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Abstract: The Western Qinling orogenic belt (WQOB) is one of the most important prospective
gold districts in China, with widely distributed Indosinian intermediate–acidic intrusions. The
Liziyuan Au deposit is a representative orogenic deposit in the northern WQOB, hosting several
sections spatially associated with igneous rocks. The Au deposit is hosted by meta-sedimentary
volcanic rocks of the Cambrian–Ordovician Liziyuan Group and the Tianzishan monzogranite. Two
periods, including five stages of mineralization, are recognized in this area: an early metamorphic
mineralization period (PI), including quartz–pyrite (Stage I) and banded quartz–polymetallic sulfide
(Stage II) veins, and a later magmatic mineralization period (PII) including quartz–K-feldspar–pyrite–
molybdenite veins (Stage III), quartz–polymetallic sulfide–chlorite ± calcite veinlets and stockwork
(Stage IV), and late calcite–quartz veinlets (Stage V). Geochronological studies indicate a SHRIMP
zircon U-Pb age of 236.1 Ma for the Tianzishan monzogranite, and our published ages of ore-bearing
diorite porphyrite of the Suishizi section and granite porphyry of the Jiancaowan section being
213 and 212 Ma, respectively. Pyrites formed in association with PI and PII mineralization have
well-defined Rb–Sr ages of 220 ± 7.5, 205.8 ± 8.7, and 199 ± 15 Ma, with close temporospatial
coupling between mineralization and magmatism. The δ18O and δD values of fluid inclusions in
Stage IV auriferous quartz veins range from −0.03‰ to +5.24‰ and −93‰ to −75‰, respectively,
suggesting that mineralizing fluid was likely of magmatic origin. Three distinct ranges of δ34S values
are identified in the studied sections (i.e., 7.04‰–9.12‰, −4.95‰ to −2.44‰, and 0.10‰–3.08‰),
indicating a source containing multiple sulfur isotopes derived from magmatic and metamorphic
fluids. The Liziyuan Au deposit is thus likely an orogenic deposit closely related to magmatism.
Geochemical characteristics indicate that Tianzishan monzogranite is adakitic and was derived from
thickened lower crust during Triassic orogenesis. The ore-bearing diorite porphyrite and granite
porphyry formed in a post-collision extensional setting. Together with previous geological and
geochemical data, our results indicate that the Liziyuan orogenic Au deposit was formed by early
collisional–compressional metamorphism and late post-collision extensional magmatic fluids related
to the evolution of the WQOB.

Keywords: Western Qinling orogenic belt; Liziyuan orogenic Au deposit; geochronology; S–H–O
isotopes; tectonomagmatism; adakite; mineralization

1. Introduction

Orogenic gold deposits have attracted increasing research attention over recent
decades [1–6], with their large proportion of global Au reserves typically being devel-
oped in metamorphic terranes and structurally controlled by compressional to trans-
pressional structures associated with accretionary and/or collisional orogenic tectonic
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settings [6–10]. Country rocks related to orogenic Au deposits include granitic intru-
sions [3,11] and metasedimentary and metabasaltic rocks [12–16]. However, the correlation
between orogenic Au deposits and tectonomagmatic activities remains controversial [7,17]
because it is difficult to identify Au fluid sources containing metamorphic fluids derived
from the dewatering of supracrustal rocks [9,18], lower crust/mantle fluids [6,10,19–21], or
orogenesis-related granitic magmatic solutions [22,23], especially where there are clear tem-
porospatial relationships between deposits and intrusions. Although most of the published
signatures of ore-forming fluids are consistent with those of metamorphic source fluids, a
magmatic–hydrothermal genesis has recently come back into favor [24–26].

With the discovery of several large Au deposits, such as the Anba, Zaozigou, Yangshan,
Liba, Jinlongshan, and Zhaishang deposits, the West Qinling orogenic belt (WQOB) has
become one of the most important prospective gold provinces in China, containing over
2000 tonnes of Au in what are generally classified as Carlin, Carlin-like, and orogenic-
type deposits [27–31]). However, debate remains on whether magmatism contributed
to the mineralization of orogenic gold deposits in the WQOB, which contains numerous
Triassic intrusions hosted in or coexisting with orebodies that represent intrusion-related
or orogenic mineral systems. The Liziyuan Au deposit is a typical example hosted in
brittle to ductile shear zones developed in greenschist-facies metasedimentary volcanic
rocks and Triassic intrusions, making it an ideal site for investigation of the relationship
between orogenic mineralization and magmatism. In this study, we undertook whole-
rock geochemical analysis of Triassic intrusions related to the deposit, S–H–O isotope
geochronological analyses, and detailed deposit-scale geological characterization with the
aim of constraining the magmatism and mineralization of the Liziyuan Au deposit. Our
results may provide new insights into the role of magmatism during the formation of such
orogenic deposits.

2. Geological Setting

The Qinling orogenic belt is in central China (Figure 1a) and includes three blocks
and two sutures [32,33], connecting to the Kunlun–Qilian Orogen in the west and the
Sulu–Dabie Orogen in the east, formed during multiple Paleozoic–Mesozoic
subduction–collision–accretion events between the North China and Yangtze cratons [34–37].
The WQOB is tectonically separated from the Qilian Orogen and North Qinling Block by
the Lin(xia)–Wu(shan)–Tian(shui) fault and the Shangdan suture to the north (Figure 1b)
and the Animaqing–Mianlue suture to the south, and it is traditionally separated from
the East Qinling orogenic belt by the Huicheng Basin or the Foping Uplift along the
Bao(ji)–Cheng(du) railway.

Paleozoic–Mesozoic strata are widespread in the WQOB. Proterozoic metamorphic
volcanic–sedimentary formations (846–776 Ma) occur in the southeast [38,39], and
Devonian–Triassic sedimentary rocks are widely exposed. These strata have been strongly
folded and faulted during Triassic accretion and collision [40,41]. Paleozoic strata are the
main host rocks of the Au deposit [42–44]. Early Mesozoic granitoid intrusions are widely
exposed in the WQOB and are recognized as having been generated during the evolution
of the Paleo-Tethys Ocean between the North and South China blocks [45–47].

The Liziyuan Au deposit lies in the northern WQOB and has been a major target for
Au–polymetallic exploration in recent decades. Exposed strata in the mining area include
the middle–lower Proterozoic Qinling Group comprising high-grade metamorphic rocks
(Figure 1c); the Cambrian–Ordovicinan Liziyuan Group comprising a fore-arc volcanic–
sedimentary complex; the Upper Ordovician Caotangou Group, which is characterized by
the occurrence of volcanoclastic rocks and lava; the Middle Devonian Shujiaba Formation
comprising metamorphosed siltstone, sandstone, mudstone, and shale; the Upper Devo-
nian Dacaotan Group comprising sandstone and conglomerate, which formed in fluvial
and lacustrine settings [48], and Cenozoic cover. Triassic intrusions are widespread, as rep-
resented by the Tianzishan, Baguashan, and Chaijiazhuang plutons, and later widespread
intermediate–acid dikes are spatially associated with Au orebodies. The NW-trending
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ore-hosting shear zones run parallel to the regional integral structure and are intersected
by later NE-trending brittle faults. Orebodies in the Liziyuan Au deposit are hosted by
brittle to ductile shear zones in greenschist-facies metasedimentary volcanic rocks and
the Tianzishan monzogranite, and the deposit contains three main sections at Shenjiagou,
Suishizi, and Jiancaowan.
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3. Geological Characteristics of Sections in the Liziyuan Area
3.1. Shenjiagou Section

The Shenjiagou section, in the eastern segment of the Liziyuan Au deposit, exposes
strata of the Liziyuan Group of the ore-hosting horizon, which comprises chlorite schist,
sericite–quartz schist interbedded with marble, chlorite–sericite–quartz schist interbedded
with schistose limestone, and psammite. The section includes three Au orebodies (I–III) of
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400–1000 m in length that are controlled by three parallel NW-trending brittle–ductile shear
zones that played an important role in providing channels and spaces for ore-bearing fluids,
with later-developed minor NE-trending structures having little effect on the orebodies.
Intrusions in the mining area include rare lamprophyre and granodiorite dikes.

