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Abstract: The East Kunlun Orogenic Belt is considered as one of the important gold mineralization
regions in the Tethys tectonic domain. These orogenic gold deposits are related to intermediate-acid
intrusions formed at the end of Paleo-Tethys evolution, but the petrogenesis is controversial. This
paper presents a new study on the geochemistry of zircon U-Pb, O, S, and Pb isotopic compositions of
Asiha quartz diorite, granite porphyry, and sulfides. The geochemical features of quartz diorite and
granite porphyry are consistent with the modern adakite, with high content of Sr but low content of Y,
Yb, and MgO. Magmatic zircons from these two types of intrusion yielded U-Pb ages of 238.4 ± 1.4 Ma
and 240 ± 1.7 Ma, respectively. The high O isotopic composition of Asiha complex may reflect that
crust or crustal derivates were incorporated into the magmatic melt, and the Pb isotope characteristics
indicates a lower crust origin. The δ34S values of pyrites range from 4.9‰ to 11.6‰. This study infers
that the Asiha complex perhaps formed by partial melting of the Paleo-Tethys subducted oceanic
crust with seafloor sediments and is markedly different from the traditional adakite. Asiha deposit is
an orogenic gold deposit related to adakite-like rocks, which formed in Triassic in the East Kunlun
Orogenic Belt.

Keywords: Qinghai-Tibet Plateau; East Kunlun Orogenic Belt; orogenic gold deposits; adakite-like;
Middle Triassic; Paleo-Tethys Ocean

1. Introduction

Adakite rock is a result of partial melting of subducted mafic oceanic crust [1]. Other
igneous rocks formed in the continental crust subduction stage as well as in the intraconti-
nental stage of evolution with adakitic geochemical features are considered “adakite-like”
rocks. The geochemical features of adakites include Al2O3 ≥ 15 wt%, SiO2 > 56 wt%, lower
Y and HREE contents, and high Sr [2–5]. Intermediate-acid intrusions with geochemical
characteristics of adakite have become one of the important indexes to distinguish Au-Cu
mineralization potential [6–9].

The East Kunlun Orogenic Belt (EKOB) is located in the northeast of the Qinghai-Tibet
Plateau (Figure 1), and is an important gold mineralization region in the Tethys tectonic
domain [10–12]. More than 40 orogenic gold deposits (such as Dachang, Wulonggou,
and Guoluolongwa) have been discovered, with proven reserves of gold of 300 t, and the
associated metal is Cu. The ore-forming age of these gold deposits is 240–220 Ma and
410–390 Ma, which is a response to the magmatic activity process of the converging plate
margin of the Proto-Tethys Ocean and the Paleo-Tethys Ocean [10,12,13]. Previous studies
have shown that adakite was formed by subduction or collision in the EKOB at the end of
Paleo-Tethys Ocean evolution stage [14,15]. These adakites, including Xintuo monzonitic
granite [16], Gouli granodiorite [17], and Asiha granite porphyry and quartz diorite are
related to gold deposits in spatial distribution. However, the relationship between these
gold deposits and adakites needs to be further clarified.
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Group; 2. Proterozoic Jinshuikou Group; 3. Proterozoic Nachitai Group; 4. Ordovician intermediate-
acid intrusion; 5. Devonian intermediate-acid intrusion; 6. Silurian intermediate-acid intrusion; 7. 
Permian intermediate-acid intrusion; 8. Triassic intermediate-acid intrusion; 9. Fault; 10. Gold de-
posit. 

In this paper, we selected the Asiha deposit, located in the eastern section of EKOB 
for research. Field geological survey and mineral element study show that mineralization 
is related to quartz diorite and granite porphyry. Pyrite in granite porphyry has the same 
S isotope composition as that in ores, indicating a part of the ore-forming materials in the 
ore-bodies is from hydrothermal fluid derived from granite porphyry [18]. The formation 
age of ore-bearing quartz diorite and mafic microgranular enclave (MME) inclusions is 
229–228 Ma, with Sr-Nd-Hf isotopic characteristics of mixing of lower crust and enriched 
mantle-derived magmas [19]. Thus, geological samples (ore-bearing) of granite porphyry 
and quartz diorite were collected from the Asiha gold deposit. Zircon U-Pb ages and ge-
ochemistry of magma intrusions were studied, and O, S, and Pb isotopes were measured. 
Exploring the deep source process of ore-forming materials provides a new route for the 
study of regional orogenic gold deposits. 

2. Geology Background 
2.1. Regional Geology 

The EKOB is located in the east of the Tethys tectonic domain [20–22] and has expe-
rienced the Proto-Tethys, Paleo-Tethys, and Neo-Tethys evolutionary processes, from the 
Paleoproterozoic to the present [23–25]. EKOB entered the evolution of the Proto-Tethys 
stage from Precambrian to Devonian, and the ocean basin subducted in two directions, 
north and south; finally, the main structural framework of EKOB was formed [25–27]. The 
Paleo-Tethys evolution began in the Devonian and ended in the Triassic. Voluminous ig-
neous rocks formed in the Permian to Triassic are related to the Paleo-Tethys Ocean sub-
duction and collision. Rock types include diorite, granodiorite, granite, etc. [28,29]. The 
evolution of the Neo-Tethys had little influence on the EKOB, and only a few magmatic 

Figure 1. Simplified tectonic units of the East Kunlun Orogenic Belt. 1. Proterozoic Wanbaogou Group;
2. Proterozoic Jinshuikou Group; 3. Proterozoic Nachitai Group; 4. Ordovician intermediate-acid
intrusion; 5. Devonian intermediate-acid intrusion; 6. Silurian intermediate-acid intrusion; 7. Permian
intermediate-acid intrusion; 8. Triassic intermediate-acid intrusion; 9. Fault; 10. Gold deposit.

