airflow beds containing
smaller clast-sized obsidian that typically is insufficiently large to function as a source for
flaked stone tools [116].

Deposits containing obsidian nodules occur widely on Glass Mountain and in its vicin-
ity [71]. Although its use was primarily local, Glass Mountain obsidian has been recognized
at sites in the western Sierra Nevada Mountains and in the Central Valley, California [117].
Hughes [63] argued that obsidian from Glass Mountain could be distinguished from the
obsidian that erupted during the last millennium at Mono Craters based on differences
in Mn-Zr character determined by laboratory XRF analysis, and Hughes [118] observed
differences in the Sr-Ti-Ba character of obsidians from three different portions of the Casa
Diablo source at Lookout Mountain. Three obsidian artifacts found in the Long Valley
caldera but of unknown source were included in this study: a small projectile point, biface,
and edge-modified flake tool.

3.3.3. Saline Range and Inyo Mountains

The Saline Range is a low-lying mountain range in Inyo County, California, of vol-
canic origin that is bounded by Eureka Valley to the north and Saline Valley to the south
(Figures 1 and 2). Beginning about 4 Ma, during late Neogene time, volcanic rocks, in-
cluding obsidian-bearing rhyolitic flows and tuffs, were emplaced in the northwestern
portion of the Saline Range over a pre-existing topography consisting of Proterozoic and
Paleozoic marine sediments, Mesozoic plutons, and Cenozoic volcanic and sedimentary
rocks that was disrupted later by Basin and Range faulting to create complex outcrop
patterns [119–121]. Volcanic rocks that include the obsidians analyzed in this study are
located on the northeastern part of Saline Valley along the eastern base of the Saline Range
on the west side of Steele Pass. The age of the obsidian is not known, but the felsic
rocks in the region generally underlie more basic extrusive Pliocene and early Quaternary
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caprocks [122,123]. The Inyo Mountains are a N-S trending fault-block that forms the
eastern boundary of the Owens Valley and the western boundary of Saline Valley.

Alluvial deposits containing obsidian nodules and debitage have been known in
the eastern arm of Saline Valley and adjacent Inyo Mountains since the mid-1970s [124],
with outcrops of obsidian-bearing Pliocene rhyolite flows and ash flow tuffs identified on
the western side of the Saline Range and in remote areas of the volcanic tableland in the
Steele Pass area in the mid-late 1990s [125]. Saline Range obsidian has been considered
a source of archaeological obsidian [126,127]. Early archaeological investigations in the
adjacent Owens Valley identified multiple types of obsidian toolstone material. Subsequent
geochemical research postulated three subsources for Saline Range obsidian based on Sr-Zr
and Sr-Ba relationships [65]. Additional archaeological studies at the Eureka Dunes and
in the Inyo Mountains identified another unrecognized obsidian source, Eureka Dunes
Unknown. It is thought that geochemically distinct subsources originate from within
the Saline Range [125]; although archaeological studies designed to spatially define the
geological sources and their physical extent were never completed.

Archaeological obsidian has been recognized at multiple montane sites in east–central
California. Three high-elevation sites (CA-170-08-00-S11, CA-170-08-00-S15, and CA-170-
08-00-S21) located in the Inyo Mountains were documented during a high-elevation archae-
ological investigation [128]. Located mid-slope on a north-facing aspect, just west of the
Inyo Mountain crest, site CA-170-08-00-S11 is a substantial high-elevation prehistoric site
containing 35 fragmentary flaked tools and 400 debitage specimens. The associated artifact
deposit evidences high–elevation resource procurement that spanned more than 3500 years.
Activities within the site focused on stone tool production and repair, likely associated
with large mammal hunting. Site CA-170-08-00-S15 is a large, high-elevation prehistoric
site composed of 39 formal flake tools and a large, variable-density, lithic debitage scatter
covering nearly three acres. The artifact deposit evidences frequent and continuous use
from the terminal Pleistocene through the late Holocene. Site CA-170-08-00-S21 is an exten-
sive high-elevation prehistoric habitation site containing a diverse assemblage of artifacts
and features. This resource dates to the last thousand years, with most of the assemblage
associated with activities spanning the last 650 years.

3.3.4. Fish Springs

The Quaternary Big Pine volcanic field, located in the Owens Valley between the
towns of Big Pine and Independence (Figures 1 and 2), consists of about 40 volcanic vents
that cover an area of approximately 500 km2 and were active between 1.2 Ma to 16 Ka [129].
A single coulée composed of homogeneous high-silica rhyolite [130] dated at 0.99 Ma [131]
is present in the vicinity of Fish Springs. The outer portions of the coulee are composed of
felsitic rhyolite, with internal portions consisting of pumiceous perlite containing obsidian
nodules [132]. Known as ta’kapi by the Owens Valley Paiute [133], this high-silica rhyolite
has been utilized for tools locally since prehistoric times [76]. Nodular obsidian suitable for
toolstone also occurs in small pumiceous perlite domes disturbed by historic mining [134]
and has been observed as nodules in alluvial sediments along slopes of the adjacent volcanic
hill [102]. Stevens [135] notes that Fish Springs obsidian is common at high-elevation sites
in the southern Sierra Nevada Mountains 20 km or more to the west, and a few Fish Springs
obsidian artifacts have been reported in Death Valley [136]. Bettinger et al. [19] note that
much of Fish Springs obsidian has a green hue, varies from near-transparent to near-opaque
in character with the transition marked by contorted flow bands, and contains abundant
black and white phenocrysts. Instrumental neutron activation analysis (INAA) by Eerkens
and Glascock [102] suggests that the Fish Springs obsidian can be distinguished from other
west-central obsidian sources on the basis of trace element character.

3.3.5. Coso Range

The Coso Range lies at the western edge of the Basin and Range physiographic
province some 280 km southeast of Mono Lake (Figures 1 and 2) in an area underlain by
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plutonic and metamorphic rocks of Mesozoic age that have a thin Plio-Pleistocene volcanic
and sedimentary cover. Within the Coso Range, the Coso volcanic field (CVF) contains
volcanic features ranging from pyroclastic deposits, explosion craters, debris flows, and
rhyolite domes [137]. Volcanic rocks having a wide range of compositions were erupted
over the last 6 Ma [138]. Volcanism was episodic, with eruptions in particular locations
of the volcanic field separated by periods of inactivity. For example, basaltic to rhyolitic
eruptions occurred in the eastern Coso Range between 4 to 3 Ma, which was followed by
a quiescent period of inactivity from 3 to 2.1 Ma [137,138]. Volcanism in the Coso Range
continued until the late Pleistocene time [137,139].

The CVF contains at least 38 high-silica rhyolite volcanic extrusions of the Late Pleis-
tocene age [42] that occur most commonly as steep-sided domes and less frequently as lava
flows erupted onto the pre-Cenozoic basement rocks. Primary obsidian occurs in thick
flow bands emanating from steep rhyolite domes. Younger volcanic rocks cover most of
the southwesterly and northwesterly areas of the CVF obsidian domes, and some domes
are surrounded by rings of pyroclastic deposits consisting of obsidian, pumiceous rhyolite,
and small amounts of basement rock [140]. Occasionally, lava domes amalgamate to form
compound structures, of which the Sugarloaf Mountain complex is the largest. Because
of their youthfulness, most CVF domes and flows are still covered with a blocky glassy
pumiceous carapace so that their obsidian interior is only exposed in roadcuts or quarries,
if exposed at all.