The Au mineralization occurs mainly within the brittle–ductile shear zones as quartz–
sulfide veins (Figure 2a,b) containing pyrite, chalcopyrite, sphalerite, galena, arsenopyrite,
and bismuthinite. Au grades range from 1 to 9 g t−1 (average 3 g t−1). The highest Au
contents and wall-rock alteration are concentrated in highly deformed zones. Mineral-
ization zoning from the center to the edges of the section is characterized by banded
silicification + planar metal sulfidation (Figure 2c), banded silicification + chloritization +
disseminated metal sulfidation (Figure 2d), chloritization + epidotization + disseminated
metal sulfidation, and chloritization + epidotization.

Minerals 2023, 13, x FOR PEER REVIEW 5 of 24 
 

 

 
Figure 2. Ore and alteration styles of the Shenjiagou Au deposit. (a) Ore-bearing quartz–sulfide 
veins; (b) planar metal sulfidation in banded silicification; (c) planar metal sulfidation; and (d) dis-
seminated metal sulfidation in banded silicification. Kfs, K-feldspar; Py, pyrite; Qz, quartz. 

3.2. Suishizi Section 
The Suishizi section, in the western segment of the Liziyuan Au deposit, comprises 

eight Au orebodies hosted in the Tianzishan intrusion. These orebodies are 1–6 m thick, 
and they are controlled by a group of NE- and E–W-trending fracture zones. Intrusions in 
the mining area include the Tianzishan monzogranite and mineralized diorite porphyrite. 

The Au mineralization is hosted mainly by the diorite porphyrite (Figure 3a–c) and 
occurs as fractured and altered disseminated types containing considerable amounts of 
pyrite, chalcopyrite, sphalerite, arsenopyrite, native Au, electrum, native Ag, and petzite. 
The boundaries between the fractured and altered disseminated orebodies and the host 
rocks are gradational. Au grades are 1–185 g t−1 (average 5.78 g t−1) and Ag grades are 1–
311 g t−1 (average 29.5 g t−1). Mineralization zoning from the center to the edges of the 
section is characterized by silicification + metal sulfidation (Figure 3d) + sericitization (Fig-
ure 3e,f) + chloritization + carbonatization, potash feldspathization (Figure 3g)+ silicifica-
tion, chloritization + epidotization + carbonatization (Figure 3h,i), and kaolinization + 
chloritization. 

Figure 2. Ore and alteration styles of the Shenjiagou Au deposit. (a) Ore-bearing quartz–sulfide veins;
(b) planar metal sulfidation in banded silicification; (c) planar metal sulfidation; and (d) disseminated
metal sulfidation in banded silicification. Kfs, K-feldspar; Py, pyrite; Qz, quartz.

3.2. Suishizi Section

The Suishizi section, in the western segment of the Liziyuan Au deposit, comprises
eight Au orebodies hosted in the Tianzishan intrusion. These orebodies are 1–6 m thick,
and they are controlled by a group of NE- and E–W-trending fracture zones. Intrusions in
the mining area include the Tianzishan monzogranite and mineralized diorite porphyrite.

The Au mineralization is hosted mainly by the diorite porphyrite (Figure 3a–c) and
occurs as fractured and altered disseminated types containing considerable amounts of
pyrite, chalcopyrite, sphalerite, arsenopyrite, native Au, electrum, native Ag, and petzite.
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The boundaries between the fractured and altered disseminated orebodies and the host
rocks are gradational. Au grades are 1–185 g t−1 (average 5.78 g t−1) and Ag grades are
1–311 g t−1 (average 29.5 g t−1). Mineralization zoning from the center to the edges of
the section is characterized by silicification + metal sulfidation (Figure 3d) + sericitization
(Figure 3e,f) + chloritization + carbonatization, potash feldspathization (Figure 3g)+ silici-
fication, chloritization + epidotization + carbonatization (Figure 3h,i), and kaolinization
+ chloritization.
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Figure 3. Ore and alteration styles of the Suishizi Au deposit. (a) Diorite porphyrite ore and
surrounding monzogranite; (b) pyrites in diorite porphyrite ore; (c) pyrites and phenocrysts in diorite
porphyrite ore; (d) metal sulfidation and silicification; (e,f) sericitization; (g) potash feldspathization
+ silicification; (h,i) chloritization + epidotization + carbonatization. Kfs, K-feldspar; Pl, Plagioclase;
Am, Amphibole; Ser, sericite; Chl, chlorite; Cal, calcite; Ep, epidote; Py, pyrite; Mo, molybdenite.

3.3. Jiancaowan Section

The Jiancaowan section, in the central segment of the Liziyuan Au deposit, con-
tains more than 30 echelon-type orebodies controlled by a group of NW- and NE-striking
brittle–ductile shear zones and brittle faults, with the former being cut by the latter. The
ore-bearing strata belong to the upper Liziyuan Group. On the western side of the mining
area, intrusions comprise mainly the Triassic Tianzishan monzogranite and the Kuangou
granite porphyry, with the latter being near the ore-bearing brittle–ductile shear zones.
Quartz syenite, granodiorite, and diorite porphyrite dikes occur in the NE-trending faults.

The Au orebodies range in length from 10 to 80 m, with Au grades of 3–65 g t−1

(average 20 g t−1). The Au mineralization occurs mainly within fracture zones in banded
quartz–sulfide veins (Figure 4a) containing considerable amounts of pyrite, chalcopyrite,
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sphalerite, and galena and in syn-deformational and syn-metamorphic quartz–K-feldspar
veins (Figure 4b). Alteration zoning is characterized by strong silicification and sulfida-
tion near orebodies. Based on mineral paragenetic assemblages and the cross-cutting
relationships of ore-bearing veins, two stages of superimposed mineralization can be dis-
tinguished: an early stage characterized by syn-deformational quartz veins and banded
quartz–pyrite mineralization, and a later stage of porphyry-type that overprints the earlier
mineralization (Figure 4c), with these characterizing the Suizhizi Au deposit. In intensively
fluid-superposed zones at the intersections between NW- and NE-striking brittle–ductile
shear zones and brittle faults, alteration zoning from the center to the edges of the section
is characterized by vein silicification + metal sulfidation (Figure 4d), silicification + chlori-
tization + disseminated metal sulfidation (Figure 4e), and chloritization + epidotization
(Figure 4f). In weakly fluid-superposed zones that are little affected by later stages of
porphyry-type mineralization, alteration zoning is characterized by banded silicification +
planar metal sulfidation, chloritization + epidotization + disseminated metal sulfidation,
and chloritization + epidotization.

Minerals 2023, 13, x FOR PEER REVIEW 7 of 24 
 

 

section is characterized by vein silicification + metal sulfidation (Figure 4d), silicification 
+ chloritization + disseminated metal sulfidation (Figure 4e), and chloritization + epidoti-
zation (Figure 4f). In weakly fluid-superposed zones that are little affected by later stages 
of porphyry-type mineralization, alteration zoning is characterized by banded silicifica-
tion + planar metal sulfidation, chloritization + epidotization + disseminated metal sulfi-
dation, and chloritization + epidotization. 

 
Figure 4. Ore and alteration styles in the Jiancaowan Au deposit. (a) Banded quartz–sulfide vein; 
(b) syn-deformational quartz–K-feldspar–sulfide vein; (c) porphyry-type mineralization; (d) early 
banded ore captured by a later quartz vein; (e) silicification + chloritization + disseminated metal 
sulfidation zone; (f) chloritization + epidotization zone. Kfs, K-feldspar; Chl, chlorite; Py, pyrite. 

