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Abstract: The material source and the evolution of ore-forming hydrothermal fluids of Xiaojiashan
gold deposits remain controversial. We carried out a mineralogical characteristics analysis, trace
elements analysis, sulfur isotope composition analysis, and fluid inclusion microthermometry in order
to explore the ore-forming sources, conditions, and process of this deposit. Gold mineralization can be
divided into three stages: the quartz-pyrite stage, the quartz-polymetallic sulfide stage, and the quartz-
ankerite stage. This gold deposit was probably formed under the following conditions: temperature
of 122–343 ◦C and salinity of 0.8–11.4 wt% (NaCl). It was inferred that the ore-forming hydrothermal
fluids were early metamorphic–hydrothermal (Stage I) and late magmatic–hydrothermal (Stages
II and III), and were characterized by medium–low temperature and medium–low salinity based
on fluid inclusion microthermometry and S isotope composition. The temperature and salinity of
the ore-forming fluid decreased during mineralization, which was caused by the involvement of
groundwater. The chondrite-normalized trace element patterns of the gold ores are similar to the
host rocks of the Lengjiaxi Formation, indicating that the ore-forming materials were sourced from
the Lengjiaxi Formation. The S isotopes indicated that the magmatic components also provided the
ore-forming materials during Stages II and III.

Keywords: metallogenic condition; vein-hosted gold; fluid evolution; fluid inclusion; Xiaojiashan
gold deposit

1. Introduction

The source of ore-forming materials and the evolution of ore-forming fluids are the
basis for the investigation of the genesis of deposits and establishing metallogenic mech-
anisms. Due to the stability, similarity, and differentiation of rare earth elements (REEs),
the geochemistry of rocks has been adopted to determine fluid–rock interactions, protolith
restoration, and the genesis of minerals [1,2]. The isotopic composition of S (δ34S) in sulfide
ore minerals may provide information about their origin [3]. Fluid inclusions entrapped in
minerals formed during mineralization are actual samples of paleo-geofluids, providing in-
dispensable information about the mineral formation environments and geologic processes
in which the minerals were formed [4,5].

The Qinzhou–Hangzhou metallogenic belt, located at the suture zone between the
Yangtze block and the Cathaysia block (Figure 1a) [6–8], is one of the most widely known
belts in China. Northeastern Hunan, an important part of the Qinzhou–Hangzhou metallo-
genic belt, hosts more than 250 gold deposits (occurrences) with similar occurrence rates,
ore-bearing strata, and geological characteristics [9–12]. Various models have been pro-
posed for their genesis, including orogenic [13–15], epithermal [16], intrusion-related [4,17],
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superimposed reformation [18], and SEDEX types [19,20]. One of the key controversies is
the source of ore-forming materials and fluids. Liu et al. [21] proposed that the gold came
from the Lengjiaxi Group. However, Dong et al. [22] and Xu et al. [13] argued that the
gold was from the mixed sources of the Lengjiaxi Group, as well as mantle or deep crust
magmatic rock.
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Figure 1. Geological map of the region showing distribution of gold deposits. (a) Simplified tectonic
map of Qinzhou-Hangzhou mineralization belt. (b) Sketched geological map of northeastern Hunan
(modified after [13]).

The Xiaojiashan gold deposit (reserve: 7.77 t, grade: 2.88 g/t [23]) is located in the
Qinzhou–Hangzhou metallogenic belt (Figure 1b), and is thought to have great prospecting
potential. Intense studies have thus been carried out on its geological features [24–26], ore-
forming material sources [18,27,28], and fluid inclusions [29,30]. However, the published
results are controversial in terms of the ore-forming fluids. Tao et al. [29] proposed that
the ore-forming fluids comprised metamorphic hydrothermal water with superimposed
magmatic–hydrothermal water and, later, groundwater. However, Lin [30] argued that
the ore-forming fluids were mainly magmatic water. A further study, by Tan et al. [18],
suggested a distinct shift of ore-forming fluids from metamorphic to magmatic water
during early- and late-stage mineralization, respectively, by studying the trace element
compositions and sulfur isotopes of pyrite. Therefore, detailed work on field geological
investigations and petrological characteristics, trace element compositions, sulfur isotopic
compositions and fluid inclusions of different-mineralization-stage gold ores was carried
out. The aim was to provide some new insights to probe into the gold source, metallogenic
condition, and fluid evolution of gold mineralization of the Xiaojiashan gold deposit and
support future geological exploration and prediction.
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2. Regional Geology