As noted in Table 1, CVF obsidians are crystal-poor, high-silica, metaluminous rhyo-
lites that contain 77 ± 0.6% SiO2 [42] that are broadly similar in major element composition
to obsidian present at other rhyolite centers in eastern California and western Nevada [60],
including those examined in this study. On the basis of K-Ar geochronology [137] and
geochemical character [42], the CVF rhyolites can be divided into different groups (Figure 3)
that were progressively erupted at c. 1040 ± 20 Ka, 587 ± 18 Ka, 235 ± 25 Ka, 170 ± 11 Ka,
160 ± 30 Ka, 89 ± 10 Ka, and 63 ± 9 Ka. Bacon et al. [42] noted that the dome and flow
surface morphology, geological field relationships, and age dating results indicate that each
rhyolite group consists of essentially coeval extrusions that occurred in time spans that
were very short compared to the overall length of CVF magmatism.

The two oldest domes, with ages of 1040 Ka and 587 Ka, not shown in Figure 3,
are small outcrops in the far northeast and central areas of the CVF that are much more
extensively eroded than other CVF rhyolites. At least eight individual rhyolite bodies of
intermediate size are scattered across the north-central portion of the CVF and comprise the
235 Ka suite. The three members of the 170 Ka group are small rhyolite bodies, one located
in the far north and the other two present in the far south of the CVF. Bacon et al. [42]
point out that one group of very geochemically similar rhyolites, consisting of four domes
including South Sugarloaf Mountain and one extensive lava flow in the center of the CVF
could not be dated by the K-Ar method with an acceptable precision. An age of 160 Ka was
assigned to this rhyolite suite based on the obsidian hydration rind thickness and because
geological field evidence suggests that these outcrops were closer in age to the 170 Ka suite
than to the younger rhyolite group erupted at 89 Ka. Three large domes in the Joshua Ridge
area in the southern portion of the CVF comprise the 89 Ka group. The 15 youngest domes
and flows comprise an arcuate pattern from north to south in the middle zone of the CVF
and were formed at 63 Ka. Included in this group are the large domes of Cactus Peak and
Sugarloaf Mountain (termed East Sugarloaf Mountain in Figure 3) that were emplaced
through the older South Sugarloaf Mountain dome.

The eruptive history of the CVF, with most domes and flows of all rhyolite groups
except the oldest dome venting near the center of the field, has produced a complex
spatial distribution of domes and flows in which domes and flows of different ages are
intermingled in close proximity (Figure 3). In a comprehensive geological and geochemical
examination of the CVF, based on the previous age control of Duffield et al. [137], the
distribution of CVF rhyolites was explained by Bacon et al. [42] in terms of an emplacement
model in which a long-lived central magma reservoir was present beneath the Coso Range
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that episodically vented throughout the course of its compositional evolution history
directly above its center, but with dikes radiating from the central magma chamber that
formed outlying domes. The subtle variations in trace element composition observed within
the CVF obsidian suite by Bacon et al. [42] are considered to be characteristic of specific
batches of magma, erupted at different times, which had undergone slightly different
degrees of crystal fractionation and chemical differentiation within the main subcrustal
magma reservoir. This situation, which has resulted in the juxtaposition of domes and
flows of different geological ages, makes the archaeological attempt to identify the different
CVF obsidian subsources on some basis other than direct age dating quite challenging and
has generated an extensive discussion in the literature about the number and character of
archaeologically significant CVF subsources [11,12,53,61,63,70,77,141–145].
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The CVF as a source for archaeological obsidian, first noted by Farmer [146], Heizer
and Treganza [147], and Harrington [148], has been extensively discussed over the past
half-century, beginning with Jack and Carmichael [60]. Many of the CVF rhyolite localities
and pyroclastic deposits contain workable obsidian glass that has been quarried for tools
by the indigenous population, as documented from excavation at 34 CVF sites [52,53].
CFV obsidian was extracted from numerous small quarries and pebble lag deposits [143]
both before and after the arrival of bow-and-arrow technology some 1500 years ago for
both use and trade [149]. Rochester Cave is a reduction site located < 2 km distant from
Sugarloaf Mountain. Another set of artifact samples attributed to the CVF is present at Rose
Spring in the Rose Valley, a N-S trending valley located just south of Owens Valley ~15 km
northwest of the Coso Range [150]. The Rose Spring site, which was a locus of cultural
activity multiple times during the past 2000 years [53,151], is located near the northern
end of the Rose Valley and is the type site for the Rose Springs series of arrow points [152].
Widespread geographic conveyance of CVF obsidian has been recognized by the presence
of Coso obsidian artifacts from pre-historic sites in both central and southern California
and throughout southwestern United States [18,50,52,53,68,70,77,82,83,153].
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3.4. Oak Flat

The Oak Flat archaeological site is in the foothills of the Cuyama Valley of the Sierra
Madre Range in Santa Barbara County (Figure 1). Occupation sites in Cuyama Valley are
reported to be from the Chumash Middle Period between 3000 to 2000 years ago [154].
Flaked stone is abundant at Oak Flat, represented by various types of cryptocrystalline
rock and obsidian of unknown origin [155].

4. Analytical Methodology
4.1. LIBS Analysis

The samples used for this study came from two sources. Sets of geological obsidian
from the Medicine Lake Highlands and the Northern Coast Ranges were provided by the
US Geological Survey (Menlo Park, CA, USA). Some samples from the Coso Range came
from the collection of California State University-Bakersfield. Samples from the Bodie Hills,
Long Valley/Mono-Inyo, Saline Hills, and Fish Springs and a portion of those from the
Coso Range were collected by the authors. Obsidian tools from Long Valley were provided
by the US Geological Survey (Menlo Park), while flakes of obsidian debitage from Bodie
Hills, Fish Springs, Inyo Mountains, Rose Springs, Rochester Cave, and Oak Flat came
from collections curated by the US Bureau of Land Management (Bishop, CA, USA) and
California State University-Bakersfield.

LIBS is an application of atomic emission spectroscopy in which a high-energy, short-
duration pulsed laser beam is focused on a material to cause material ablation and the
generation of a high-temperature microplasma containing its constituent elements on the
sample surface. The subsequent dissociation and ionization of small amounts of material
within the plasma leads to the generation of continuum and atomic/ionic emission across
UV-visible-near IR wavelengths during cooling. Spectral analysis of this light is used
to detect the elements present. LIBS is capable of qualitative, semi-quantitative, and
quantitative analysis.