4. Metallogenetic Periods and Stages of the Liziyuan Au Deposit 
Based on detailed field investigations and analysis of samples from the three sections 

of the Liziyuan Au deposit, two metallogenetic periods including five stages were identi-
fied. The early metallogenetic period (PI) is represented by quartz-vein and disseminated 
ores developed along NW-trending shear zones that formed in a compressional tectonic 
setting. This period can be further divided into two stages: an early syn-deformational 
quartz–pyrite vein stage (Stage I) with quartz and minor pyrite mineral associations, and 
a later banded quartz–polymetallic sulfide stage (Stage II) with quartz, pyrite, galena, and 
minor chalcopyrite and sphalerite. Syn-deformational quartz–K-feldspar–pyrite veins 
were developed locally in Stage II; these are similar in mineral composition to the Tian-
zishan monzogranite. Based on the spatiotemporal relationship between the mineraliza-
tion and the intrusions, the Tianzishan magma probably provided the necessary mag-
matic fluids and heat for the mineralization in the Liziyuan gold deposit. The second 
metallogenetic period (PII) includes porphyry-type mineralization that is represented by 
diorite porphyrite or granite porphyry-type orebodies. Porphyry-type mineralization is 
commonly developed in NE-trending brittle faults and overprints the NW-trending PI 
mineralization to form enriched orebodies. PII can be further divided into three stages, 
including a high-temperature stage (Stage III) with quartz, K-feldspar, pyrite, arsenopy-
rite and molybdenite mineral association; a mesothermal-high temperature stage (Stage 
IV) with quartz, pyrite, native gold, chalcopyrite, galena and sphalerite, and a late meso-
thermal-low temperature stage (Stage V) with kaolinite, chlorite, calcite, and minor metal 
sulfides. 

Figure 4. Ore and alteration styles in the Jiancaowan Au deposit. (a) Banded quartz–sulfide vein;
(b) syn-deformational quartz–K-feldspar–sulfide vein; (c) porphyry-type mineralization; (d) early
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4. Metallogenetic Periods and Stages of the Liziyuan Au Deposit

Based on detailed field investigations and analysis of samples from the three sections
of the Liziyuan Au deposit, two metallogenetic periods including five stages were identi-
fied. The early metallogenetic period (PI) is represented by quartz-vein and disseminated
ores developed along NW-trending shear zones that formed in a compressional tectonic
setting. This period can be further divided into two stages: an early syn-deformational
quartz–pyrite vein stage (Stage I) with quartz and minor pyrite mineral associations, and a
later banded quartz–polymetallic sulfide stage (Stage II) with quartz, pyrite, galena, and
minor chalcopyrite and sphalerite. Syn-deformational quartz–K-feldspar–pyrite veins were
developed locally in Stage II; these are similar in mineral composition to the Tianzishan
monzogranite. Based on the spatiotemporal relationship between the mineralization and
the intrusions, the Tianzishan magma probably provided the necessary magmatic fluids
and heat for the mineralization in the Liziyuan gold deposit. The second metallogenetic
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period (PII) includes porphyry-type mineralization that is represented by diorite porphyrite
or granite porphyry-type orebodies. Porphyry-type mineralization is commonly developed
in NE-trending brittle faults and overprints the NW-trending PI mineralization to form en-
riched orebodies. PII can be further divided into three stages, including a high-temperature
stage (Stage III) with quartz, K-feldspar, pyrite, arsenopyrite and molybdenite mineral
association; a mesothermal-high temperature stage (Stage IV) with quartz, pyrite, native
gold, chalcopyrite, galena and sphalerite, and a late mesothermal-low temperature stage
(Stage V) with kaolinite, chlorite, calcite, and minor metal sulfides.

In terms of spatial distribution, the Shenjiagou Au deposit was hosted in NW-trending
ductile shear foliation with few diorite porphyrite or granite porphyry intrusions near
the orebodies. The deposit formed mainly during the PI mineralization process, with PII
mineralization being weakly superimposed. The Suishizi Au deposit was formed during
PII mineralization and was hosted by the Tianzishan monzogranite, with mineralized
NE-trending diorite porphyrite being the main Au-bearing orebody. Orebodies of the
Jiancaowan Au deposit were distributed along NW-trending shear zones and NE-trending
brittle faults, with dilational and enriched orebodies located at their intersection. The two
periods of mineralization can be clearly distinguished in the Jiancaowan mining area.

5. Samples and Analytical Methods

Based on the close spatial relationship between intrusions and orebodies in the Liziyuan
Au deposit, we chose seven Tianzishan monzogranite, five diorite porphyrite, and three
granite porphyry dike samples from the surface and subsurface to investigate the relation-
ship between mineralization and the tectonomagmatic evolution of the area. Whole-rock
major- and trace-element contents were determined at the Key Laboratory of Western China’s
Mineral Resources and Geological Engineering, Ministry of Education, Chang’an University,
Xi’an, China. Major-element contents were determined by X-ray fluorescence analysis of
fused-glass disks, yielding analytical uncertainties of 1%–3%. Loss on ignition values were de-
termined gravimetrically after heating at 980 ◦C for 30 min. Trace-element analyses involved
inductively coupled plasma–mass spectrometry (ICP–MS; Agilent 7700e; Agilent Technolo-
gies (USA) Co., Ltd., Santa Clara, CA, USA). An internal standard was used to monitor
instrumental drift, yielding uncertainties of 5%–10%, depending on the concentration.

Sulfur isotopic compositions of nine pyrite samples from quartz–pyrite veins in de-
posits in the Liziyuan Au deposit were determined at the Analytical Laboratory of the
Beijing Research Institute of Uranium Geology (RIUG), Beijing, China. Samples were
crushed to 200 mesh and mixed with cuprous oxide before heating at 980 ◦C at a pres-
sure of 2 × 10−2 Pa to produce SO2. The S isotopic compositions of the resulting SO2
were determined by MS (MAT-251) yielding analytical precisions better than ±0.2‰. The
isotopic compositions are reported relative to Vienna Cañon Diablo Troilite (V-CDT). In
addition, 12 in situ isotope analyses of different ore types were undertaken at the State Key
Laboratory of Continental Dynamics, Northwest University, Xi’an, China, using a 193 nm
ArF excimer laser-ablation system (RESOlution M-50-LR, asi) coupled to an ICP–MS (Nu
Plasma 1700), in high-resolution mode. A relatively low energy fluence of 3.5 J cm−2 was
used, with an ablation frequency of 3 Hz, 25–30 µm spot size, and a single spot method. For
correction of instrumental drift and mass bias, the standard–sample bracketing technique
was used with repeated analyses of external standards before and after each sample. He
was used as carrier gas and Ar as makeup gas. The methods used for in situ S isotope
analyses of the sulfides have been described previously [49]). δ34S values were normalized
to V-CDT [50,51].

The H–O isotopic compositions of quartz-hosted fluid inclusions were determined at
the RIUG using six representative quartz samples from quartz–pyrite veins. Pure monomin-
eralic coarse-grained quartz samples were handpicked under a binocular microscope after
crushing of selected samples, followed by fine grinding and sieving before treatment with
dehydrated ethanol to remove remaining impurities. Oxygen isotope analyses involved
0.5 g of quartz of <200 mesh size, with O being extracted using the BrF5 method described
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by Clayton and Mayeda (1963) [52]. The resulting O2 was reacted with graphite rods to
produce CO2 before analysis by isotope ratio MS (IRMS; MAT-253EM). Hydrogen iso-
tope analyses involved ~3 g of quartz of <40–60 mesh size. Separated quartz grains were
degassed of labile volatiles and secondary fluid inclusions by heating under vacuum at
200 ◦C for 3 h. The resulting H2O was reduced by reaction with Zn metal in a sealed tube
at 450 ◦C [53]). Hydrogen isotopic compositions were determined by IRMS, as for the
O analyses.

δ18O and δD values are reported relative to Vienna Standard Mean Ocean Water
(VSMOW) with analytical precisions of ±0.2‰. Isotopic fractionation of O between quartz
and water was determined using the equations of Zheng (1993) [54].