In this paper, we selected the Asiha deposit, located in the eastern section of EKOB for
research. Field geological survey and mineral element study show that mineralization is
related to quartz diorite and granite porphyry. Pyrite in granite porphyry has the same S
isotope composition as that in ores, indicating a part of the ore-forming materials in the
ore-bodies is from hydrothermal fluid derived from granite porphyry [18]. The formation
age of ore-bearing quartz diorite and mafic microgranular enclave (MME) inclusions is
229–228 Ma, with Sr-Nd-Hf isotopic characteristics of mixing of lower crust and enriched
mantle-derived magmas [19]. Thus, geological samples (ore-bearing) of granite porphyry
and quartz diorite were collected from the Asiha gold deposit. Zircon U-Pb ages and
geochemistry of magma intrusions were studied, and O, S, and Pb isotopes were measured.
Exploring the deep source process of ore-forming materials provides a new route for the
study of regional orogenic gold deposits.

2. Geology Background
2.1. Regional Geology

The EKOB is located in the east of the Tethys tectonic domain [20–22] and has expe-
rienced the Proto-Tethys, Paleo-Tethys, and Neo-Tethys evolutionary processes, from the
Paleoproterozoic to the present [23–25]. EKOB entered the evolution of the Proto-Tethys
stage from Precambrian to Devonian, and the ocean basin subducted in two directions,
north and south; finally, the main structural framework of EKOB was formed [25–27]. The
Paleo-Tethys evolution began in the Devonian and ended in the Triassic. Voluminous
igneous rocks formed in the Permian to Triassic are related to the Paleo-Tethys Ocean
subduction and collision. Rock types include diorite, granodiorite, granite, etc. [28,29]. The
evolution of the Neo-Tethys had little influence on the EKOB, and only a few magmatic
rocks developed during this period. The unconformity control of the Maoniushan Forma-
tion and bimodal volcanic rocks indicates that the EKOB entered the Paleo-Tethys rifting
process in the Early Devonian [30,31]. Three deep faults (North Kunlun fault, Central
Kunlun fault, and South Kunlun fault) divide the EKOB from north to south into South-
ern, Central, and Northern Kunlun (Figure 1). The exposed rocks include the Proterozoic
Wanbaogou Group, Proterozoic Jinshuikou Group, Proterozoic Nachitai Group, and Upper
Triassic Elashan Formation [32].
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2.2. Geology of the Asiha Gold Deposit

The Asiha gold ore deposit exists in the Asiha complex, which consists of quartz diorite
with abundant MMEs, monzogranite, plagiogranite, and diorite. Gold ore-bodies occur
mainly within the quartz diorite and granite porphyry (Figure 2a). The Asiha complex
intruded into the Proterozoic rocks, which is composed mainly of biotite plagioclase gneiss,
which is distributed in the south and northwest area of the ore district. The No. 1 and
No. 2 ore-bodies are controlled by the NNE-trending and the NNW-NW-trending faults,
respectively, which may be secondary faults of the regional fault (Central Kunlun fault).
Structural breccia and fault gouge are developed in the two faults (Figure 2b), which control
the distribution of gold ore-bodies [19].
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The quartz diorite and granite porphyry samples in this study were collected near 
the 3680 m footrill in the No. 2 ore-body and in the field outcrop (Figure 2b), respectively. 
Sulfide samples were collected from drill core. Other granitoids samples were collected 
from the outcrop of the Asiha complex. The sample is fresh without alteration. 

The quartz diorite is located in the eastern section of the study area. It comprises 
plagioclase 60%, K-feldspar 15%, quartz 15%, amphibole 5%, biotite 5%, and minor zircon 
and apatite (Figure 3a). Plagioclase is subhedral and shows a distinct polysynthetic twin-
ning texture. Quartz occurs as anhedral crystals, which are intergrowths with plagio-
clases. Dark minerals are mainly biotite and amphibole, which occur as schistose and co-
lumnar, respectively. 

Figure 2. Geological map of Asiha gold deposit (a), Cross section of Line 0 in Figure 2a (b) (modified
from [19]). 1. Quaternary; 2. Proterozoic migmatite; 3. Proterozoic gneiss; 4. Quartz diorite; 5. Mon-
zogranite; 6. Plagiogranite; 7. Diorite; 8. Granite porphyry; 9. Fractured alteration zone; 10. Gold
orebodies; 11. Geological boundary; 12. Fault; 13. Drillcore; 14. Sample location.

Thirty-three gold ore-bodies and 1 copper ore-body have been identified in the Asiha
deposit. The gold ore-bodies are 227–555 m in length and 0.89–1.58 m in thickness, with an
average grade of 9.1 g/t. The ore types are mainly structural altered rock type and quartz
vein type. Based on field geology and mineral assembles, the mineralization at Asiha can
be divided into two mineralization periods: the hydrothermal period and the supergene
oxidation period.
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The hydrothermal period can be subdivided into three stages: (1) The quartz-pyrite-
arsenopyrite stage; pyrite is euhedral-hemihedral, arsenopyrite is coarse-grained euhedral,
gold and arsenopyrite are associated. (2) The quartz-polymetallic sulfide stage; chalcopy-
rite is vein-like, and bismuth is metasomatic chalcopyrite, and all are metasomatic earlier
arsenopyrite or pyrite. Pyrite mineralization occurs, and the arsenopyrite, pyrite and
quartz veins formed in the early stage are fractured under tectonic stress. This stage is
the main stage of gold formation. (3) The quartz-carbonate veins appeared in this stage,
and gold mineralization ended. The quartz-polymetallic sulfide stage is the primary stage
for gold mineralization [33]. Metallic minerals in the ore rocks are pyrite, chalcopyrite,
arsenopyrite, galena, marcasite, pyrrhotite, and native gold. The ore structures include
massive, vein, stockwork, vesicular, and disseminated structures. The ore textures in-
clude cataclastic, metasomatic, and anhedral granular texture. Wall rock alteration consists
mainly of silicification, sericitization, pyritization, chloritization, carbonatation, kaoliniza-
tion, potassic alteration, ferritization, jarosite, and malachite. Among them, silicification,
sericitization, pyritization, and chloritization are closely related to gold mineralization [19].
Other alterations are mostly distributed symmetrically along both sides of the quartz veins.