Northeastern Hunan is one of the vital gold metallogenic regions in Hunan Province,
central Qinzhou–Hangzhou (Qin–Hang) metallongenic belt [31]. Yanlinsi, Xiaojiashan,
Huangsikeng, Zhengchong, Haizichong, etc., have all been discovered in this area (Figure 2).
The strata exposed in the region comprise a Neoproterozoic Lengjiaxi Group of epi-
metamorphic lithic sandstone, slate, and silty slate, along with volcanic tuffaceous materials,
Upper Paleozoic carbonate rocks, and Mesozoic–Cenozoic clastic rocks [9,12–16]. Further-
more, the Lengjiaxi group is thought to be closely related to gold mineralization.
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Figure 2. Schematic geological map of the Xiaojiashan deposit.

The tectonic lines are mainly composed of nearly NE-trending abyssal faults of
Xinning–Huitang, Changsha–Pingjiang and Liuyang–Liheng from west to east, as well as
pervasively developed folds [13,32]. The Changsha–Pingjiang fault in northeastern Hunan
was an active fault with gold deposits (occurrences) (Figure 1b). Ore occurrences were
manipulated by NE-trending subsidiary faults, folds, and shear zones [21,33].

Magmatic activity has occurred several times and magmatic rocks have developed
from the Wuling orogeny to Yanshanian. Daweishan granite (802 Ma) was formed during
the Neoproterozoic [34], Banshanpu granites (423–421 Ma) were formed during the early
Paleozoic [35], and Lianyunshan granites (149 ± 1 Ma) were formed during the late
Mesozoic [36].

3. Deposit Geology

The exposed strata in the deposit are the Huanghudong Formation and Xiaomuping
Formation of the Lengjiaxi Group in the Neoproterozoic. The Huanghudong Formation, the
ore-hosting strata for the gold deposits, is dominated by quartz graywacke, siltstone, and
slate (Figure 3a), whereas the Xiaomuping Formation consists mainly of slate, silty slate,
and sericite slate. The folds and faults are well developed and the tectonic lines are mainly
NE and NW. The faults include F3, F5, F29, the Sandou–Tiancui ductile shear zone, the
Yanlinsi ductile shear zone (Figure 2), and a silicified fractured zone. In the middle of the
ductile shear zones, there is a flow cleavage, with a tectonic lenticular zone and a cleavage
zone on both sides. The fold tectonics are known as Hongjiachong overturned syncline,
Guanjiapai overturned anticline, and Yanlinsi overturned syncline from north to south. In
the Yanlinsi and Haizichong gold deposits, there are only small plutons; larger, concealed
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plutons are present in the NE direction of Banshanpu granite, according to remote-sensing
images, gravity, and magnetic anomalies [37].
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primarily of pyrite and arsenopyrite, with smaller amounts of chalcopyrite, galena, 
sphalerite, and gold (Figure 3b–i). The gangue minerals include quartz, sericite, calcite, 
and chlorite. The gold usually occurs as micro-gold and fissure gold with inclusion and 
intergranular gold in rather low amounts. There are two types of opal quartz vein: one 
with a lower quantity of gold and another with black bands (Figure 3c). Gold contents 
depend on the band amounts: the more black bands, the higher the grade of the gold in 
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Figure 3. Ore features and photomicrographs of Xiaojiashan gold deposit. (a) Stage I smoky-gray
quartz veins and alteration halo. (b) Stage II quartz vein cut stage I quartz vein. (c) Stage II sinuous
smoky-gray quartz vein and alteration halo with disseminated pyrite and arsenopyrite. (d) Stage III
quartz vein cut stage II quartz vein. (e) Silicic alterations with disseminated pyrite and arsenopyrite
related to gold mineralization. (f) Stage II quartz vein overprinted stage I quartz vein. (g) Stage III
quartz vein overprinted stage II quartz vein. (h) Silicic alterations with disseminated arsenopyrite
related to gold mineralization in stage II. (i) Pyritizat alterations with disseminated arsenopyrite
related to gold mineralization in stage II. Abbreviations: Apy, Arsenopyrite; Ccp, Chalcopyrite; Gl,
Gold; Py, Pyrite; Qz, Quartz; Sp, Sphalerite.