The work reported here utilized a SciAps, Inc. (Woburn, MA, USA) Z-300 series
handheld LIBS analyzer. This instrument uses a proprietary pumped solid-state 1064 nm
Nd-YAG pulsed nanosecond laser that generates a 6 mJ laser pulse with a nominal 100 µm
beam size at a 10-Hz firing rate. It has a built-in camera for beam targeting and the capability
to flow an inert gas (typically Ar) across the sample surface for plasma confinement and
signal enhancement. The light signal from the plasma emission is collected, typically after
a 650 ns delay over a 1 ms integration time, and passed by fiber optic cable into three
spectrometers with time-gated, charge-coupled diode detectors having respective spectral
ranges and resolutions of 190 to 365 nm with a full-width half maximum (FWHM) value
of 0.18 nm, 365 to 620 nm with an FWHM value of 0.24 nm, and 620 to 950 nm with an
FWHM value of 0.35 nm. This analytical procedure produces a composite broadband LIBS
spectrum over the 23,432 channels of the spectrometer, such as that shown in Figure 4.

The 3D translational stage that permits rastering the laser beam across the surface of a
sample is computer-controlled for automatic adjustment of the laser focus at each sample
location. Automated stage movement permits analysis over a 2 × 2 cm area, with the raster
pattern, spacing, and number of laser shots at each location determined by the user. For
this study, four laser shots for data collection were taken at each point on five different
4 × 3 point grids covering an area of approximately 1.0 × 0.7 mm, following two laser
shots for sample surface cleaning. The 48 accumulated individual analyses were averaged
to produce a composite LIBS spectrum, such as that shown in Figure 4, with five such
average spectra acquired from fresh obsidian flakes for each sample. These broadband
LIBS emission spectra provide a spectral geochemical fingerprint that includes all elements
present in the sample above their intrinsic limits of detection by LIBS.

Typically, some 20 elements are present at significant emission intensity in our suite
of obsidian LIBS spectra—H, Li, C, O, Na, Mg, Si, Al, K, Ca, Ti, V, Mn, Fe, Rb, Sr, Ba, La,
and Y. The presence of a substantial H emission peak in all our obsidian spectra raises the
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intriguing possibility that LIBS analysis could be used to quantitatively measure the water
content of obsidian.
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and K, 0.5 to 0.7% Fe and Ca, and ~300 ppm Mg and Rb. The Ar peaks in the infrared portion of
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handheld analyzer for the LIBS analysis.

4.2. Data Processing and Chemometric Analysis

The foundation for this study is that the concept of LIBS geochemical fingerprinting,
i.e., that the full LIBS broadband spectrum or a sufficiently large portion thereof, contains
sufficient compositional information to provide a unique chemical description of any partic-
ular sample. Thus, if advanced statistical signal processing and classification techniques are
applied to a sufficiently robust spectral data set, it should be possible to distinguish samples
of the same kind originating from one place from those originating in another. Obsidian
is a particularly challenging material for such geochemical finger printing because it is a
high-Si, rhyolitic glass that tends to have similar bulk composition wherever found, and
it is only on the basis of minor- and trace-element compositions that obsidian of different
provenance can be distinguished. We have approached this challenge using chemometric
analysis of broadband LIBS spectra.

Chemometrics comprise a diverse group of techniques for the statistical treatment of
chemical data, particularly the very large data sets obtained using many different kinds of
spectroscopy [156,157]. The impact of this approach may be particularly profound with
LIBS data because it considers the entire content of a broadband LIBS spectrum or suite of
related LIBS spectra, thereby utilizing all of the information contained therein rather than
considering just a small number of user-selected spectral features. Details of the procedures
used in this study for statistical signal processing and chemometric analysis have been
described in detail by Harmon et al. [158] and are not repeated here. Data for each of the
spectral processing and classification tasks in this study took the form of LIBS broadband
spectra of the type shown in Figure 4.
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In our sample classification and discrimination analysis, samples refer to individual
items in a set of similar objects (i.e., LIBS spectra) for which a label is desired (e.g., source
of origin), and classes refer to the sample groups that are to be discriminated (i.e., obsidian
sources or artifact locations). Each observation is a single normalized LIBS spectrum for a
particular sample. The central chemometric task for this study is sample discrimination,
which requires the development of a set of mathematical features that characterize each
sample within a population, in this instance, the LIBS plasma emission intensities at the
different spectral wavelengths of the broadband spectrum. The only requirement for a
feature is that it must consistently have the same meaning for each input to the classifier. So,
for example, if a specific feature for one sample is the Si emission line intensity at 288.16 nm
in the LIBS spectrum, then that feature must be the intensity for the same spectral emission
line for all samples.

4.2.1. Data Preprocessing

The first stage of data preprocessing of acquired LIBS spectra consisted of two parts:
baseline correction and Ar line removal. Baseline correction consisted of first estimating the
baseline (i.e., the portion of the spectrum that is not informative) and subtracting it from
the original spectrum. The baseline was estimated by first using a Hampel filter [159] to
remove any strong emission line magnitudes. The Hampel filter uses a sliding window
in which the data surrounding an emission line is used to calculate the median absolute
deviation (MAD). If the magnitude of the emission line is greater than a factor of the MAD
(factor = 3 for this study), the magnitude is replaced with the MAD. The sliding window
size used for the Hampel filter was 2% of the spectrum length.

Once the non-informative peaks were removed, the baseline estimate was smoothed
using a sliding median window with a window size equal to 0.5% of the spectrum length.
Smoothing was included to generate a baseline estimate that captured constant offsets or
gradual drifts in magnitude (i.e., low-frequency effects) rather than any high-frequency
variations in emission line magnitudes since subtracting the latter might eliminate infor-
mative but low-magnitude emission line responses. Baselines were estimated for each
spectrum and subtracted. Once the baseline was removed, the spectrum was clipped to
remove Ar spectral lines between 675 and 935 nm (Figure 4).

Rather than using a priori knowledge of the elements that are hypothesized to dis-
tinguish samples from different sources, classifiers develop statistical models based on
the behavior of each spectral feature and then, based on these models, determine which
features are most important for the discrimination between the classes of samples to be
labeled. No a priori knowledge of composition is required for discrimination, so it is possi-
ble to examine the features that the classifier used to make its decisions once a classifier is
trained and, thereby, acquire an estimate of the compositional differences by which samples
were discriminated.

The performance of any classification approach is dependent on both the within-class
and across-class variability of the measurements. The former defines the ability to model
a particular class by asking the question: Does the training data set fully represent the
test data set? On the other hand, the latter indicates how well the differences between
classes upon which the classification decision rests are modeled. Classes will be completely
discriminable if the clusters of their populations do not overlap within feature space. If the
within-class variability is high (i.e., the population cluster is large), a class is more likely
to overlap with other similar classes, thereby reducing classification performance. If the
across-class variability is small (i.e., the population clusters are close together), then the
classes are more likely to overlap, thus reducing classification performance.

Variability also influences the number of samples necessary for the adequate modeling
of each class and estimating the decision boundaries between classes. High within-class
variability requires a large number of samples to ensure that the training data adequately
represent the actual population. Low across-class variability requires a higher number of
samples in order to ensure that the most accurate decision boundary between the classes is
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determined. The latter can be conceptualized by thinking of two classes with clusters that
are well-separated in feature space. Any number of lines can be drawn between the two
classes to separate them. However, as the class clusters become closer and closer together,
the number of lines that maximize accurate separation (i.e., classification accuracy) becomes
fewer and fewer, and the number of samples necessary to ensure that the best separation
line is estimated increases.