3. Sampling and Analytical Methodology
3.1. Sample Descriptions

The quartz diorite and granite porphyry samples in this study were collected near
the 3680 m footrill in the No. 2 ore-body and in the field outcrop (Figure 2b), respectively.
Sulfide samples were collected from drill core. Other granitoids samples were collected
from the outcrop of the Asiha complex. The sample is fresh without alteration.

The quartz diorite is located in the eastern section of the study area. It comprises
plagioclase 60%, K-feldspar 15%, quartz 15%, amphibole 5%, biotite 5%, and minor zir-
con and apatite (Figure 3a). Plagioclase is subhedral and shows a distinct polysynthetic
twinning texture. Quartz occurs as anhedral crystals, which are intergrowths with pla-
gioclases. Dark minerals are mainly biotite and amphibole, which occur as schistose and
columnar, respectively.
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Figure 3. Photographs and photomicrographs of typical lithofacies from the Asiha complex. Photomi-
crographs of Quartz diorite (a). Photomicrographs of granite porphyry (b). The typical photographs
of the granite porphyry (c), quartz diorite and MMEs in the field (d). Photomicrographs of MMEs
(e,f). Pl = plagioclase, Kfs = K-feldspar, Qtz = quartz, Am = amphibole, and Bt = biotite.
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Granite porphyry has a porphyritic texture and is composed of 40% plagioclase, 35%
K–feldspar, 20% quartz, 5%, biotite, and minor zircon and sphene (Figure 3b,c). K-feldspar
has Carlsbad twin, and plagioclase has polysynthetic twin. Potassic feldspar has alterations
such as kaolinization and argillization.

MMEs are widely distributed within the quartz diorite (Figure 3d), with a diameter
from several to fifty centimeters, and generally display ellipsoidal, or less commonly,
lenticular or irregular shape. MMEs are dark grey and have a fine-to-medium–grained
texture, and the rock type is diorite. They consist mainly of 50% plagioclase, 25% biotite,
20% amphibole, and 5% quartz (Figure 3e,f).

3.2. Analytical Methodology

Zircon U-Pb determinations were carried out by LA-ICP-MS at the State Key Labo-
ratory of Continental Dynamics of Northwest University, Xi’an, China. Zircon isotopic
determinations were obtained with a spot size of 32 µm. The detailed parameters and
operating methods of the instrument have been published previously [34].

Major and trace elements were analyzed at the Western Mineral Resources and Ge-
ological Engineering Key Laboratory of the Ministry of Education. The major elements
were identified by using X-ray fluorescence spectroscopy (XRF), following the procedure
of [35]. The analytical error is less than 1%. Trace elements were identified using a PQ2
Turbo ICP–MS following the technique of [36]. The precision was generally <5‰ for
trace elements.

Isotope analysis was performed at the Test Center of Beijing Research Institute of
Uranium Geology. Twelve samples, including granite porphyry, quartz diorite, and gran-
odiorite, were obtained from the Asiha complex and used for whole-rock O isotope analysis.
Oxygen isotopic composition was measured on a MAT 253. Sulfide was obtained from
ores for S and Pb isotopic analysis. A Finnigan MAT 251 mass spectrometer was utilized to
analyze the S isotopic composition. Plumbum isotopic composition was measured on an
ISOPROBE–T Thermal Ionization Mass Spectrometer with the standard NBS SRM 981. The
detailed parameters and operating methods of O, S, and Pb isotopes have been published
previously [37].

4. Analytical Results
4.1. Zircon U-Pb Ages

The U-Pb dating data of 40 individual zircon crystals from quartz diorite and 29 in-
dividual zircon crystals from granite porphyry are listed in Table 1. Zircons have clear
oscillatory zonation in cathodoluminescence images (Figure 4). The zircon Th/U ratio of
quartz diorite range from 0.53 to 1.15, with an average of 0.75. The zircon Th/U ratio of
granite porphyry varies from 0.48 to 0.94, with a mean value 0.69. The quartz diorite and
the granite porphyry yielded a weighted age of 238.4 ± 1.4 Ma (Figure 4a) and 240 ± 1.7 Ma
(Figure 4b), respectively.
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Table 1. LA-ICP-MS zircon U-Pb dating results of Asiha complex.

Sample Sample
No.

(ppm)
Th/U

Isotope Ratio Age (Ma)

Pb Th U 207Pb/206Pb 1 σ 207Pb/235U 1 σ 206Pb/238U 1 σ 207Pb/206Pb 1 σ 207Pb/235U 1 σ 206Pb/238U 1 σ

Granite
porphyry

1 5.4 74.8 114.1 0.66 0.0491 0.0028 0.2556 0.0126 0.0378 0.0007 152 126 231 10 239 4

2 4.8 74.3 95.0 0.78 0.0535 0.0029 0.2780 0.0133 0.0377 0.0007 351 119 249 11 238 4

3 4.9 67.4 94.3 0.72 0.0494 0.0027 0.2597 0.0123 0.0381 0.0007 166 122 234 10 241 4

4 4.1 52.8 83.4 0.63 0.0489 0.0029 0.2561 0.0136 0.0380 0.0007 141 134 232 11 241 5

5 4.5 69.9 89.8 0.78 0.0547 0.0030 0.2837 0.0138 0.0376 0.0007 400 119 254 11 238 4

6 6.9 73.3 138.3 0.53 0.0529 0.0028 0.2794 0.0125 0.0384 0.0007 322 114 250 10 243 4

7 8.0 100.7 170.5 0.59 0.0525 0.0024 0.2701 0.0100 0.0373 0.0007 307 99 243 8 236 4