The Xiaojiashan gold deposit consists of 46 orebodies, most of which occur as NE-
trending veins/veinlets with a dip of 30–60◦ in the strata and cleavage zones in the core of
the overturned anticline. The orebodies are 250–500 m long and 0.38–3.30 m wide, with
a gold grade of 0.25–14.84 g/t. The gold ore is quartz-vein-type and is composed primarily
of pyrite and arsenopyrite, with smaller amounts of chalcopyrite, galena, sphalerite, and
gold (Figure 3b–i). The gangue minerals include quartz, sericite, calcite, and chlorite. The
gold usually occurs as micro-gold and fissure gold with inclusion and intergranular gold
in rather low amounts. There are two types of opal quartz vein: one with a lower quantity
of gold and another with black bands (Figure 3c). Gold contents depend on the band
amounts: the more black bands, the higher the grade of the gold in the veins. These black-
banded quartz veins also contain pyrite, arsenopyrite, galena, and sphalerite. The primary
ore structures include the anhedral–subhedral structure, xenomorphic granular structure,
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metasomatic structure, solid-solution-separation structure, poikilitic structure, etc. The
ore structures mainly comprise massive structure, disseminated structure, veined-network
structure, and stripe structure with gold enrichment.

Hosted rock alterations mainly include silicification, pyritization, sericitization, chlo-
ritization, and carbonation. Among these alterations, silicification and pyritization are
closely associated with gold mineralization. Pyrite is an important gold-bearing mineral
(Figure 3f,g) consisting of coarse- and fine-grained pyrite distinguished by degrees of
crystallization. Coarse-grained pyrite, formed in the early stage of hydrothermal metal-
logenesis, is dark-yellow-colored, highly euhedral and poorly gold-bearing. By contrast,
fine-grained pyrite, formed in the middle and late stages of hydrothermal metallogenesis,
is light-yellow-colored, mainly subhedral-hypidiomorphic, and rich in gold.

Based on investigations of the veins carried out during fieldwork and from ore pho-
tomicrographs (Figure 3a–i), the metallogenic period can be divided into three stages. Stage
I can be regarded as the quartz–pyrite stage, with quartz and coarse-grained pyrite formed
and with weak gold mineralization. Stage II is the quartz–polymetallic sulfide stage, with
quartz, pyrite, arsenopyrite, sphalerite, galena, chalcopyrite, and gold, as well as a minor
amount of ankerite (Figure 3c). The quartz veins have black bands and the grain size
of the quartz decreases (Figure 3e–i). Furthermore, the pyrite is mostly in a subhedral
granular structure (Figure 3e,g,i), and most of the arsenopyrite is acicular and arranged in
long columns (Figure 3h). The structure of the arsenopyrite is mainly automorphic in the
early stage, while that in the late stage is generally semi-self-shaped and fine-grained. The
arsenopyrite-metasomatized pyrite can be observed under the microscope (Figure 3i). The
degree of gold mineralization is higher in Stage II. Quartz, ankerite, and pyrite in minor
amounts are formed during Stage III, which is then known as the quartz–ankerite stage.
Veins which are ore-barren are commonly cut Stage II veins (Figure 3d). The paragenetic
sequence is illustrated in Figure 4.
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Figure 4. Mineral paragenetic sequence for the Xiaojiashan gold deposit.

4. Sampling and Analytical Methods

Eighteen and sixteen samples were obtained from four drill holes and an exploration
tunnel, respectively, during the field geological investigation of the present work. The
sampling information and analysis methods are presented in Table 1.

4.1. Trace Element Analysis

In order to identify sources of gold, samples were grained to 74 µm. Trace elements in
samples from veins and hosted rocks of the main metallogenic stages were analyzed by
ICP-MS at Beijing Research Institute of Uranium Geology with an analytical precision of
around 1%.