4.2.2. Spectral Similarity

A requirement for high-quality handheld LIBS analysis is that the surface presented
to the instrument faceplate be flat so that the laser beam strikes the sample surface or-
thogonally. Spectral emission intensities will be diminished when this is not the case. In
this study, each obsidian flake analyzed was in its natural form (i.e., a conchoidal surface
with a degree of flatness that depended on the size of the flake). Thus, a high degree of
signal-to-noise ratio (SNR), i.e., the magnitude of a LIBS emission line compared to the
level of background noise, variation was observed. The inclusion of low SNR spectra could
potentially confound the modeling of the classes by increasing within-class variability.
Given the low cost of measuring spectra with the handheld LIBS system, a large number
of spectra were collected, and a second stage of preprocessing was added to detect and
discard low SNR spectra.

Low SNR spectra were detected using a similarity analysis where similarity was
measured as the pairwise correlation distance, which is defined as the Pearson correlation
coefficient between two spectra subtracted from one:

Cm, n = 1 − ∑W
i=1
(
sm

i − sm
)(

sn
i − sn

)√
∑W

i=1
(
sm

i − sm
)2

∑W
i=1
(
sn

i − sn
)2

where Cm,n is the pairwise correlation distance between spectra m and n, si is the emission
magnitude at wavelength i, s is the average emission magnitude across the spectrum,
and W is the number of emission lines. For each of the five obsidian pieces analyzed
for every sample, the pairwise correlation distance between spectra was calculated. For
each spectrum, the median correlation distance with the other spectra was compared to a
threshold. If the median correlation distance was greater than the threshold, the spectrum
was rejected as too dissimilar. If more than 50% of the spectra for a piece were rejected,
all the spectra were rejected for that piece. This second restriction was added with the
reasoning that if less than 50% of the spectra for a piece were similar, the true spectral
representation for that piece is likely unknown.

The threshold for the correlation distance was chosen as 0.02 based on the probability
density functions (PDFs) of the median correlation distances for each of the obsidian sources
(Figure 5). For each source, the median correlation distances for all of the spectra were
used to estimate the PDF using kernel density estimation. Note that the majority of spectra
for each source have median correlation distances below 0.02 (the maxima of the PDFs
are generally less than 0.02), with some scattered peaks at greater correlation distances,
likely indicating low SNR spectra. A post hoc analysis was conducted at the conclusion
of the source discrimination study (see Section 5.1.3), which validated the selection of this
threshold for these data.

Overall, 28.6% of the spectra that were collected for this study were rejected. With this
spectra rejection technique, it is possible to remove entire samples from the data set if all
the pieces’ spectra from a sample of obsidian are rejected; however, using this threshold
did not result in any sample removal. Table 2 lists the percentage of samples, pieces, and
spectra that were rejected by class. Spectral rejection was spread somewhat unevenly across
the classes: 40.6% for Fish Springs, 37.3% for the Medicine Lake Highlands, 34.1% for Bodie
Hills, 33.9% for the North Coast Ranges, 32.3% for Long Valley/Mono-Inyo, 30.0% for the
Saline Range, and 15.9% for Coso (Table 2).
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Figure 5. Plot showing the probability density functions (PDFs) of the median correlation distances
for each of the seven obsidian sources as a measure of the intra-sample variability of the LIBS spectra.

Table 2. Percent of data removed per source by spectra rejection preprocessing using a threshold = 0.02.

Source Samples Pieces Spectra

Bodie Hills 0% 15.0% 34.1%

Coso 0% 3.2% 15.9%

Fish Springs 0% 23.6% 40.6%

Long Valley/Mono-Inyo 0% 17.5% 32.3%

Medicine Lake Highlands 0% 20.7% 37.3%

North Coast Ranges 0% 15.4% 33.9%

Saline Range 0% 14.1% 30.0%

4.2.3. Visualization

Principal component analysis (PCA) is a technique that transforms data via linear
combinations of the features such that each successive component explains the greatest
amount of variance remaining in the data (e.g., the first component explains the greatest
amount of variance possible via linear transformation and the second component represents
the greatest amount of the remaining variance). In this way, PCA is primarily used for
dimension and noise reduction [160]. A small number of components can capture a large
amount of the information in a data set and, thereby, provide a means to reduce the number
of features or dimensions of a spectral dataset. If the data dimensions are reduced to two or
three, PCA can also be used to visualize high-dimensional data by plotting the transformed
features (i.e., the PC scores). A 2D or 3D score plot can be used to graphically display
the degree of clustering of LIBS spectra from the same class and the separation between
samples of different classes. In operation, each principal component is an array of weights
that is the same dimension as the spectrum length. A PC score for a spectrum is the sum of
the multiplication of these weights and the emission magnitudes for that spectrum. The
weights approach zero for wavelengths that have relatively constant magnitudes across
spectra and increase in magnitude as the variance in emission line magnitudes increases.
Thus, data from wavelengths that are uninformative (i.e., that do not change regardless of
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the sample under measurement) are discarded via the multiplication of zero weights, and
data from informative wavelengths are emphasized via the multiplication of large weights.
Although a similar process could be performed by picking individual wavelengths based
on the variance of the magnitudes, PCA is a more efficient approach that selects multiple
informative wavelengths simultaneously per component. Thus, while a few components
may well represent the data, this does not necessarily equate to a few spectral peaks
representing the data.

PCA score plots are analogous to typical bivariate geochemical diagrams since samples
of similar composition will lie close together on the plots, and compositionally dissimilar
samples will lie far apart. Given these characteristics, PCA score plots also provide a means
of outlier rejection through observation.

4.2.4. Sample Classification/Discrimination

In classification problems, such as our obsidian discrimination application, the chemo-
metric task is to create a mathematical model for a suite of LIBS spectral measurements
that can assign a set of observations for each sample to its appropriate class. In this study,
we used a supervised approach in which the correct class labels are known for each obser-
vation. While the labels are necessary for training, once a classifier is trained, no labels are
necessary to use the classifier to predict the class of newly collected data.

The method used to select data for training and testing is particularly important
because it affects the robustness and validity of the classification performance. In this
study, retrospective data are used for training and assessing the accuracy of the classifier.
However, it is important that using this approach avoids data leakage between training
and testing such that the classifier does not receive information about the test data during
the training phase. Thus, the same observations cannot be used simultaneously for both
training and testing since the classifier would be provided with a priori information about
the test data. Cross-validation provides a principled approach to address this issue. The
cross-validation technique of k-folds is a partition approach in which data are randomly
partitioned into different groups. Then, multiple train/test operations are performed, one
for each partition of data. Initially, a partition of data is selected as the test data set, and all
of the remaining partitions are used for training the classifier. This process is repeated until
each partition has been used for testing.

Although it is possible to split the data at random into folds, when multiple observa-
tions occur per sample, as in this study, it is necessary to split the data into pseudo-random
folds such that all the observations for a particular sample occur in the same fold. In this
way, the classifier is not both trained and tested on observations of the same sample, and
no data leakage occurs. A sample-based, stratified approach was used to generate the folds
such that, where possible, an equal number of samples per class were placed into each fold,
and all observations for any one sample occurred in the same fold.