Zircons from the Tianzishan monzogranite were selected for sensitive high-resolution
ion-microprobe (SHRIMP II) U-Pb dating at the Beijing SHRIMP Center, Institute of Geology,
Chinese Academy of Geological Sciences (CAGS), Beijing, China. Cathodoluminescence
(CL) images were collected using polished zircons prior to U–Th–Pb analyses to display
internal textures and to guide SHRIMP analyses. Common-Pb correction used the 204Pb
method of Compston et al. (1984) [55]. The methodology has been described in detail by
Compston et al. (1992) [56] and Williams (1998) [57]. Errors are quoted at the 1σ level,
except for weighted mean ages, which are quoted at the 2σ level. Data processing was
carried out using Isoplot v. 2.49 (Ludwig, 2003) [58].

Fourteen pyrite samples were separated from three ore samples for Rb–Sr dating.
After crushing to 40–60 mesh, individual pyrite grains were handpicked under a binocular
microscope to achieve >99% purity. Selected samples were rinsed repeatedly with distilled
water, dried, and crushed to <200 mesh size. Powders (200 mg) from each sulfide sample
were digested with HF–HNO3 in Teflon beakers. After evaporation and re-dissolution,
the Rb–Sr dating was undertaken by thermal ionization MS (TIMS; GV Isoprobe-T) at the
RIUG. Analyses of the US National Institute of Standards and Technology (NIST) Standard
Reference Material NBS987 yielded 87Sr/86Sr = 0.71025 ± 0.00007. A 86Sr/88Sr ratio of
0.1194 was used to correct for instrumental fractionation.

6. Results
6.1. Major Elements

The seven Tianzishan monzogranite samples had major-oxide contents as follows:
SiO2 = 69.50–73.52 wt.%; K2O = 4.45–6.07 wt.%; Na2O = 3.20–4.49 wt.%; Al2O3 = 13.98–
14.95 wt.%; CaO = 0.27–2.27 wt.%; Fe2O3 = 0.28–0.83 wt.%; FeO = 0.35–1.45 wt.%; MgO =
0.14–0.63 wt.%; TiO2 = 0.09–0.25 wt.%, and P2O5 = 0.03–0.10 wt.% (Table 1), with Al2O3/(CaO
+ Na2O + K2O) (A/CNK) ratios of 0.91–1.15. These samples belong to the subalkaline
(Figure 5a), high-K to shoshonitic (Figure 5b), and metaluminous to peraluminous series
(Figure 5c).
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Table 1. Major element contents (wt %) trace and rare earth element concentrations (ppm) of
Tianzishan monzogranite, diorite porphyrite and granite porphyry dikes.

Sample No. TZ1 TZ2 TZ3 TZ4 TZ5 TZ6 TZ7 SZ1 SZ2 SZ3 SZ4 SZ5 JC1 JC2 JC3

Lithology Monzogranite Diorite Porphyrite Granite Porphyry

SiO2 72.82 71.11 73.52 73.47 72.15 71.36 69.5 50.59 53.74 53.57 56.45 55.38 68.7 64.24 65.89
TiO2 0.15 0.09 0.13 0.12 0.25 0.16 0.11 0.84 0.88 0.58 0.69 1.07 0.34 0.4 0.11

Al2O3 14.43 14.64 14.25 14.44 14.95 14.43 13.98 13.57 14.9 14.3 14.7 14.97 15.07 17.07 11.52
Fe2O3 0.77 0.29 0.54 0.52 0.56 0.83 0.67 3.03 3.21 2.32 1.57 2.9 1.08 1.08 0.91
FeO 0.78 1.46 0.38 0.37 0.89 0.35 0.92 3.82 2.85 4.31 4.26 3.82 1.41 1.12 1.12
MnO 0.09 0.05 0.04 0.03 0.04 0.04 0.11 0.19 0.14 0.16 0.1 0.13 0.06 0.06 0.05
MgO 0.25 0.26 0.18 0.14 0.63 0.26 0.53 7.53 7.1 7.8 6.57 5.87 1.18 1.28 2.54
CaO 0.27 1.43 1.02 0.32 0.51 0.98 2.27 6.02 4.31 5.16 4.76 5.55 1.62 2.27 3.06

Na2O 4.49 3.69 4.11 4.49 4.13 4.16 3.2 0.8 2.68 2.85 2.9 3.38 3.88 2.68 0.29
K2O 6.07 4.88 4.45 4.55 4.84 5.12 5.46 3.12 2.44 2.49 2.33 2.11 3.57 7.22 7.88
P2O5 0.06 0.05 0.03 0.03 0.1 0.05 0.05 0.31 0.35 0.14 0.1 0.32 0.09 0.17 0.08
LOI 0.98 1.79 0.97 0.81 0.95 1.84 3.32 9.52 6.72 6.45 5.32 4.02 2.54 2.58 6.09

TOTAL 100.22 99.73 99.61 99.3 100.01 99.6 100.1 99.34 99.31 100.13 99.75 99.5 99.55 100.17 99.54
A/CNK 1.12 1.05 1.06 1.12 1.15 1.02 0.91 0.87 1.00 0.85 0.92 0.84 1.14 1.04 0.79
A/NK 1.16 1.29 1.23 1.17 1.24 1.16 1.25 2.89 2.11 1.93 2.01 1.91 1.47 1.39 1.28

La 12.97 47.55 19.05 18.2 18.14 16.86 41.72 52.23 55.93 19.12 17.19 22.88 36.69 69.9 10.64
Ce 32.39 90.3 31.88 27.23 36.05 33.5 76.49 97.58 103.3 38.54 29.54 41.71 68.7 124.9 18.84
Pr 2.22 9.88 3.49 3.13 3.11 4.08 8.33 11.08 11.46 4.31 3.6 4.76 8.21 12.91 1.91
Nd 7.54 33.55 11.79 10.11 10.66 14.59 28.46 39.57 40.82 17.52 13.78 16.95 30.4 46.2 6.64
Sm 1.11 5.39 1.91 1.58 1.71 2.47 4.61 6.4 6.47 3.31 2.83 2.86 5.4 6.79 1.01
Eu 0.32 0.95 0.55 0.4 0.56 0.71 0.97 1.64 1.76 1.06 0.86 0.75 1.59 2.01 0.29
Gd 0.79 4.06 1.35 1.16 1.19 1.78 3.72 5.19 5.08 3.3 2.82 2.44 4.51 7 0.8
Tb 0.08 0.59 0.17 0.17 0.17 0.22 0.57 0.7 0.72 0.42 0.45 0.37 0.64 0.61 0.07
Dy 0.42 3.3 0.88 0.88 0.91 1.12 3.41 4.11 4.1 2.41 2.68 2.13 3.62 2.89 0.33
Ho 0.08 0.58 0.14 0.14 0.14 0.19 0.64 0.76 0.74 0.49 0.5 0.4 0.66 0.48 0.05
Er 0.22 1.61 0.39 0.36 0.39 0.51 1.79 2.06 1.99 1.38 1.37 1.1 1.71 1.31 0.16
Tm 0.03 0.26 0.06 0.05 0.06 0.07 0.31 0.33 0.32 0.2 0.22 0.19 0.26 0.16 0.02
Yb 0.18 1.73 0.42 0.31 0.4 0.49 2.04 2.11 2.08 1.21 1.41 1.26 1.66 1.04 0.12
Lu 0.03 0.28 0.07 0.05 0.06 0.08 0.33 0.33 0.33 0.18 0.23 0.19 0.26 0.14 0.02
Y 1.52 17.74 4.68 4.11 4.09 5.94 19.18 20.31 20.21 10.96 13.2 11.47 17.26 11.05 1.16

ΣREE 58.36 200 72.15 63.77 73.55 76.66 173 224 235 93.44 77.48 97.99 164 276 40.9
LREE 56.54 187.62 68.67 60.65 70.23 72.21 160.58 208.5 219.74 83.86 67.8 89.91 150.99 262.7 39.33
HREE 1.83 12.41 3.48 3.12 3.31 4.46 12.8 15.59 15.36 9.57 9.68 8.07 13.32 13.63 1.57
LREE 30.98 15.12 19.74 19.42 21.21 16.2 12.54 13.38 14.3 8.76 7.01 11.13 11.33 19.28 25.04