4.2. Sulfur Isotope Analysis

The observations from the fieldwork and photomicrographic study indicated that
the pyrite was the foremost gold-bearing mineral. Samples of the pyrite from the quartz
veins at different metallogenic stages were thus selected for sulfur isotope analysis. This
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was performed using the direct-oxidation method using a MAT 253 mass spectrometer.
The analysis was conducted at the Beijing Research Institute of Uranium Geology with an
analytical precision of ±0.2‰.

Table 1. Analyses and sampling localities.

Lithology Sampling Position Stage Testing

X1 Quartz associated with pyrite Drillhole Stage I Trace, S isotope, Temperature
X2 quartz Exploration tunnel Trace, Temperature

X3 Quartz associated with sulfide Drillhole

Stage II

Trace, S isotope, Temperature
X5 Quartz associated with pyrite Drillhole Trace, S isotope, Temperature
X7 Quartz associated with sulfide Exploration tunnel Trace, S isotope, Temperature
X8 Quartz associated with sulfide Exploration tunnel Temperature
X9 Quartz associated with sulfide Exploration tunnel Temperature

X10 Quartz associated with pyrite Drillhole
Stage III

Trace, S isotope, Temperature
X11 Quartz associated with ankerite Exploration tunnel Trace, S isotope, Temperature
X12 Quartz associated with ankerite Exploration tunnel Temperature

X4 Sericite slate (X5 hanging -wall) Drillhole
Hosted rock

Trace
X6 Sandy slate (X5 foot -wall) Drillhole Trace

4.3. Fluid Inclusions Microthermometry

To explore the metallogenic conditions at different mineralization stages, fluid in-
clusion microthermometry was performed in quartz samples using a Linkam THMS-600
microthermometer at the Key Laboratory of Non-ferrous Metallogenic Prognosis, Ministry
of Education, School of Geosciences and Information Physics, Central South University.
Before the measurements were made, the samples were double-side polished to a thickness
of 0.06–0.08 mm. The instrument was calibrated with synthetic inclusion (international
standard sample) before testing. The measuring range was from −196 to 600 ◦C. Uncertain-
ties of the measurements were ±0.1 ◦C and ±1 ◦C in temperature ranges of <30 ◦C and
<600 ◦C, respectively. The heating/freezing rate was 10–20 ◦C/min during the initial runs,
which was reduced to 0.2 ◦C/min near the phase transformation.

5. Results
5.1. Trace Element Geochemistry

Table 2 shows that the total amount of rare earth elements (REEs) was 72.62–198.83 ppm,
with the contents of light rare earth elements (LREEs) and Heavy rare earth elements
(HREEs) ranging from 64.73–171.35 ppm and 7.89–27.48 ppm, respectively. The LREE/HREE,
La(N)/Sm(N), and Gd(N)/Yb(N) ratios were 6.24–11.58, 2.03–4.68, and 1.43–2.96, respectively,
indicating an enrichment of LREEs and a depletion of HREEs. Most of the samples dis-
played moderately negative Eu anomalies and no Ce anomalies (Figure 4). The REE content
of the ores during Stage III was significantly lower than that in the Stage I and II ores,
however, no significant differences were identified for the other elements.

As depicted in Figure 5, the REE profiles of both the hosted rocks (X4 and X6) and
the ore were right-inclined and nearly parallel. The values of LREE/HREE, La(N)/Sm(N),
Gd(N)/Yb(N), δEu, and δCe for the samples of hosted rock were similar to those of the ore
samples. The samples of the rocks and ore were characterized by enrichment in LREE,
depletion in HREE, and non-anomalies in Ce. The primitive mantle-normalized trace
element distribution patterns of the ore and hosted rocks were right-inclined (Figure 6).
The high field strength element (HFSE) was relatively depleted, especially in Nb and
Ta. However, the large ion lithophile element (LILE) was enriched with Pb, displaying
a positive anomaly.
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Table 2. Trace element contents (ppm) and parameters in Xiaojiashan gold deposit.