The result after all the partitions have been processed is that each spectrum in the data
set has received one set of classifier confidences. For example, with a 7-class classification
schema, a spectrum would have seven confidences, with each value indicating the con-
fidence that the spectrum belongs to one of the seven classes. Using this spectra-based
approach to classification results in multiple responses per sample where a single class
assignment per sample is desired. To reduce the multiple responses into a single response
per sample, the class confidences are averaged across all the sample’s observations, and the
class with the highest average confidence is used for class assignment.

Although the number of spectra collected in this study was large, the number of
samples for several of the classes was small, and a concern for small data sets is that the
classification accuracy can be influenced by which samples are grouped together into each
fold. For this reason, multiple iterations of k-folds were used to generate a distribution
of classifier performance. For both the source discrimination and Coso sub-source dis-
crimination, 50 iterations were used to estimate the classifier performance distribution.
Five-fold cross-validation was used for the source discrimination, but the number of folds
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was reduced to three for the Coso sub-source discrimination due to the small number of
samples for some of the sub-sources.

PLSDA is a machine learning tool for multivariate discrimination that can be used for
data classification [161,162] and to statistically model the structure between sample obser-
vations and class labels in order to provide classification discrimination. As a supervised
technique, PLSDA uses data with assigned group labels to train a classifier. In PLSDA,
high-dimensional sample data are regressed to a categorical matrix that uses a linear model
to generate predictor variables, termed latent variables (LV). The LV are linear combina-
tions of the original variables that will ensure the maximum covariance between sample
groups in the model and, therefore, allow graphical visualization and understanding of
the different patterns within the data and their relationships through plots of LV scores
and loadings. PLSDA searches for a subspace in which information from the independent
variables, the samples, can be projected onto dependent variables, the group labels, such
that the covariance between the independent and dependent variables is maximized. This
creates a model for transforming additional samples into estimates of group labels. The
model consists of loadings and regression weights that relate to different features of the
samples [163]. The loadings and regression weights can be considered measures of the
importance of different features [164], with the assumption that larger magnitude loadings
and regression weights indicate a stronger impact on the model. The number of LVs can
be adjusted to maximize the classification accuracy via a cross-validation approach. The
model then calculates the predicted probability that a sample belongs to each group in the
model using Bayesian statistics. The performance of the classifier can then be tested by
inputting additional data to assess the accuracy of the output group labels.

Partial Least Squares Discriminant Analysis (PLSDA) was used for classification.
PLSDA is an extension of the Partial Least Squares (PLS) regression algorithm that provides
discrete class responses rather than regression estimates. The implementation of PLSDA
used in this study is based on the SIMPLS algorithm [165] and was developed using
open-source software available at https://github.com/covartech/PRT (accessed on 26
September 2023).

5. Results
5.1. Obsidian Sources
5.1.1. Source Similarity

As noted in Table 1 and discussed in Section 2.2 above, high-silica rhyolite obsidian
has a broadly similar chemical composition wherever it is erupted. Thus, the average
broadband LIBS spectra for our seven California obsidian sources are likewise broadly
similar. Though there are small differences between spectra, it is difficult to distinguish
the four spectra without careful visual inspection (Figure 6). Chemometric analysis of our
LIBS spectral data is, therefore, ideally suited to address the challenge of obsidian source
discrimination and artifact provenance determination.

5.1.2. Source PCA

As noted above, the purpose of PCA is to define a small number of uncorrelated
variables (i.e., principal components) that are the linear combinations of the measured
variables that explain the maximum amount of variance in a dataset. PCA provides a useful
tool for identifying whether samples within a dataset are the same or different. A 2D or 3D
plot can be used to graphically display the degree of clustering of LIBS spectra from the
same class and the separation between samples of different classes. PCA score plots are
a product of the computation to identify the underlying structure of the variables in the
spectral data and provide a set of uncorrelated principal components that best define the
variation present in that data in a compact representation via the projection of principal
components into 2D or 3D plots of the PC scores., Elemental loadings from PCA point
to the variables that might be responsible for observed compositional differences. PCA
loading plots are used to identify which variables have the largest effect on each principal

https://github.com/covartech/PRT
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component. Loadings can range from −1 to +1, with values close to −1 or +1, indicating
that the variable strongly influences the component, and loadings near to 0, indicating that
the variable has a weak influence on the component. Evaluating the loadings can also help
characterize each component in terms of the variables.
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Figure 6. Averaged LIBS broadband spectra between 200 to 800 nm for four of the obsidian sources
sampled in this study.

PCA score plots for the seven obsidian sources analyzed in this study, Medicine Lake
Highlands, North Coast Ranges, Bodie Hills, Long Valley/Mono-Inyo, Fish Springs, Saline
Range, and Coso Range, for which the number of samples per source ranged from 8 to
42, are shown in Figure 7. To reduce the number of symbols per plot and thereby increase
visibility, the LIBS spectra for each sample were averaged prior to estimating the PCA
model. In the initial observations of the PCA score plot, four outlier samples were noted:
three samples from North Coast Ranges and one sample from Long Valley/Mono-Inyo.
These four samples were discarded from all subsequent analyses.
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Figure 7. PCA score plots for the California obsidian sources analyzed in this study: (a) Medicine
Lake Highlands and North Coast Ranges, (b) Bodie Hills and Long Valley/Mono-Inyo, (c) Fish
Springs, Saline Range, and Coso, and (d) all source averages with colors corresponding to those in
panels (a–c).

The diagrams for the Medicine Lake Highlands and North Coast Ranges in panel (a),
Bodie Hills and Long Valley/Mono-Inyo in panel (b), and Fish Springs, the Saline Range,
and Coso in panel (c) display the relative positions of the data points for each source
in principal component space and illustrate the compositional differences amongst the
different sources. The mean values for each source dataset are shown in (d), which also
shows the convex hull of the data points used to generate the means, i.e., the space that
contains all the pairwise line segments between a set of points and that is also bounded
by those points. The samples for each source appear to be clustered in Figure 7, with class
overlap along the borders between these classes in feature space, suggesting that confusions
are due to physical similarities between the sources rather than poor models of the sources.

The PCA loading plots for the first two principal components, which together explain
just under 65% of the total variation in our obsidian dataset, are displayed in Figure 8. As
expected for high-silica rhyolite glass, the same suite of 16 major and minor elements are
reflected in both principal components: H, Li, O, Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Fe,
Sr, and Ba. Overall, the magnitude of the individual loadings is low, only extending to
less than −1 or greater than +1 only for Ca and Na in the PC1 plot and Si, Al, Ca, and
Na in the PC2 plot. Li, Mg, K, and Ba are important contributors to PC1 and Li to PC2.
Loadings for the elements Si and Al are largely distinct from those for the other elements
(i.e., negative for PC1 and positive for PC2), and loadings for the transition metals Cr and
Mn only influence PC2. H is present in both loading plots, raising the intriguing possibility
that it might be possible to make quantitative obsidian hydration measurements via LIBS.