LaN/YbN 48.42 18.53 30.65 39.08 30.73 23.13 13.81 16.71 18.13 10.7 8.24 12.24 14.97 45.55 58.93
δEu 0.99 0.6 0.99 0.86 1.15 0.98 0.69 0.84 0.9 0.97 0.92 0.85 0.96 0.88 0.94
Rb 131 152 152 125 116 121 155 111 116 116 104 115 70 146 206
Ba 1377 1083 1227 1343 1947 1910 1378 656 1052 785.1 582 1094 1224 2510 1107
Th 15.29 17.53 11.14 10.34 8.29 11.78 18.11 13.17 14.64 9.61 5.59 8.33 8.62 56.4 7.021
U 4.03 12.271 7.798 7.238 5.803 8.246 12.677 9.219 10.248 3.911 3.913 5.831 6.034 18.1 2.756
K 50,368 40,494 36,926 37,755 40,162 42,485 45,306 25,889 20,247 20,662 19,334 29,623 17,509 59,911 65,387
Ta 0.681 1.84 0.63 0.62 0.62 0.55 1.83 1.54 1.72 0.61 0.68 1.21 1.16 0.773 0.482
Nb 9.081 20 8.8 4.8 9.5 8.7 17.9 25.5 28.6 8.39 8.4 15.4 15.4 10.91 6.091
Sr 274.5 272 512 584 702 652 256 717 974 724.2 445 416 752 531.9 178.9

Nd 7.539 33.55 11.79 10.11 10.66 14.59 28.46 39.57 40.82 17.52 13.78 16.95 30.4 46.2 6.644
P 261.8 218.2 130.9 130.9 436.4 218.2 218.2 1353 1527 610.9 436.4 392.7 1396 741.8 349.1
Zr 126.6 190 108 110 181 130 173 176 194 111.8 120 142 186 275.6 79.32
Hf 3.597 5.66 3.33 3.08 4.76 3.84 4.58 3.5 3.92 2.867 2.83 4.09 3.77 6.612 2.483
Sm 1.106 5.39 1.91 1.58 1.71 2.47 4.61 6.4 6.47 3.31 2.83 2.86 5.4 6.786 1.007
Ti 899.2 539.5 779.3 719.4 1499 959.2 659.4 5036 5276 3477 4137 2038 6415 2398 659.4

The diorite porphyrite dikes of the Suishizi Au mine had major-oxide contents of
SiO2 = 50.59–56.45 wt.%; K2O = 2.11–3.12 wt.%; Na2O = 0.80–3.30 wt.%; Al2O3 = 13.57–
14.97 wt.%; CaO = 4.31–6.02 wt.%; Fe2O3 = 1.57–3.21 wt.%; FeO = 2.85–4.31 wt.%; MgO
= 5.87–7.53 wt.%; TiO2 = 0.58–1.07 wt.%, and P2O5 = 0.10–0.35 wt.%, with A/CNK =
0.85–1.00. These samples are subalkaline (Figure 5a), high-K to shoshonitic (Figure 5b), and
metaluminous (Figure 5c).

The granite porphyry dikes coexisting with the diorite porphyrite dikes had higher
SiO2 (64.24–68.70 wt.%) and Al2O3 (11.52–17.07 wt.%) contents, lower Fe2O3 (0.91–1.08 wt.%),
FeO (1.12–1.41 wt.%), MgO (1.18–2.54 wt.%), TiO2 (0.11–0.40 wt.%), and P2O5 (0.08–0.17 wt.%)
contents, and K2O = 3.57–7.88 wt.%, and Na2O = 0.29–3.88 wt.%, with A/CNK = 0.79–1.14.
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These dikes are subalkaline to alkaline (Figure 5a), high-K to shoshonitic (Figure 5b), and
metaluminous to peraluminous (Figure 5c).

6.2. Trace Elements

The Tianzishan monzogranite is enriched in light rare earth elements (LREEs), Zr, and
Hf, depleted in heavy REEs (HREEs), Nb, Ti, and P, and has negative to small positive Eu
anomalies (Eu/Eu* = 0.60–1.15; Figure 6a). The diorite porphyrite and granite porphyry
dikes are similarly enriched in LREEs, with (La/Yb)N ratios of 8.24–18.13 and 14.97–58.93
and negative Eu anomalies (Eu/Eu* = 0.84–0.97 and 0.88–0.96), respectively. The primi-
tive mantle-normalized trace-element diagram (Figure 6b) indicates positive Zr and Hf
anomalies and negative Nb, P, and Ti anomalies.
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6.3. Sulfur Isotopes

The pyrite δ34S values of ore-bearing diorite porphyrite of the Suishizi Au deposit,
banded quartz–sulfide veins from the Shenjiagou Au deposit, and ore-bearing quartz veins
of the Jiancaowan Au deposit were 7.28‰–7.91‰ (average of 7.62‰), −4.95‰ to −2.44‰
(average −3.91‰), and 1.79‰–1.89‰ (average 1.83‰), respectively (Table 2).

Table 2. Single mineral and in situ sulfur isotope of pyrite from Liziyuan gold deposit.

Sample No. Section Host Rock δ34SVCDT(‰) Test Method

JCS1 Jiancaowan Quartz vein 7.04 In-situ analysis
JCS2 Jiancaowan Quartz vein 7.96 In-situ analysis
JCS3 Jiancaowan Quartz vein 9.12 In-situ analysis
JCS4 Jiancaowan Quartz vein 1.79 In-situ analysis
JCS5 Jiancaowan Quartz vein 2.11 In-situ analysis
JCS6 Jiancaowan Quartz vein 1.75 In-situ analysis
JCS7 Jiancaowan Quartz vein 0.10 In-situ analysis
JCS8 Jiancaowan Quartz vein 3.08 In-situ analysis
JCS9 Jiancaowan Quartz vein 1.43 In-situ analysis

JCW-S1 Jiancaowan Quartz vein 1.89 Single mineral analysis
JCW-S2 Jiancaowan Quartz vein 1.82 Single mineral analysis
JCW-S3 Jiancaowan Quartz vein 1.79 Single mineral analysis

SSI1 Suishizi Diorite porphyrite 7.39 In-situ analysis
SSI2 Suishizi Diorite porphyrite 7.13 In-situ analysis
SSI3 Suishizi Diorite porphyrite 7.58 In-situ analysis
SS01 Suishizi Diorite porphyrite 7.91 Single mineral analysis
SS02 Suishizi Diorite porphyrite 7.89 Single mineral analysis
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Table 2. Cont.

Sample No. Section Host Rock δ34SVCDT(‰) Test Method

SS03 Suishizi Diorite porphyrite 7.84 Single mineral analysis
SS04 Suishizi Diorite porphyrite 7.77 Single mineral analysis
SS05 Suishizi Diorite porphyrite 7.69 Single mineral analysis
SS06 Suishizi Diorite porphyrite 7.58 Single mineral analysis
SS07 Suishizi Diorite porphyrite 7.49 Single mineral analysis
SS08 Suishizi Diorite porphyrite 7.45 Single mineral analysis
SS09 Suishizi Diorite porphyrite 7.29 Single mineral analysis
SS10 Suishizi Diorite porphyrite 7.28 Single mineral analysis
SJ01 Shenjiagou Banded quartz-sulfide vein −2.44 Single mineral analysis
SJ02 Shenjiagou Banded quartz-sulfide vein −2.58 Single mineral analysis
SJ03 Shenjiagou Banded quartz-sulfide vein −4.13 Single mineral analysis
SJ04 Shenjiagou Banded quartz-sulfide vein −4.44 Single mineral analysis
SJ05 Shenjiagou Banded quartz-sulfide vein −4.91 Single mineral analysis
SJ06 Shenjiagou Banded quartz-sulfide vein −4.95 Single mineral analysis

The in situ δ34S values of pyrites from the Suishizi section and quartz veins of the
Jiancaowan Au deposit were 7.04‰–9.12‰ (average 7.70‰) and 0.10‰–3.08‰ (average
1.71‰), respectively.