X1 X2 X3 X4 X5 X6 X7 X10 X11

V 22 93 64 117 120 86 7 13 15
Cr 90 90 70 80 90 70 90 90 110
Co 3.7 13.2 7.9 6.9 15.8 9.3 2.0 2.5 3.1
Ni 17.7 27.0 19.2 17.2 35.9 22.6 5.0 8.4 8.5
Cu 27.8 7.4 20.4 38.2 36.4 42.3 6.7 120.5 175.0
Zn 33 114 39 96 95 89 35 760 332
As 2120 88.8 161.5 4370 64.7 228 3700 4170 9350
Rb 26.4 150.0 109.0 246 185.0 143.0 17.0 21.5 27.4
Sr 170.0 155.0 116.5 58.5 120.0 130.0 10.8 90.7 45.9
P 210 1290 410 470 580 560 100 800 40
Y 6.7 13.6 10.1 11.3 10.9 11.5 1.0 4.2 2.2
Zr 67.5 148.0 105.5 171.5 138.5 117.0 12.3 16.9 21.5
Nb 2.5 11.2 8.1 6.1 10.3 9.5 0.9 1.3 2.0
Sb 29.3 2.64 3.87 5.85 4.00 9.85 8.77 72.7 78.8
Cs 2.68 8.99 5.93 15.45 11.05 7.79 1.24 1.29 1.56
Ba 90 560 320 640 570 360 40 50 70
La 14.3 30.9 29.1 33.5 33.1 28.1 2.7 4.9 6.0
Ce 29.3 71.1 62.8 74.9 72.6 61.0 5.79 11.85 13.25
Pr 3.33 9.19 7.66 8.70 8.62 7.18 0.62 1.60 1.49
Nd 12.5 34.8 28.2 32.0 31.9 27.0 2.4 6.6 5.5
Sm 2.75 7.55 5.77 6.46 6.91 5.71 0.40 1.94 1.01
Eu 0.65 1.71 1.18 1.27 1.30 1.12 0.14 0.84 0.19
Gd 2.58 7.73 4.79 6.27 5.92 5.36 0.32 1.86 0.78
Tb 0.36 1.17 0.67 0.92 0.85 0.80 0.03 0.22 0.09
Dy 2.09 7.32 4.33 6.11 5.53 4.85 0.28 1.12 0.69
Ho 0.41 1.53 0.91 1.23 1.15 1.03 0.06 0.24 0.15
Er 1.14 4.26 2.46 3.87 3.19 2.96 0.15 0.54 0.42
Tm 0.14 0.62 0.35 0.55 0.48 0.44 0.02 0.07 0.06
Yb 1.02 4.22 2.52 3.37 3.07 2.89 0.18 0.52 0.45
Lu 0.15 0.63 0.37 0.51 0.47 0.44 0.01 0.07 0.05
Hf 1.8 6.5 5.0 5.4 5.1 4.9 0.4 0.6 0.7
Ta 0.3 1.0 0.8 1.0 1.1 0.9 0.1 0.1 0.2
Au 0.775 0.074 0.012 0.587 0.007 0.09 4.12 6.08 10
Pb 61.7 24.6 13.8 12.5 26.8 31.7 441 1525 459
Th 4.9 12.5 10.6 15.1 14.8 12.6 1.0 1.7 2.0
U 2.4 2.5 2.3 2.8 3.2 2.4 0.3 0.5 0.6

ΣREE 72.62 198.83 159.21 180.76 182.99 153.48 13.21 35.22 31.38
LREE 64.73 171.35 142.81 157.93 162.33 134.71 12.16 30.58 28.69
HREE 7.89 27.48 16.4 22.83 20.66 18.77 1.05 4.64 2.69

LREE/HREE 8.2 6.24 8.71 6.92 7.86 7.18 11.58 6.59 10.67
La(N)/Yb(N) 10.83 6.34 9.25 7.47 8.53 7.5 11.56 8.41 10.84

δEu 0.73 0.68 0.67 0.6 0.61 0.61 1.16 1.33 0.63
δCe 0.98 1.04 1.01 1.01 1.03 1.02 0.99 1.04 1.01

La(N)/Sm(N) 3.62 3.19 3.64 3.51 3.41 3.41 4.68 2.03 4.35
Gd(N)/Yb(N) 2.09 1.52 1.57 1.54 1.6 1.53 1.47 2.96 1.43

The standard reference value of the rare earth element is C1-cyhalite as measured by [38].
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5.2. Sulfur Isotope Compositions