Trace elements, such as Sc, Zn, Rb, Y, Nb, and the REE that are present in Cali-
fornia high-silicas rhyolites at the ppm to 100s of ppm level depending on the specific
element [32,34,37,42] have been shown useful in distinguishing archeological obsidian
sources by a variety of studies (e.g., [60,70,77,87,92,97,102,145,166,167]) but not observed in
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our obsidian LIBS spectra above their intrinsic limits of detection, so these elements are
not present in the loading plots. Importantly, this work demonstrates that it is possible
to distinguish different California obsidian sources on the basis of their major and minor
element character through the use of chemometric analysis of LIBS spectral data.
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5.1.3. Source Discrimination

Our PLSDA results are presented here in the form of bivariate plots that portray the
classification of the observations, where each entry in the matrix indicates the percentage
of spectra that were identified as belonging to the column class when, in fact, they are
actually members of the row class. The total number of samples per class is shown in
square brackets to the right of each row, and the overall classification accuracy is displayed
in the title. The bivariate plots were selected from the 50 random instantiations of k-folds
based on the proximity of the overall accuracy to the average overall accuracy across the
fifty randomizations. Thus, these are representative examples; however, each random
instantiation would generate its own bivariate plot.

Our PLSDA classification of the seven obsidian sources analyzed is shown in Figure 9.
Overall accuracy for the 7-source discrimination task was 92.3 ± 1.7%. The low standard
deviation across the 50 randomizations suggests that there was an adequate number of
samples for classification. Although there is a clear class overlap of the seven obsidian
sources in the feature space of the PCA scores plot (Figure 7), which is to be expected given
the similarity in obsidian major element compositional character (Table 1), the excellent
overall success in their discrimination at just over 92% is a sufficient foundation to use for
artifact attribution.
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If the potential sources for the artifacts can be further localized to the five obsidian
sources on the eastern side of the Sierra Nevada, which, from an archaeological stand-
point, are the most likely sources for the artifacts at the sites analyzed [50,68], then the
accuracy of attribution might be expected to further improve, given that overall accuracy
for discriminating just these five sources was 96.4 ± 1% (Figure 10).
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5.1.4. Coso Sub-Sources

Because obsidian from the CVF has been recognized to have had widespread con-
veyance across pre-historic California, particular attention has been given by the California
archeological community to the question of whether discernable subsources are present at
CVF. The studies of Duffield et al. [137] and Bacon et al. [42], described in Section 3.3.5 above,
established the current understanding of the geological, geochemical, and geochronological
character of the CVF. These authors note that obsidian dome and flow surface morphologies,
geological field relationships, and dating results indicate that each of the rhyolite groups
within the CVF consists of essentially coeval extrusions that occurred in a relatively short
time span compared to the overall life of the CVF magmatic system. Cluster analysis of CVF
geochemical data for 25 elements yielded the same seven distinct groups (i.e., sub-sources)
recognized on the basis of K-Ar dating and geological characteristics.

Subsequent to this definitive geological description and examination of age relation-
ships and the geochemical character of the CVF rhyolites, there have been several attempts
within the archeological community to delineate/differentiate subsources within the CVF
the basis of trace element geochemistry that have arrived at different and conflicting con-
clusions. Hughes [63] postulated four geochemical groups or subsources of artifact-quality
Coso obsidian on the basis of contrasts in the abundances of the incompatible trace element
Rb and Zr in obsidian measured using X-ray fluorescence spectrometry (XRF) from 16 sites
across the CVF: (i) a Joshua Ridge group with high Zr and low Rb contents from the Joshua
Ridge area that all have K-Ar ages of 89 Ka; (ii) a West Cactus Peak group of sites, two of
which have K-Ar ages of 235 Ka, having intermediate-low Zr and high Rb contents; (iii) a
West Sugarloaf group having intermediate Zr and intermediate Rb contents but mixed
K-Ar ages of 235 Ka and 160 Ka; and (iv) the Sugarloaf Mountain group with low Zr and
intermediate Rb contents and also mixed K-Ar ages of 160 Ka and 63 Ka. The four Coso
obsidian subsources identified by Hughes [63] correspond to the different age and composi-
tional groups previously identified by Bacon et al. [42], with the exceptions of one Sugarloaf
Mountain site and one West Sugarloaf site. It should be noted, however, that Bouey [142]
pointed out particular problems with the XRF analysis of obsidian and argued that the
Sugarloaf Mountain and West Sugarloaf subsources might not be as easily distinguishable
as suggested by Hughes [63]. On the basis of a statistical classification analysis (RQ-mode
principal components analysis) of INAA trace element data, Ericson and Glascock [144]
observed that 14 elements (Rb, Cs, Mn, Hf, Sc, Zr, and the rare earth elements La, Nd, Ce,
Eu, Tb, Dy, Yb, and Lu) contributed to a sample classification that recognized the four
groupings of Hughes [63] but also included two additional CVF obsidian compositional
groups, a conclusion more in line with the initial results of Duffield et al. [137] and Bacon
et al. [42] based on K-Ar dating, field relationships, and whole-rock geochemical analysis.
Draucker [145] applied stepwise multielement discriminant analysis to high-precision ma-
jor and trace element analyses obtained by laser ablation inductively-coupled plasma mass
spectrometry (LA-ICP-MS), observing that the simple Rb and Zr dual-element approach
of Hughes [63] was not successful at any subsource separation. Instead, 16 elements in
order of significance (Nb, Ce, Eu, Sr, Mn, Fe, Ti, Ba, Pr, Gd, Y, Nd, Rb, Zn, Ga, and Sm)
were observed to be useful in classification. Four distinct obsidian types were recognized
that were consistent with the geochronological framework established for the CVF by
Duffield et al. [137] and Bacon et al. [42]. The Joshua Ridge and the East Sugarloaf groups
are the same, as observed by Hughes [63]. The other two groups are a West Cactus group
and a West Sugarloaf group. The West Sugarloaf type contains samples from the south
and southeast Sugarloaf sites on the older South Sugarloaf Mountain, which is part of
Hughes’ [63] West Sugarloaf group but includes an additional west Sugarloaf location. The
West Cactus group includes the West Cactus group of Hughes [63] but includes the newly
identified pebble lag Stewart Quarry site that had not been sampled in any previous studies.
Another study employing LA-ICP-MS analysis by Eerkens et al. [77] analyzed samples
from across the Owens Valley of east-central California. Concentrations were measured for
13 minor and trace elements in obsidian from four CVF locations—West Cactus, Sugarloaf,
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West Sugarloaf, and Joshua Ridge. Good discrimination was observed on the basis of Ba/Sr
and La/Sm ratios, and it was noted that the ratios of Zr/Y, Dy/Yb, Nb/Zn, Mn/V, and
Zn/Ti were useful in this context.