8 5.9 80.7 124.2 0.65 0.0510 0.0026 0.2626 0.0113 0.0373 0.0007 241 111 237 9 236 4

9 6.5 71.2 132.6 0.54 0.0492 0.0023 0.2608 0.0103 0.0384 0.0007 159 107 235 8 243 4

10 5.0 71.4 100.1 0.71 0.0483 0.0028 0.2513 0.0132 0.0377 0.0007 115 133 228 11 239 5

11 6.0 88.5 112.5 0.79 0.0515 0.0025 0.2745 0.0113 0.0387 0.0007 263 107 246 9 245 4

12 6.0 90.2 114.6 0.79 0.0516 0.0027 0.2720 0.0121 0.0382 0.0007 270 114 244 10 242 4

13 4.8 63.5 99.0 0.64 0.0549 0.0031 0.2887 0.0142 0.0381 0.0008 408 120 258 11 241 5

14 5.6 73.8 107.9 0.68 0.0497 0.0025 0.2608 0.0112 0.0381 0.0007 180 112 235 9 241 4

15 5.3 85.5 101.6 0.84 0.0506 0.0027 0.2664 0.0126 0.0382 0.0007 221 120 240 10 242 4

16 5.5 85.7 104.8 0.82 0.0528 0.0026 0.2796 0.0120 0.0384 0.0007 320 109 250 9 243 4

17 7.1 128.6 132.6 0.97 0.0546 0.0030 0.2821 0.0135 0.0374 0.0007 398 117 252 11 237 5

18 5.0 74.5 99.6 0.75 0.0492 0.0029 0.2581 0.0135 0.0380 0.0008 159 131 233 11 241 5

19 5.1 86.1 105.3 0.82 0.0526 0.0049 0.2768 0.0243 0.0381 0.0010 313 199 248 19 241 6

20 4.3 59.6 85.1 0.70 0.0524 0.0030 0.2742 0.0140 0.0380 0.0008 301 126 246 11 240 5

21 5.0 70.9 100.7 0.70 0.0550 0.0032 0.2886 0.0152 0.0381 0.0008 411 126 258 12 241 5

22 5.6 98.2 109.9 0.89 0.0511 0.0031 0.2638 0.0144 0.0375 0.0008 243 134 238 12 237 5

23 7.6 116.6 158.2 0.74 0.0549 0.0029 0.2814 0.0129 0.0372 0.0007 408 114 252 10 235 4

24 3.8 50.9 75.1 0.68 0.0517 0.0032 0.2723 0.0150 0.0382 0.0008 274 134 245 12 241 5

25 6.2 92.2 123.0 0.75 0.0486 0.0025 0.2542 0.0115 0.0379 0.0007 129 118 230 9 240 4

26 7.2 164.2 143.3 1.15 0.0509 0.0034 0.2669 0.0164 0.0380 0.0008 236 148 240 13 241 5

27 7.4 132.6 135.8 0.98 0.0520 0.0025 0.2720 0.0109 0.0380 0.0007 284 105 244 9 240 4
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Table 1. Cont.

Sample Sample
No.

(ppm)
Th/U

Isotope Ratio Age (Ma)

Pb Th U 207Pb/206Pb 1 σ 207Pb/235U 1 σ 206Pb/238U 1 σ 207Pb/206Pb 1 σ 207Pb/235U 1 σ 206Pb/238U 1 σ

28 6.0 83.9 124.2 0.68 0.0486 0.0028 0.2541 0.0132 0.0380 0.0008 126 131 230 11 240 5

29 4.8 72.9 97.6 0.75 0.0486 0.0031 0.2526 0.0148 0.0377 0.0008 130 145 229 12 238 5

Quartz diorite

1 27.6 100.6 153.6 0.65 0.0513 0.0022 0.2671 0.0091 0.0377 0.0007 255 95 240 7 239 4

2 20.4 73.1 112.1 0.65 0.0511 0.0024 0.2660 0.0105 0.0377 0.0007 246 106 240 8 239 4

3 35.9 120.0 209.7 0.57 0.0501 0.0020 0.2588 0.0078 0.0375 0.0007 201 90 235 6 239 4

4 17.3 67.0 95.7 0.7 0.0569 0.0027 0.2934 0.0116 0.0374 0.0007 468 104 260 9 238 4

5 22.6 95.5 127.1 0.75 0.0528 0.0024 0.2743 0.0099 0.0377 0.0007 318 98 246 8 239 4

6 18.3 71.4 109.0 0.66 0.0509 0.0024 0.2639 0.0104 0.0376 0.0007 213 108 237 9 239 4

7 22.2 86.2 128.1 0.67 0.0520 0.0024 0.2684 0.0099 0.0374 0.0007 289 103 244 8 239 4

8 13.8 45.8 78.7 0.58 0.0522 0.0029 0.2694 0.0131 0.0374 0.0007 308 126 245 11 239 5

9 18.6 53.2 109.0 0.49 0.0531 0.0024 0.2746 0.0104 0.0375 0.0007 335 101 246 8 237 4

10 12.8 37.7 76.1 0.5 0.0530 0.0031 0.2736 0.0141 0.0374 0.0007 289 132 244 12 239 5

11 28.3 133.6 162.5 0.82 0.0525 0.0022 0.2708 0.0089 0.0374 0.0007 280 95 243 7 239 4

12 24.5 96.0 147.9 0.65 0.0526 0.0023 0.2692 0.0092 0.0371 0.0007 323 99 245 8 237 4

13 34.1 182.1 194.7 0.94 0.0596 0.0023 0.3084 0.0090 0.0375 0.0007 482 89 266 8 242 4

14 23.7 82.1 134.1 0.61 0.0510 0.0023 0.2644 0.0094 0.0376 0.0007 242 98 238 8 238 4