6.4. Oxygen and Hydrogen Isotopes

The O–H isotopic data for fluid inclusions in 14 quartz samples from three deposits
are listed in Table 3. All samples are from Stage IV, which was characterized by abundant
sulfide precipitation as a result of the fluid present during the major ore-forming stage
and the composition of its source. The δD values of quartz vein samples from the Suishizi,
Jiancaowan, and Shenjiagou sections were −80‰ to −75‰, −92‰ to −82‰, and −93
to −87‰, respectively, and the δ18Owater values are 3.07‰–3.98‰, 1.67‰–5.24‰, and
−0.03‰ to 1.37‰, respectively.

Table 3. δ18O and δD values for Liziyuan gold deposit.

Sample No. Section Mineral δDV-SMOW(‰) δ18OV-SMOW(‰) δ18Owater(‰) Th (◦C)

SS001 Suishizi Quartz −75 10.16 3.62 310
SS002 Suishizi Quartz −80 9.72 3.18 310
SS003 Suishizi Quartz −79 9.65 3.11 310
SS004 Suishizi Quartz −75 9.61 3.07 310
SS005 Suishizi Quartz −78 10.12 3.58 310
SS006 Suishizi Quartz −78 9.98 3.44 310
SS007 Suishizi Quartz −76 9.76 3.22 310
SS008 Suishizi Quartz −79 10.52 3.98 310
JC004 Jiancaowan Quartz −84 12.1 1.37 216
JC005 Jiancaowan Quartz −82 11.1 −1.33 189
JC006 Jiancaowan Quartz −92 12.4 −0.03 189
SJ001 Shenjiagou Quartz −89 12.5 5.24 290
SJ002 Shenjiagou Quartz −93 12.1 4.84 290
SJ003 Shenjiagou Quartz −87 12.4 1.67 216

6.5. Zircon U-Pb Geochronology

Zircon grains from the Tianzishan monzogranite are subhedral–euhedral, stubby or
elongated, and 100–200 µm long. In CL images, magmatic cores display oscillatory zoning
or are homogeneous (Figure 7). Seven analyses were performed on seven grains. Seven
analyses of magmatic domains yielded U contents of 262–2959 ppm and Th/U ratios of
0.20–0.61 (Table 4), with the seven analyses yielding a weighted mean 206Pb/208Pb age of
236.1 ± 1.9 Ma (MSWD = 0.95; Figure 7).
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Table 4. SHRIMP zircon U-Pb dating of the Tianzishan monzogranite.

Spot
206Pb U Th 232Th 206Pb* t(206Pb/238U) 207Pb/235U 206Pb/238U
(%) (×10−6) /238U ×10−6 (Ma) Ratio 1σ Ratio 1σ

C005.1 1.23 2067 602 0.3 64.5 228.5 ± 1.6 0.2722 2.7 0.03609 0.73
C005.2 0.67 2959 578 0.2 96.1 238.0 ± 1.6 0.269 2 0.03761 0.68
C005.3 0.16 1537 406 0.27 49.2 236.0 ± 1.7 0.2639 1.4 0.03728 0.75
C005.4 0.22 2624 1097 0.43 84.4 236.4 ± 1.7 0.2586 1.8 0.03736 0.71
C005.7 0.23 1966 814 0.43 60.5 226.7 ± 1.6 0.2591 1.3 0.03579 0.7
C005.8 0.21 2577 771 0.31 81.9 233.8 ± 1.6 0.2607 1.4 0.03693 0.7
C005.9 2.66 262 156 0.61 8.73 243.6 ± 2.8 0.345 11 0.03852 1.2

6.6. Rb–Sr Dating of Pyrite

The results of Rb–Sr isotope analysis of the 14 pyrite samples from banded silicifi-
cation (Figure 8a), diorite porphyrite (Figure 8b), and quartz vein (Figure 8c) type ores
are shown in Table 5. The samples had variable concentrations of Rb (0.41–13.1 ppm)
and Sr (2.29–36.7 ppm), which yielded variable 87Rb/86Sr (0.1347–5.1663) and 87Sr/86Sr
(0.7071–0.7216) ratios. Fourteen pyrite samples yielded three well-defined isochrons with
ages of 220 ± 7.5 Ma (MSWD = 1.8) with initial 87Sr/86Sr ((87Sr/86Sr)i) = 0.70693 ± 0.0002,
205.8 ± 8.7 Ma (MSWD = 1.07) with (87Sr/86Sr)i = 0.70720 ± 0.00022, and 199 ± 15 Ma
(MSWD = 1.8) with (87Sr/86Sr)i = 0.70715 ± 0.00063.

Table 5. Rb-Sr isotopic dating of pyrite samples from Liziyuan gold deposit.

Sample No. Object Rb (ppm) Sr (ppm) 87Rb/86Sr 87Sr/86Sr Std Err Section Host Rock

Bh052 Pyrite 1.78 6.83 0.7544 0.709184 0.000016 Shenjiagou Banded
silicification

Bh043 Pyrite 5.67 4.94 3.3233 0.717372 0.000018 Shenjiagou Banded
silicification
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Table 5. Cont.

Sample No. Object Rb (ppm) Sr (ppm) 87Rb/86Sr 87Sr/86Sr Std Err Section Host Rock

Bh055 Pyrite 0.955 9.31 0.1915 0.707724 0.000011 Shenjiagou Banded
silicification

Bh056/Bh042 Pyrite 0.414 6.26 0.9823 0.709863 0.000016 Shenjiagou Banded
silicification

Bh011 Pyrite 9.21 9.51 2.8023 0.715608 0.000009 Suishizi Diorite
porphyrite

Bh030 Pyrite 12.4 23.3 1.5426 0.711535 0.000009 Suishizi Diorite
porphyrite

Bh038 Pyrite 3.52 34.8 0.2929 0.708111 0.000017 Suishizi Diorite
porphyrite

Bh036 Pyrite 7.65 36.7 0.6023 0.708854 0.000013 Suishizi Diorite
porphyrite

Bh037 Pyrite 19.1 20.3 2.7210 0.715068 0.000018 Suishizi Diorite
porphyrite

Bh068-1 Pyrite 7.51 161 0.1347 0.707746 0.000018 Suishizi Diorite
porphyrite

Bh054 Pyrite 1.32 3.1 1.2375 0.710981 0.000011 Jiancaowan Quartz vein
Bh045 Pyrite 2.76 3.97 2.0100 0.713257 0.000017 Jiancaowan Quartz vein
Bh044 Pyrite 4.08 2.29 5.1663 0.721561 0.000017 Jiancaowan Quartz vein
Bh051 Pyrite 0.671 10.9 0.1784 0.707115 0.000017 Jiancaowan Quartz vein
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7. Discussion
7.1. Timing of Magmatism and Mineralization

The relationship between mineralization and magmatism in the Liziyuan Au deposit is
poorly understood, with some studies supporting mineralization being related to magmatic
activity (e.g., the Tianzishan intrusion, [59,60]), and others preferring suggesting that there
is no genetic relationship between Au deposition and magmatism [61,62]. The Liziyuan Au
deposit provides an opportunity to determine whether orogenic Au deposits are related to
magmatism in the WQOB [63–67].