A representative example of PLSDA classification of Coso sub-sources is shown in
Figure 11. The average overall accuracy across the 50 random instantiations was 84.6 ± 4.1%.
Our LIBS analysis (i) recognizes the five Stewart Quarry samples as a separate subsource;
(ii) groups all of the five 235 Ka West Cactus location samples together; misassigns one
of the six 89 Ka Joshua Ridge location samples to the 63 Ka SE Sugarloaf/Cactus Peak
group; (iii) misassigns two of the eighteen samples from the 160 Ka S-WS-W Sugarloaf
group, one to the 89 Ka Joshua Ridge group and the other to the 63 Ka SE Sugarloaf/Cactus
Peak group; and (iv) misassigns three of the eight 63 Ka SE Sugarloaf/Cactus Peak group,
one to Joshua Ridge group, one to the S-WS-W Sugarloaf group, and the third to the
new Stewart Quarry group. The large standard deviation across k-fold randomizations
suggests some dependency of classifier accuracy on train/test splits. Thus, although
the overall classification success rate of 85.7% is quite good, it is anticipated that this
would be improved by having more samples per locality, particularly for the 63 Ka SE
Sugarloaf/Cactus Peak group. The identification of the Stewart Quarry site as a distinct
obsidian source several kilometers distant from other CVF sources has as yet unresolved
archaeological use implications, as does the grouping of the 63 Ka East Sugarloaf and Cactus
Peak obsidians since the latter site is several kilometers north of Sugarloaf Mountain.
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spectra correctly classified, with the number of samples analyzed for each class noted by the number
in brackets at the right side of the figure.

5.1.5. Spectra Rejection Threshold Validation

As discussed in Section 4.2.2, a threshold for spectra rejection during preprocessing
was selected based on the pdfs of median correlation distances for each source. However,
the optimal threshold for the purposes of this study is the threshold that maximizes
classification accuracy. With this in mind, a validation study was conducted to determine if
the 0.02 threshold was the optimal threshold for these data.
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The impact of the spectra rejection threshold was tested by re-running the seven-class
cross-validated source discrimination task with different spectra rejection thresholds and
comparing the overall accuracy distributions. The results are plotted in Figure 12 with
the number of samples that remained after spectra rejection for a given threshold noted
in parentheses along the x-axis. For more strict thresholds, some samples were rejected
completely. Note that discarding samples can be beneficial to classification since it can
reduce the within-class variance; however, it can also be detrimental if discarding samples
reduces the training set to too great an extent.
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Figure 12. Comparison of the effect of running the 7-class PLSDA classification source discrimination
task matrix with different rejection thresholds. The overall accuracy is plotted on the y-axis. The
x-axis shows the rejection threshold value and the number of samples that remained after spectra
rejection.

Without any spectra rejection, the average classification accuracy was approximately
85% correct. Although some thresholds that resulted in rejected samples improved accuracy,
the best performance was achieved by thresholds that retained all of the samples, and max-
imum performance was achieved with a threshold equal to 0.02. Thus, the 0.02 threshold
used throughout this study appears to be a good choice for this data set.

5.2. Archaeological Obsidian Attribution

LIBS spectra were collected for 66 artifacts from seven locations (Figures 1 and 2;
Table 3): Bodie Hills, Long Valley, Fish Springs, Inyo Mountains, Rose Springs, and
Rochester Cave in the Mono and Inyo Counties of east-central California and the Oak Flat
site in Santa Barbara County. The objective of this portion of this study was to determine
whether these samples could be consistently attributed to one of five possible geological
sources (Bodie Hills, Mono-Inyo/Long Valley, Fish Springs, Saline Range, and Coso).

Table 3. Sources of archaeological obsidian sampled in this study.

Location Archaeological Site(s) Location Archaeological Site

Bodie Hills CA-INY-170: CA-MNO-4527
(Units P4, P5, P16, P37, P38, P39, and P40)

Long Valley/Mono-Inyo Long Valley Caldera Rose Springs CA-INY-372

Fish Springs Fish Springs Rochester Cave CA-INY-3415

Inyo Range
CA-INY-1828,
CA-INY-1834,
CA-INY-1834

Oak Flat CA-SBA-3931
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5.2.1. Artifact PCA

Principal component analysis (Figure 13) was used to visualize the labeled training
data and unlabeled artifact data for the provenance assignment. Spectra were averaged for
each sample to simplify visualization. In general, the distribution of artifacts in Figure 13
is similar to that of the source obsidians, with the exception of two Oak Flat outliers (see
discussion below). This PCA model was trained using the labeled source data and applied
to both the source and artifact data.
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Figure 13. PC scores plot for the California obsidian sources used for classifier training (red) and
artifacts for classification (blue).

5.2.2. Artifact PLSDA 5-Class Attribution

The first approach considered for artifact attribution was the five-source classifier
discussed previously. If each artifact sample is truly from one of the five classes, and the
five classes have been adequately modeled (i.e., the training set contains enough samples
of each class), then using a single five-class classifier can be expected to provide the most
accurate attribution performance by jointly optimizing the decision boundaries for all
five classes.

The five-class PLSDA classifier was trained using the labeled source data previously
used in the cross-validation analysis and tested using the artifact data. Each sample was
attributed to one of the five sources based on which class resulted in the highest classifier
confidence. In Figure 14, the proportion of samples attributed to each of the five sources is
plotted as a function of artifact source. The number of samples per artifact source is listed
in parentheses along the x-axis.

The Oak Flat, Rochester Cave, and Rose Springs are attributed only to the CVF. The
Inyo Mountain artifacts are attributed to the CVF at >75%, with the Saline Range and Bodie
Hills comprising alternative attributions. The Fish Springs artifacts are attributed to the
Saline Range and Bodie Hills sources almost equally. Only one of the three Long Valley
tools is attributed to this source. Somewhat problematically, only slightly more than 55% of
the Bodie Hills artifacts are attributed to the local Bodie Hills source. From the PCA score
plot (Figure 13), Bodie Hills, Fish Springs, and Saline Range all display significant overlap,
which may explain, in part, the attribution of Bodie Hills and Fish Springs artifacts to Bodie
Hills and Saline Range sources.
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5.2.3. Artifact Single Source Binary Classification

As mentioned previously, the five-class classifier should provide the most accurate
attribution results under some limitations, namely that adequate training data was provided
and all of the artifacts are reliably attributable to one of the five sources. If the number
of samples is not adequate for some classes, this can negatively impact multiple decision
boundaries. Further, if some of the artifacts are not from one of the five sources, the classifier
will still assign them to one of the five classes. Classifiers assign all test inputs to a class
regardless of whether or not the input is similar to the data used for training. Standard
classifiers do not have a none-of-the-above response.

Given these limitations, an alternative approach to the five-class classifier was con-
sidered in which each source was modeled independently with a binary classifier. The
hypothesis was that attribution might improve if issues due to low sample size were re-
stricted to the classifier trained on the inadequately sampled class. Further, by using binary
classifiers, it is possible to convert the classifier confidences to posterior probabilities of the
samples belonging to a particular class and use those probabilities to generate an unsure or
none-of-the-above response.

For each of the five sources, a binary PLSDA classifier was trained from the seven-
source data set where the labels were binary source/not source. The additional two sources
(Medicine Lake Highlands and North Coast Ranges) were used only as examples for
the not source class. By increasing the not source training set, a better delineation of the
source decision boundary can be achieved. It should be noted that this approach is similar
to the “one-vs-all” method of converting inherently binary classifiers into multi-class
classifiers [168,169].