15 18.1 53.7 112.5 0.48 0.0512 0.0027 0.2651 0.0118 0.0376 0.0007 250 116 239 10 238 4

16 17.2 51.4 101.3 0.51 0.0702 0.0031 0.3657 0.0127 0.0378 0.0007 259 99 240 8 239 4

17 39.3 83.1 101.5 0.82 0.0864 0.0037 0.4496 0.0149 0.0377 0.0007 264 87 242 6 240 4

18 24.8 116.2 146.8 0.79 0.0520 0.0022 0.2670 0.0091 0.0372 0.0007 363 90 250 7 238 4

19 37.8 182.8 218.3 0.84 0.0515 0.0020 0.2693 0.0079 0.0379 0.0007 236 101 237 8 237 4

20 31.1 110.1 180.8 0.61 0.0538 0.0022 0.2790 0.0089 0.0376 0.0007 199 121 235 10 238 5

21 22.3 86.7 136.1 0.64 0.0505 0.0023 0.2589 0.0099 0.0372 0.0007 213 112 236 9 238 4

22 22.7 116.1 137.6 0.84 0.0505 0.0026 0.2570 0.0111 0.0369 0.0007 195 93 234 7 238 4

23 19.6 74.1 120.7 0.61 0.0509 0.0026 0.2620 0.0115 0.0373 0.0007 265 110 240 9 238 4

24 37.6 190.6 223.6 0.85 0.0503 0.0020 0.2589 0.0080 0.0373 0.0007 161 104 231 8 238 4

25 21.9 84.8 117.7 0.72 0.0761 0.0032 0.3921 0.0126 0.0374 0.0007 242 113 239 9 239 4
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Table 1. Cont.

Sample Sample
No.

(ppm)
Th/U

Isotope Ratio Age (Ma)

Pb Th U 207Pb/206Pb 1 σ 207Pb/235U 1 σ 206Pb/238U 1 σ 207Pb/206Pb 1 σ 207Pb/235U 1 σ 206Pb/238U 1 σ

26 19.6 89.4 118.6 0.75 0.0517 0.0026 0.2654 0.0111 0.0372 0.0007 317 105 246 9 239 4

27 23.9 93.8 138.7 0.68 0.0489 0.0023 0.2512 0.0096 0.0373 0.0007 207 113 235 9 238 4

28 23.0 113.2 134.0 0.85 0.0505 0.0024 0.2588 0.0105 0.0372 0.0007 247 104 239 8 239 4

29 21.4 83.5 128.9 0.65 0.0533 0.0025 0.2742 0.0103 0.0373 0.0007 184 107 233 8 238 4

30 20.5 73.2 118.7 0.62 0.0503 0.0025 0.2590 0.0109 0.0374 0.0007 364 102 252 9 240 4

31 23.7 95.9 138.2 0.69 0.0512 0.0023 0.2632 0.0097 0.0373 0.0007 326 123 245 11 237 5

32 25.4 127.2 147.9 0.86 0.0495 0.0022 0.2527 0.0094 0.0370 0.0007 197 90 235 6 239 4

33 21.3 84.0 126.7 0.66 0.0528 0.0024 0.2726 0.0103 0.0375 0.0007 422 124 253 11 236 5

34 24.8 46.7 76.4 0.61 0.1402 0.0069 0.7326 0.0295 0.0379 0.0008 169 133 233 11 239 5

35 19.7 70.7 103.5 0.68 0.0691 0.0030 0.3577 0.0125 0.0375 0.0007 255 95 240 7 239 4

36 22.2 106.3 131.2 0.81 0.0519 0.0027 0.2664 0.0117 0.0372 0.0007 246 106 240 8 239 4

37 45.2 162.6 268.4 0.61 0.0502 0.0019 0.2558 0.0071 0.0369 0.0006 201 90 235 6 239 4

38 29.8 153.0 167.7 0.91 0.0588 0.0025 0.3020 0.0100 0.0372 0.0007 468 104 260 9 238 4

39 18.8 64.9 109.5 0.59 0.0563 0.0033 0.2884 0.0149 0.0371 0.0008 318 98 246 8 239 4

40 18.2 76.1 105.3 0.72 0.0498 0.0027 0.2543 0.0119 0.0370 0.0007 213 108 237 9 239 4
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4.2. Major and Trace Elements

The SiO2, CaO, Al2O3, Na2O, and K2O content of quartz diorite is 60.45–62.49 wt%,
5.29–5.97 wt%, 16.88–17.2 wt%, 3.4–3.54 wt%, and 2–2.51 wt%, respectively (Table 2).
Compared to the quartz diorite samples, the granite porphyry samples show higher SiO2
(68.24–69.45 wt%) and K2O (2.52–3.12 wt%) contents and lower Al2O3 (15.1–15.44 wt%)
and CaO (2.44–3.54 wt%) concentration. All samples are metaluminous (Figure 5a), with
A/CNK ratios of 0.92 to 1.04, belonging to the calc–alkaline series (Figure 5b). The total
content of REE is between 131 and 171 ppm, with strongly fractionated REE patterns
(LREE/HREE = 10.32–13.96) (Figure 5c). The primitive mantle normalized trace-element
diagram shows that Rb, Th, Nd, Sm, and Hf are enriched, while Ba, Nb, and Ti are depleted
(Figure 5d). In addition, quartz diorite samples are depleted in Ta and Zr, and granite
porphyry samples are depleted in Sr.

Table 2. Major elements (%) and trace elements (ppm) of Asiha complex.