To explore the possible relationship between mineralization and magmatism in the
Liziyuan Au deposit, pyrites from ores and zircons from the Tianzishan monzogranite
were dated to identify temporal coupling between magmatism and hydrothermal activity.
Pyrite is one of the most common sulfide minerals in the Liziyuan Au deposit, and pyrite
Rb–Sr dating is a widely used technique [68–70]. In this deposit, pyrite commonly occurs
in subhedral–anhedral forms in banded quartz veins and as subhedral–euhedral granules
in ore-bearing diorite porphyrite and quartz veins. To ensure reliable determination of the
mineralization age, we selected pyrites that formed coevally with the three types of ore and
were undisturbed by later fluids for analysis. The Rb–Sr isochron age of pyrite from banded
quartz veins in the Shenjiagou section is 220.5 ± 7.5 Ma, and those for subhedral–euhedral
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granular pyrite from ore-bearing diorite porphyrite and quartz veins in the Suishizi section
were 205.8 ± 8.7 and 199 ± 15 Ma, respectively. The Rb–Sr ages of the Au-bearing pyrite
samples were considered reliable (Figure 8). The lack of covariance between the 1/Sr values
and 87Rb/86Sr ratios of the samples (Figure 9) indicates that the isochron age has isochronal
meaning [71], implying a homogenous and closed isotopic system [72]. The calculated
ages thus reflect the metallogenic age of the two types of Au mineralization, i.e., the earlier
metamorphic metallogenic period (220.5 Ma) and the later magmatic metallogenic period
(205–199 Ma). The Tianzishan monzogranite yielded an age of 236.1 ± 1.9 Ma, which
represents a new minimum age of formation (256.1 ± 3.7 Ma [73]; 241.3 ± 1.2 Ma [62];
241 ± 1.7 Ma [74]). Our previously published ages for the ore-bearing diorite porphyrite
and granite porphyry were 212.2 ± 1.2 and 213.9 ± 0.7 Ma [75].
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The two emplacement ages of the intrusions that are closely spatially related to the Au
orebodies (236.1 and 213.9–212.2 Ma) predated the two Au mineralization periods (220.5
and 206–199 Ma) by 5–10 Myr, corresponding to the time interval of fluid exsolution from
the melt [77,78]. There is thus close temporospatial coupling between mineralization and
magmatic fluid activity.

7.2. Source of the Metallogenic Material

Many studies have used H–O–S isotope analyses to elucidate ore genesis in different
types of Au deposit, with H–O analyses being considered particularly robust for determin-
ing the sources of ore-forming fluids and S analyses elucidating the sources of ore-forming
materials [79,80].

To determine the characteristics and origin of ore-forming fluids, samples of quartz
from Stage IV (main ore stage) of the Liziyuan Au deposit were analyzed for H and O
isotopes. The δDH2O and calculated δ18OH2O values of ore fluids in the Liziyuan and other
representative Au deposits in the WQOB are shown in Figure 10. The δ18OH2O values were
obtained by calculation based on the isotopic fractionation equation for quartz–H2O at
corresponding temperatures [81,82]. The values for most samples are close to the range of
typical magmatic hydrothermal fluid, especially in the Suishizi section, and some of the
values from the orogenic gold deposits in the WQOB plot in the magmatic hydrothermal-
fluid field, indicating a magmatic-fluid affinity throughout the orogenic gold deposits in the
WQOB. Based on these results and the strong temporospatial coupling of Au mineralization
and magmatic activity in the late Triassic, we suggest that magmatic fluids were a major
component of the ore-forming fluids. In the component plot (Figure 10), the results from our
samples trend toward the meteoric water line, suggesting that ore-forming fluids contained
meteoric water that had evolved owing to exchange with wall rocks.

The S isotopic compositions of pyrite associated with Au mineralization allowed
the determination of the sources of S and Au in hydrothermal systems [83]. Although
previous studies have suggested that the sources of S in the Liziyuan deposit were related



Minerals 2023, 13, 130 15 of 23

to metamorphism, as is the case in a number of orogenic Au deposits worldwide [73], the
source of S in the deposit has not yet been well constrained. The samples of pyrite from the
three sections of the deposit that were used for S isotope analyses were from either PI or PII
mineralization; pyrites from the PI mineralization were separated from banded quartz ores,
and pyrites from PII mineralization were extracted from Au-bearing diorite porphyrite and
quartz veins. The ranges of δ34S values obtained by the two analytical methods (i.e., sample
and in situ analyses) were consistent (Figure 11). The narrow range of positive δ34S values
(7.04‰–9.12‰, average 7.65‰) of euhedral–subhedral pyrite from the Au-bearing diorite
porphyrite and quartz veins of the Suishizi and Jiancaowan sections, respectively, were
consistent with the values for regional quartz diorite (3.8‰ to 13.8‰ [84]), indicating that
the S was sourced from oxidized magmatic fluids. The δ34S values of subhedral–anhedral
pyrites from the Shenjiagou section (−4.95‰ to −2.44‰) were consistent with those of
regional metamorphic strata (−6.6‰ to −2.1‰, Mao, 2001), indicating that the S there was
sourced from reduced metamorphic fluids. A further group of δ34S values for quartz-vein
euhedral–subhedral pyrites from the Jiancaowan section ranged from 0.10‰ to 3.08‰,
indicating a mixed source comprising metamorphic country rocks and magmatic dikes.
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The H–O–S isotopic compositions indicate that ore-forming fluids have magmatic and
metamorphic fluid affinities, and a comparison of the δ34S values with those of regional
coeval dikes and metamorphic strata indicates that the ore-forming materials included
such fluids. This constrains the two-stage mineralization of the Liziyuan Au deposit to
earlier metamorphic and later magmatic hydrothermal mineralization. Although the δ34S
values of the magmatic hydrothermal mineralization stage (7.04‰–9.12‰) deviated from
standard magmatic S compositions (δ34S = 0‰ ± 5‰), they were similar to the values
of the magmatic hydrothermal Au deposit in the Jiaodong Au metallogenic belt [85,86],
possibly indicating that asthenospheic upwelling triggered the release of gold and sulfur
from enriched fertili lithospheric mantle [19,86], as supported by Pb isotopic data for such
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interactions published previously [87]. Therefore, we infer that the ore-forming materials
during the second stage of the evolution of the Liziyuan Au deposit were derived mainly
from the evolution of deep magma.
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7.3. Ore Genesis and Metallogenic Dynamics

Most Au deposits are classified as orogenic, Carlin, or Carlin-like in the WQOB, ex-
cept for minor skarn-type deposits [27,29,88,89]. For the orogenic deposits (including the
Liziyuan deposit), previous studies have assumed that, although some deposits coexisted
with intermediate–acid magmatic rocks, mineralization was not associated with magma-
tism [88]. Based on the similarities of its characteristics with those of typical orogenic
deposits in terms of ore-controlling structures, ore types, Au occurrence, alteration, and
ore-forming fluids, the Liziyuan Au deposit has been classified as an orogenic deposit [73].
Our observations are broadly consistent with this classification, although we suggest that
magmatism may have made a substantial contribution to the mineralization.

Previous studies have considered two modes of magmatic activity throughout the
WQOB during Paleo-Tethyan evolution, involving (1) magmatic activity caused by north-
ward subduction at 250–237 Ma, syn-collisional events at 237–210 Ma, and a post-collisional
setting at 210–185 Ma [45,90–94], and (2) subduction-related magmatism at 245–218 Ma, syn-
collisional magmatism at 220–210 Ma, and post-collisional magmatism at 210–200 Ma [34,45].
Uncertainty thus remains with regard to the timing of subduction and syn-collisional mag-
matism in the WQOB, although a post-collisional stage after 210 Ma is commonly accepted.
The Tianzishan monzogranite was formed at 241–236 Ma [62,73]), with the earliest ore-
forming period of the Liziyuan Au deposit being dated at 220 Ma. Although isotopic data
indicate no direct relationship, the Tianzishan magmatism likely provided a small amount
of fluid and thermal power for Au activation and migration, based on the similar mineral
assemblages and temporospatial relationship between the Tianzishan monzogranite and
the PI mineralization. Therefore, the genesis of the Tianzishan monzogranite may reflect
the metallogenic dynamics of the earliest ore-forming stage of the Liziyuan Au deposit.
The Tianzishan monzogranite belongs to a high-K calc-alkaline and shoshonitic series char-
acterized by low Y and Yb contents and high Sr/Y (13.3–180.7) and (La/Yb)N (13.8–48.4)
ratios, with most of the Tianzishan monzogranite samples plotting in the adakitic fields in
(Sr/Y)–Y and (La/Yb)N–YbN diagrams (Figure 12).
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Figure 12. (Sr/Y)–Y (a) and (La/Yb)N–YbN (b) diagrams for the Tianzishan monzogranite, granite
porphyry, and diorite porphyrite dike samples (after Defant and Drummond, 1990 [95]).