Once a sample is tested with the set of binary classifiers, a common scale must be used
to compare the five classifier outputs. Platt [170] proposed transforming SVM classifier
confidences to posterior probabilities by estimating the sigmoidal relationship between
these values. The method is as follows. A calibration curve (also known as a reliability
curve) is generated by binning the classifier confidence values and calculating the number
of positive (i.e., true source) samples with confidence within each bin. The calibration curve
is the maximum likelihood estimate of posterior probability as a function of classifier confi-
dence. For SVM and PLSDA classifiers, these curves are generally sigmoidal. A sigmoid
function is fit to the calibration curve, and this function then provides the transformation
of classifier confidences to posterior probabilities [171].

In order to convert classifier confidences to posterior probabilities, calibration curves
were generated for each classifier. Classifier confidences were generated for each classifier
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using ten random instantiations of 5-fold cross-validation with the source data used for
training/testing. All of the classifier confidences were pooled across the instantiations, and
the calibration curve was estimated as described above. Finally, a sigmoid was fit to the
calibration curve to generate the transformation function.

Artifact attribution consisted of passing the artifact spectra as inputs to the binary
classifiers, converting the outputs to posterior probabilities using the classifier-specific
calibration curves, averaging the posterior probabilities per class across each sample’s
observations, and selecting the class with the highest posterior probability.

The attribution results using the binary classifiers are plotted in Figure 15. Of the
20 debitage samples from Bodie Hills, 85% are attributed to this source. With the binary
classifiers, Fish Springs continues to be confused with Bodie Hills and Saline Range, and
one of the three Long Valley artifacts is attributed to Bodie Hills. The samples for the
remaining three artifact sources are all attributed to CVF.
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Looking at the posterior probabilities provides some further insights into the classi-
fier behaviors and suggests potential methods to investigate for further improvement to
algorithm accuracy. The posterior probabilities per source are plotted for each of the Bodie
Hills artifacts in Figure 16. A typical classification approach is to select the class with the
maximum output; however, in two of the three cases for which a Bodie Hills sample was
labeled as CVF (i.e., JC213 and JC770), the posterior probabilities are low across all the
classes. These probabilities would suggest a lack of reliability in the response and could
provide the means to develop an algorithm with an unsure class.

A similar analysis for Oak Flat reveals that the classification might likewise be consid-
ered unsure for a sample such as Oak Flat sample JC691 for a different reason (Figure 17). In
this case, the posterior probabilities are high for two of the classes, suggesting that simply
selecting the one with the higher probability might not yield the correct attribution. Note
that the posterior probabilities are calculated independently per class, so it is possible to
have probabilities across the classes that add up to more than one.

In contrast to the results seen in Figures 16 and 17, the posterior probabilities for the
Rose Springs artifacts (Figure 18) are all 90% or above, with the other classes all having low
posterior probabilities. These results would suggest a high likelihood that the attributions
of CVF are reliable.
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6. Summary and Conclusions

A high level of correct discrimination was achieved for the seven California obsid-
ian suites analyzed in this study, and classification performance was improved using a
similarity analysis approach for spectra rejection. Adding spectra rejection to the prepro-
cessing resulted in a statistically significant improvement in overall accuracy (p < 0.001),
increasing overall accuracy from 85% correct to 92% correct. To achieve this improvement,
however, approximately a third of the spectra were rejected. This result suggests that there
may be some inherent challenges to collecting high SNR spectra from geological samples.
Given the low cost of collecting spectra with handheld LIBS systems, an approach that
maximizes spectra collection and uses preprocessing to reject low SNR spectra may prove
beneficial in any applications for which samples do not necessarily conform to the LIBS
data collection ideals.

Our examination of geologically defined subsources in the CVF demonstrates that
models developed without an appropriate number of samples per class are prone to lower
levels of classification performance. It should be noted that to discriminate closely similar
sample classes, it not only may be data that are needed but also samples that include the
maximum level of class–level compositional diversity.

Two chemometric methods were used to assign obsidian artifacts from six locations in
east-central California (Bodie Hills, Long Valley, Fish Springs, Inyo Range, Rose Springs,
and Rochester Cave) and a site in the south-central region of the state (Oak Flat) to their
most likely source. The general agreement of the source assignments to those derived
from the basis of archaeological examination provides a strong measure of confidence in
our provenance attributions. The second approach also provided some encouragement
for the development of an approach to chemometrics that includes an unsure category.
Typically, a classifier is constrained to selecting one of a set of classes. By converting
classifier confidences to posterior probabilities, it is possible to consider whether any of
the classes, as modeled by the training data, are good candidates. It may also be possible
to further refine an unsure response to the number of classes that are potential matches,
e.g., no matches or two potential matches out of five. These kinds of adaptations may be
especially beneficial for applications in which there is uncertainty with regard to the set of
classes from which test samples might be drawn.

The ability to characterize the geochemical composition of obsidian artifacts rapidly
and non-destructively is of great utility to archaeologists. Sourcing obsidian to its geologic
origin is critical for selecting a source-specific obsidian hydration rate, thereby allowing for
age calculations based on obsidian birefringent zone measurements [172]. Data generated
from such analyses are often compared to known geologic sources to identify obsidian
conveyance patterns and to inform models of mobility and exchange [143]. In addition
to providing insight into landscape-level movements, obsidian sourcing has been used to
identify intra-site variations in obsidian source profiles over time. These observations have
led many to conclude that the observed changes in obsidian source exploitation reflect
socio-political circumstances, including the privatization of some resources, resulting in
differential access [70].

Within archaeology, the chemical character of obsidian artifacts is most frequently de-
termined using XRF analysis (e.g., [56,173]). This method is non-destructive and relatively
inexpensive, adding greatly to its utility. However, XRF instrumentation is burdened with
special operating precautions because of its open-beam X-ray source, the inability of XRF to
analyze the lightest elements of the periodic table (Z < 12), and its constraint on minimum
sample size can be problematic for archaeological application. Since flake size often varies
with both artifact type and production stage, eliminating smaller flakes from sample pop-
ulations due to XRF size requirements can bias archaeological interpretation [174]. Since
LIBS analysis interrogates a mm scale rather than cm scale size domain, it permits the use
of smaller specimen sizes, which has the potential to capture a broader suite of associated
human behaviors. Although other analytical methods such as INAA or ICP-MS can also
analyze small flakes [174], these methods are expensive and time-consuming laboratory
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techniques that lack the portability of LIBS and, therefore, cannot be used for real-time
artifact analysis in the field during an excavation [175].

The use of portable LIBS instruments enables the rapid analysis of large numbers of
samples, thus providing larger datasets while reducing the logistics effort and expenses
required to collect, transport, and curate specimens for laboratory analysis. Currently,
archaeology is facing a curation crisis where the demand for curatorial space exceeds the
physical capacity of authorized facilities. The analyses of archaeological materials in the
field could assist in alleviating this issue by reducing the need for the collection of large
sample suites. A greater benefit of in-field analyses lies in the political realm surrounding
Cultural Resource Management (CRM). For example, many tribal entities in the United
States object to the collection and removal of artifacts from the landscape, equating this
to a form of cultural erasure. The use of LIBS to undertake obsidian analysis in the field,
essentially non-destructively, has the potential to alleviate the need for collection and,
thereby, satisfy both researchers and indigenous peoples alike.
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