Sample Types Quartz Diorite Granite Porphyry

Sample No. 11ASY003 11ASY005 11ASY006 11ASY008 11ASBY05 12ASB02 12ASB03 12ASB04

SiO2 60.45 62.44 62.49 61.08 60.90 69.26 69.45 68.24

TiO2 0.71 0.67 0.61 0.67 0.71 0.32 0.29 0.30

Al2O3 17.20 16.88 16.90 17.17 17.04 15.32 15.44 15.10

MnO 0.09 0.09 0.09 0.09 0.09 0.05 0.04 0.05

MgO 3.33 2.74 2.66 3.06 2.78 0.40 0.43 0.39

CaO 5.97 5.29 5.47 5.36 5.32 2.49 2.44 3.54

Na2O 3.43 3.48 3.53 3.54 3.40 3.89 3.74 3.60

K2O 2.00 2.25 2.28 2.26 2.51 3.12 3.09 2.52

P2O5 0.18 0.17 0.17 0.18 0.17 0.10 0.09 0.09

Fe2O3 1.25 1.43 1.23 1.15 1.24 1.31 1.35 1.05

FeO 4.22 3.49 3.47 3.96 4.00 1.26 1.00 1.26

Lol 1.15 1.10 1.13 1.47 1.81 2.38 2.58 3.80

Total 99.98 100.03 100.03 99.99 99.97 99.90 99.94 99.94

La 35.10 26.90 36.70 37.40 34.50 36.20 35.00 35.80

Ce 65.30 58.70 74.00 73.80 70.20 66.50 62.10 63.40
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Table 2. Cont.

Sample Types Quartz Diorite Granite Porphyry

Sample No. 11ASY003 11ASY005 11ASY006 11ASY008 11ASBY05 12ASB02 12ASB03 12ASB04

Pr 6.93 6.18 8.42 8.50 8.02 7.22 6.99 7.06

Nd 25.90 22.60 31.80 31.70 30.10 26.70 23.90 24.40

Sm 5.10 4.57 5.59 5.59 5.56 4.30 4.26 4.15

Eu 1.30 1.16 1.30 1.39 1.24 0.93 0.90 0.92

Gd 4.20 3.82 4.78 4.58 4.59 3.25 3.33 3.18

Tb 0.60 0.54 0.66 0.65 0.66 0.49 0.51 0.48

Dy 3.32 3.16 3.81 3.60 3.68 2.64 2.64 2.54

Ho 0.64 0.60 0.70 0.68 0.70 0.52 0.52 0.48

Er 1.67 1.61 1.90 1.87 1.92 1.46 1.44 1.31

Tm 0.25 0.23 0.26 0.26 0.27 0.22 0.22 0.20

Yb 1.53 1.46 1.71 1.66 1.80 1.39 1.45 1.30

Lu 0.23 0.21 0.24 0.24 0.26 0.23 0.24 0.23

Y 17.40 17.00 17.80 18.60 19.60 15.00 15.90 14.60

Rb 95.60 93.60 107.00 102.00 122.00 165.00 162.00 154.00

Ba 710.00 588.00 635.00 669.00 609.00 815.00 784.00 884.00

Th 9.67 7.45 16.80 13.40 11.20 16.30 16.60 16.40

U 1.71 1.22 1.77 2.35 1.12 2.76 2.32 2.33

Ta 0.81 0.64 0.69 0.63 0.71 1.61 1.62 1.59

Nb 10.50 9.84 9.91 9.96 11.50 12.90 13.00 12.70

Sr 558.00 523.00 558.00 563.00 491.00 406.00 456.00 378.00

Zr 30.70 28.80 23.40 23.90 39.20 158.00 138.00 136.00

Hf 3.92 1.87 4.13 3.16 2.54 4.64 4.26 4.06

ΣREE 152.07 131.74 171.87 171.92 163.50 152.05 143.50 145.45

ΣLREE 139.63 120.11 157.81 158.38 149.62 141.85 133.15 135.73

ΣHREE 12.44 11.63 14.06 13.54 13.88 10.20 10.35 9.72

LREE/HREE 11.22 10.33 11.22 11.70 10.78 13.91 12.86 13.96

δEu 0.83 0.83 0.75 0.82 0.73 0.73 0.71 0.75

δCe 0.95 1.06 0.98 0.96 0.98 0.94 0.90 0.91

(La/Sm)N 4.33 3.70 4.13 4.21 3.90 5.30 5.17 5.43

(La/Yb)N 15.47 12.42 14.47 15.19 12.92 17.56 16.27 18.57

(Sm/Nd)N 0.61 0.62 0.54 0.54 0.57 0.50 0.55 0.52

(Gd/Yb)N 2.22 2.11 2.26 2.23 2.06 1.89 1.85 1.97

A/NK 2.20 2.07 2.04 2.08 2.05 1.46 1.52 1.63

A/CNK 0.92 0.95 0.93 0.95 0.95 1.00 1.04 0.93

Note: LOI = Loss on ignition; A/CNK = Al2O3/(CaO + Na2O + K2O); A/NK = Al2O3/(Na2O + K2O); LREE =
light rare-earth element; and HREE = heavy rare-earth element.
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from [40,41].

4.3. O-S-Pb Isotopes

Oxygen isotope data for the Asiha complex are presented in Table 3. The δ18OV-SMOW
values of 12 samples range from 8.9‰ to 15.8‰, and are 12.28‰ on average. The mean
δ18OV-SMOW value of quartz diorite and granite porphyry related to mineralization is
13.25‰, which is obviously higher than that of non-ore-bearing granite pluton, with a
mean value of 10.35‰.

Table 3. Oxygen isotopic compositions of Asiha complex.

Sample Types δ18OV-PDB ‰ δ18OV-SMOW ‰

Monzogranit
−21.3 8.9

−19.8 10.4

Plagiogranite
−19.7 10.6

−18.8 11.5

Granite porphyry

−19.3 11

−21.3 8.9

−16.8 13.6

Quartz diorite

−18.3 12

−15.7 14.7

−15.7 14.8

−15.2 15.2

−14.6 15.8
Note: PDB = Pee Dee Belemnite, and SMOW = Standard Mean Ocean Water.
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The S isotope compositions are shown in Table 4. The δ34SV-CDT values of pyrite
samples are from 4.9‰ to 6.3‰, with a medium of 5.4‰. The Pb isotope compositions
from this study and referenced data are listed in Table 5. Pyrite samples have relatively
homogeneous, low radiogenic Pb isotope compositions. The 206Pb/204Pb, 207Pb/204Pb,
and 208Pb/204Pb values of pyrites are 18.072–18.508, 15.561–15.675, and 38.172–38.904,
respectively. The 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb values from the Asiha complex
are 18.548–19.268, 15.624–15.771, and 38.883–39.983, respectively.