The geochemical signatures of adakites indicate that they are derived from garnet
amphibolite or amphibole sources at depths of >40 km [96,97], with several possible mech-
anisms for adakitic magma generation having been considered. Assimilation–fractionation–
crystallization (AFC) from a basalt source is unlikely for the Tianzishan monzogranite. If
the Tianzishan monzogranite exposed over 130 km2 [74] were the products of an AFC pro-
cess, an abundance of basaltic rocks would be present in the study area; however, no such
lithologies have been identified to date. The Tianzishan monzogranite is enriched in SiO2,
K and depleted in Na, with K2O/Na2O ratios of 1.01–1.71, corresponding to high-silica
adakitic magma derived from the lower crust metasomatized by subduction fluids [98–102].
Therefore, partial melting of subducted oceanic crust seems an unlikely magma source.
Furthermore, in the R1–R2 and Rb–(Y + Ta) tectonic discrimination diagrams (Figure 13),
the samples generally plot within the syn-collision field, near the junction with the volcanic
arc field, implying that they were generated in a collisional setting. Derivation of the
Tianzishan monzogranite from partial melting of thickened lower crust is thus a more
likely model. The monzogranite samples are enriched in LREEs, Rb, Th, U, and Pb and
depleted in Nb, P, and Ti, consistent with the elemental composition of the crust [103]. Their
depletion in Na, Ta, and HREEs, with flat HREE patterns, indicates that residual facies
in the magmatic source were mainly garnet facies [95]. We conclude that the Tianzishan
monzogranite was derived from partial melting of thickened lower crust. The Tianzishan
monzogranite was exposed as oval outcrops with the principal axes of stress lying parallel
to the Mianlue suture, indicating an extrusive environment during formation. Based on
previously published ore and fluid characteristics [73], we consider that the Tianzishan
monzogranite and the Liziyuan Au deposit (PI) formed in response to orogenesis.

Dating of magmatic rocks and magmatic hydrothermal fluids related to the later
mineralization period of the Liziyuan Au deposit yielded ages of 213–199 Ma. Most of
the granite porphyry and diorite porphyrite samples had lower Sr/Y (33.7–66.1) ratios
than those of the Tianzishan monzogranite, implying they were formed in a different
tectonic setting. In the tectonic discrimination diagram (Figure 13b), the samples plot
in or near the post-collisional field. Our dating results (213–199 Ma) and the occurrence
of later magmatic–hydrothermal mineralization in a post-collisional setting were consis-
tent with the tectonic settings described in previous studies [34,45,93,94,104]. The later
magmatic hydrothermal mineralization of the Liziyuan Au deposit thus occurred in a
post-collisional extensional setting. To summarize, the Liziyuan Au deposit is an oro-
genic deposit that underwent early collisional compression and mineralization owing
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to metamorphic fluids, with later post-collisional–extensional magmatic–hydrothermal
superimposition (Figure 14).

Minerals 2023, 13, x FOR PEER REVIEW 19 of 24 
 

 

 

 
Figure 13. R1–R2 (a) and Rb–(Y + Nb) (b) diagrams for the Tianzishan monzogranite, granite 
porphyry and diorite porhpyrite dike samples. 

Dating of magmatic rocks and magmatic hydrothermal fluids related to the later min-
eralization period of the Liziyuan Au deposit yielded ages of 213–199 Ma. Most of the 
granite porphyry and diorite porphyrite samples had lower Sr/Y (33.7–66.1) ratios than 
those of the Tianzishan monzogranite, implying they were formed in a different tectonic 
setting. In the tectonic discrimination diagram (Figure 13b), the samples plot in or near 
the post-collisional field. Our dating results (213－199 Ma) and the occurrence of later 
magmatic–hydrothermal mineralization in a post-collisional setting were consistent with 
the tectonic settings described in previous studies [34,45,93,94,104]. The later magmatic 
hydrothermal mineralization of the Liziyuan Au deposit thus occurred in a post-colli-
sional extensional setting. To summarize, the Liziyuan Au deposit is an orogenic deposit 
that underwent early collisional compression and mineralization owing to metamorphic 
fluids, with later post-collisional–extensional magmatic–hydrothermal superimposition 
(Figure 14). 

Figure 13. R1–R2 (a) and Rb–(Y + Nb) (b) diagrams for the Tianzishan monzogranite, granite
porphyry and diorite porhpyrite dike samples.

Minerals 2023, 13, x FOR PEER REVIEW 20 of 24 
 

 

 
Figure 14. Metallogenic model of Liziyuan Au deposit. 

8. Conclusions 
The Liziyuan Au deposit is a typical orogenic Au deposit in the WQOB. Geochrono-

logical data indicate two periods of intrusive magmatism (236.1 and 213.9–212.2 Ma) re-
lated to the orebodies, predating two Au mineralization periods (220.5 Ma and 205.8–199 
Ma) by 5–10 Myr, which indicates a close temporospatial relationship between the miner-
alization and magmatism. H–O–S isotopic signatures indicate that ore-forming fluids and 
materials were exsolved from surrounding metasedimentary volcanic rocks and dioritic 
porphyrite and granite porphyry dikes, with the Au endowment of the deposit being as-
sociated with several Au mineralization events and multiple metamorphic and magmatic 
hydrothermal episodes. The results of this study suggest that the Liziyuan orogenic Au 
deposit was the product of superimposed mineralization involving earlier collisional–
compressional metamorphism and later post-collisional–extensional magmatic fluids re-
lated to the evolution of the WQOB. 

Author Contributions: Writing—original draft preparation, S.W.; writing—review and editing, 
S.W. and Y.L.; software, Z.L. and N.D.; investigation, S.W., Y.L., B.Y. and L.T.; funding acquisition, 
S.W. and Y.L.; data curation, Z.L., N.D., B.Y. and L.T..  

Funding: This research was funded by National Natural Science Foundation of China [41872219]; 
Researches on the coupling between structural deformation and mineralization, and metallogenic 
prediction of Jinchangyu gold deposit [220227190095]; Researches on the typical Au deposits and 
metallogenic regularity in Shiquan-Xunyang metallogenic belt [211527200344]; The Natural Science 
Foundation of Shaanxi Province (2023-JC-YB-222); Opening Foundation of Key Laboratory of Min-
eral Resources Evaluation in Northeast Asia, Ministry of Natural Resources [DBY-KF-19-12]. 

Data Availability Statement: The original contributions presented in the study are included in 
the article/Supplementary Material. 

Figure 14. Metallogenic model of Liziyuan Au deposit.



Minerals 2023, 13, 130 19 of 23

8. Conclusions

The Liziyuan Au deposit is a typical orogenic Au deposit in the WQOB. Geochronolog-
ical data indicate two periods of intrusive magmatism (236.1 and 213.9–212.2 Ma) related
to the orebodies, predating two Au mineralization periods (220.5 Ma and 205.8–199 Ma) by
5–10 Myr, which indicates a close temporospatial relationship between the mineralization
and magmatism. H–O–S isotopic signatures indicate that ore-forming fluids and materials
were exsolved from surrounding metasedimentary volcanic rocks and dioritic porphyrite
and granite porphyry dikes, with the Au endowment of the deposit being associated with
several Au mineralization events and multiple metamorphic and magmatic hydrothermal
episodes. The results of this study suggest that the Liziyuan orogenic Au deposit was the
product of superimposed mineralization involving earlier collisional–compressional meta-
morphism and later post-collisional–extensional magmatic fluids related to the evolution
of the WQOB.
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