Table 4. Sulfur isotopic compositions of pyrite.

Sample No. Minerals δ34SV-CDT (‰)

13ASII-2

Pyrite

11.6

13ASII-3 6.2

13ASII-4 5.0

13ASI-2 6.3

11ASPD002 5.6

11ASY010 4.9

11ASY010 4.9

12ASPD01 5.1

12ASY010 5.2
Note: CDT = Canyon Diablo Meteorite.

Table 5. Lead isotopic compositions of Asiha complex and pyrite.

Sample Types 208Pb/204Pb 207Pb/204Pb 206Pb/204Pb

Pyrite

38.429 15.635 18.387

38.555 15.666 18.421

38.172 15.561 18.072

38.415 15.613 18.398

38.429 15.604 18.450

38.416 15.605 18.416

38.388 15.599 18.441

38.904 15.675 18.508

Quartz diorite

39.289 15.668 18.927

39.034 15.646 19.051

38.976 15.626 18.872

39.002 15.624 18.942

39.531 15.688 19.137

Granite porphyry

39.607 15.771 19.268

39.555 15.742 19.054

39.983 15.691 18.819

39.321 15.763 18.947

39.815 15.645 18.548

39.275 15.647 18.846

38.883 15.676 18.644
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5. Discussion
5.1. Petrogenesis and Source of Adakite-like

Previous research summarized that vast majority gold-bearing intrusive rocks in
EKOB are generally I-type granites, and the Sr-Nd-Hf isotope composition of these I-
type granites are consistent with the MMEs. They are considered to be formed by the
mixing of mantle-derived and crust-derived magmas [19,42–44]. Quartz diorite depleted
in Ta and granite porphyry depleted in Sr represent that they experienced significant
separation and crystallization of rutile and plagioclase, respectively [45]. The quartz
diorite and granite porphyry samples have SiO2 (60.45–69.45 wt%), Sr (378–563 ppm), and
Al2O3 (15.1–17.2 wt%) contents but low Y (14.6–19.6 ppm), MgO (0.39–3.33 wt%), and Yb
(1.3–1.8 ppm) contents. These features are similar to modern adakite [1].

In the YbN vs. LaN/YbN (Figure 6a) diagrams, the samples are plotted into the
adakitic field. In fact, many gold ore-forming bodies previously considered as A-type or
I-type granite show the adakitic rock characteristics (e.g., Wulonggou, Xizangdagou, and
Heihaibei). However, the magmatic rocks associated with the Triassic porphyry-skarn Fe-
Pb-Zn deposit are not adakite. Instead, they are associated with I-type granites (e.g., Reshui
and Duolongqiarou) [46]. In the Y vs. Nb diagrams, our samples are located in the volcanic
arc and syn–collision field (Figure 6b), and the granite porphyry rocks are located in syn–
collision field (Figure 6c), indicating that the formation environment of Asiha complex may
be the transition period between subduction environment and collision environment.
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Figure 6. Discrimination diagrams for the granitoids origin, LaN/YbN vs. YbN (a), Y vs. Nb (b), Yb vs.
Ta (c). Data sources: Naomuhong, Dashuigou, Heihaibei, Xizanggdagou after [47]. ADR = Andesite,
dacite, and rhyolite field, VAG = volcanic-arc granites, WPG = within plate granites, ORG = oceanic
ridge granite, and syn–COLG = syn–collision granite. Figure 6a is modified from [48]; Figure 6b,c are
modified from [49].

The S isotopic composition of pyrite in the ore and contemporary granite porphyry is
consistent, indicating that the deposit may be derived from porphyry magmatic hydrother-
mal fluids [18]. The δ34SV-CDT value of pyrite samples range from 4.9‰ to 6.3‰, which is
consistent with other gold deposits in EKOB, including Kunlun River (4.4‰–8.1‰) [50],
Haxiyatu (4.63‰–6.3‰) [51], and also overlap with the range of some orogenic gold de-
posit worldwide, including Callie (4‰–11.5‰) [52] and Kanggur (−1‰–2.5‰) [53]. These
values coincide with the source range of magmatic hydrothermal fluid in Wulonggou
deposit (Figure 7) [54].
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of fluid data after Wulonggou deposit [54].

The oxygen isotope of oceanic slab melting magma varies between 6.36‰ and 8.17‰ [55],
which is clearly lower than the oxygen isotopic data of Asiha complex (Figure 8a). The high
oxygen isotopic composition may reflect that crust or crustal materials were incorporated
into the magmatic melt [2,55,56], and the δ18O value of ore-bearing granites obviously
higher than that of non-ore-bearing granites pluton (Figure 8b). Therefore, the melting of
subduction sediments perhaps will produce such adakitic signature. Such a petrogenesis is
also consistent with the original petrogenesis of adakite, which is derived from the melting
of oceanic basaltic crust [1].
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Figure 8. O isotope comparisons of known rock types (a), and isotopic compositions of Asiha complex
(b). Data sources: fresh MORB [57], altered upper and lower oceanic crusts [58], arc-related granitic
rocks [59], slab fluid-related and arc fractionation trend [55], normal granites, 18O for I-type granites
and 18O for S-type granites are taken from [60], Nan’gentan granites and MME after [29].

Plate subduction causes high δ18O crust material to constantly move into the man-
tle wedge [37,61]. The range of δ18O value of the whole-rock spans the typical I-type
(δ18O = 6‰–10‰) and S-type (δ18O = 10‰–14‰, [57]) granites. The accumulation of
surface sediments can significantly increase the O isotope of the subduction zone magmatic
rocks [62]. Although the Asiha complex has adakitic geochemical characteristics according
to the whole rock chemistry, the O isotopic characteristics can still identify the existence of
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subducted sediments in the complex. The Pb isotopic compositions of sulfides are relatively
uniform. On the 206Pb/204Pb vs. 207Pb/204Pb and 206Pb/204Pb vs. 208Pb/204Pb diagrams,
both the pyrite samples and the ore–bearing granitoids plotting well above the Northern
Hemisphere Reference Line (Figure 9a). Binary mixing modeling results showed that about
~50%–60% sediment and ~40%–50% mantle or lower crust components (Figure 9b). As
mentioned above, the complex was formed during the subduction stage of Paleo-Tethys
Ocean. Furthermore, MMEs exist in the quartz diorite samples, which is considered to
have originated from the lower crust. Consequently, the Asiha complex may originate from
the mixing of subducted oceanic crust with seafloor sediments. Here, we use a loose term
“adakite–like” to represent these granites.
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5.2. Mineralization Potential of Adakite-like Rocks

Since the late Permian, the Paleo-Tethys Ocean has entered the subduction stage
(Figure 10a), and a large amount of magmatic rocks with island arc characteristics are
distributed along the EKOB [25,30,36,66]. The intrusive magmatic rocks are rich in Rb,
K, Th, U, and LREE and also show the negative of “TNT” (Ta, Nb, Ti) as abnormal. The
closure of the Paleo-Tethys Ocean perhaps happened at ~243 Ma [29]. The occurrence
of syn-collisional granites (237 Ma) indicates that the subduction stage ended and the
intracontinental evolution period started [46] (Figure 10b).

Adakite-like rocks in the subduction island arc environment have high gold miner-
alization potential [67,68]. A series of adakites in the Philippines were formed by partial
melting of the subducted oceanic amphibolite facies during the Cretaceous. Adakite is also
the ore-bearing rock intrusion of Machangqing porphyry Cu-Au in Southeastern Tibetan
Plateau [69]. With high Cr and Ni concentrations of the olivine or pyroxene, the addition
of even a small amount of mantle peridotite to adakitic melts can significantly enhance
the Ni-Cr contents [70,71]. Low Ni and Cr contents of Asiha complex indicate that mantle
material does not participate in the magmatic evolution on a large scale. Studies have
shown that the global distribution of Cenozoic adakite is consistent with that of contem-
poraneous porphyry deposits, and the ore-forming parent rocks are mostly adakite or
adakite-like [72], which are mainly formed by oceanic crustal subduction [1], lower crust
delamination [73–75], and subduction of continental crust [76].
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Generally, Au was proposed to be a partition into Cl rich and oxidized aqueous
fluids, in the form of chloride complexes, or as moderate salinity liquids containing HS
ligands [77,78]. In the magma with low oxygen fugacity, Au is a highly chalcophile element
and has strong compatibility with sulfide, and the Au concentration is controlled by sulfide
crystallization differentiation during magma evolution [77,79]. The subduction plate melt
can carry 10,000 times more Fe2O3 than the water fluid into the mantle wedge, which greatly
improves the oxygen fugacity of the mantle wedge; this process controls the migration of
Au elements in the deep magma [9]. In addition, water-rich magma has higher oxygen
fugacity, which is more conducive to adakite mineralization.
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The δD and δH2O values of quartz at the mineralization stage are −117.7‰–−84.3‰
and 2.7‰–9.2‰, respectively, in the Asiha deposit [33]. The homogenization temperature
of gas-liquid fluid inclusions is concentrated at 160–320 ◦C, and the salinity is concentrated
at 38% NaCl. The homogenization temperature of CO2-containing three-phase inclusions
is concentrated at 300–420 ◦C, and the salinity is 1.5%–4.5% NaCl, according to Raman
analysis; the fluid is a H2O–NaCI–CO2–N2–CH4 system [33]. Previous research revealed
that the Wulonggou gold deposit near the Aisha deposit was formed in the stage of
intracontinental evolution of EKOB, and the age of the ore-bearing high magnesium adakite
diorite is 215 Ma, with initial 87Sr/86Sr(ISr) ratios of 0.709166 to 0.709529, zircon εHf(t)
values of −4.9 to −1.0, and εNd(t) values of −5.7 to −5.1 [32]. The Late Triassic adakite
diorite in the Wulonggou deposit was thought to be derived from partial melting mantle
peridotite that was metasomatized by the addition of Mesoproterozoic subducted sediment–
derived melts [32]. It is reasonable to infer that the Middle Triassic adakite rocks in Asiha
perhaps were the result of partial melting of the Paleo-Tethys subducted oceanic crust
with seafloor sediments, and the Late Triassic adakite rocks after the collision may be the
products of the residual oceanic crust in the subduction zone (Figure 10c). The adakite-like
rocks provide the thermal power and hydrothermal solution for gold mineralization and
also provides ore-forming materials. They have great potential for gold mineralization and
should be regarded as the target for future mineral exploration.

6. Conclusions

Quartz diorite and granite porphyry from the Asiha Au deposit formed at 238.4 ± 1.4 Ma
and 240 ± 1.7 Ma, respectively. The geological background of these intrusions is the syn–
collision stage of the convergence process of the Paleo–Tethys Ocean. Quartz diorite and
granite porphyry have the typical geochemical features of adakite. The Asiha intrusions
may be the partial melting of the Paleo-Tethys subducted oceanic crust with seafloor
sediments and are markedly different from the traditional adakite. The Asiha deposit is an
orogenic gold deposit closely related to adakite-like intrusions. The adakite-like intrusions
formed both in Middle Triassic and in Late Triassic in the EKOB have great potential for
gold mineralization.
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