The sulfur isotope compositions of the pyrite samples from the Xiaojiashan deposit
in different metallogenic stages and those from the Lengjiaxi Group are presented in
Table 3. The δ34SVCDT values of the ore samples ranged from −3.1 to −8.0‰. It is also
shown in Table 3 that the sulfur isotope composition of pyrite from the ore samples
X1–X11 were similar to the compositions of the samples from the Yanlinsi gold deposit
(−10.34~+6.04 [21,22]), the Zhengchong deposit (−8.9~−0.1 [14]), and the Lengjiaxi Group
in this area (−13.10 to −5.93‰ [13,21,40]).
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Table 3. Sulfur isotopic compositions of pyrite from Xiaojiashan gold deposit (‰).

Sample δ34SVCDT Sources Sample δ34SVCDT Sources

X1 −8.0

This study

Pt2 −13.10~−6.26

[21]X3 −6.9
Yanlinsi

−5.73
X5 −7.1 −4.57

X7 −5.0 Xiaojianshan −33.3~−0.99 [18]
X10 −3.1 −5.25~−2.05 [28]

X11 −7.6 Yanlinsi −10.34~+6.12 [22]

Pt2 −10.4 [40] Zhengchong −8.9~−0.1 [14]

Pt2 −12.56~−5.93 [13]

5.3. Fluid Inclusion Microthermometry

Figures 3 and 7 show some microphotographs of polished slides of samples of the
quartz from the Xiaojiashan deposit. Veinlets and veins hosted by the quartz of ore zones,
and the fluid inclusions in quartz are distinguishably different quartz generations. To
summarize the fluid inclusion study results: the fluid inclusions [41] in the quartz were
difficult to study due to their small size (mostly 4.0–6.5 µm), they were all composed of
vapor–liquid two–phase and liquid-rich fluid inclusions at room temperature, with the
vapor phase accounting for 5–40 vol.% (mostly 20–30 vol.%) (Appendix A, Table 4). The
shapes of the inclusions were nearly circular and elliptical, slightly rectangular, triangular,
and diamond, as well as rather irregular.
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Figure 7. Photomicrograph of fluid inclusions in quartz from Stages I (a), II (b), and III (c) in
Xiaojiashan gold deposit.

Table 4. Temperature of fluid inclusions in Xiaojiashan gold deposit.

Stage No. Size (µm) Vapor (%) Th (◦C) Tm (◦C) Ti (◦C) Salinity (wt%) NaCl

I
X1 4.0–8.0 10–45 186–332 −6.8–−1.9 −22–−20 3.2–10.2
X2 3.5–8.6 15–45 219–343 −6.4–−1.0 −23–−20 1.7–9.7

II

X3 4.0–7.5 10–30 169–314 −6.1–−0.5 −23–−20 0.8–9.3
X5 3.8–9.0 5–40 167–296 −6.0–−0.8 −23–−20 1.4–9.2
X7 4.5–7.5 10–40 183–302 −6.9—2.3 −23–−20 3.8–10.3
X8 4.0–8.6 5–45 137–288 −5.9–−1.3 −25–−20 2.2–9.0
X9 4.6–10.7 5–35 184–295 −7.6–−2.4 −24–−20 4.0–11.2

III
X10 3.8–7.6 10–30 145–268 −7.6–−1.0 −23–−21 1.7–11.2
X11 4.3–7.2 5–30 179–238 −7.8–−1.4 −25–−21 2.4–11.4
X12 3.8–8.5 10–35 122–250 −5.4–−0.7 −25–−21 1.2–8.4

The fluid inclusions in Stage I were studied in veinlets and euhedral crystals, where
they were distributed either in clusters or isolated, suggesting their primary nature. The
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primary fluid inclusions in the samples were 3.5–8.6 µm (mostly 4.0–6.5 µm, as shown
in Table 4, Figure 7a). They homogenized to liquid mostly in between 186 and 343 ◦C,
with an average of 274 ◦C. The freezing temperature and the initial melting temperature
of the inclusions were −6.8–−1.0 ◦C, and −23–−20 ◦C, respectively. These were around
−21 ◦C, suggesting that they were H2O-NaCl system inclusions. The salinity of the primary
inclusions was 1.7–10.2 wt.% NaCl based on Tm (−6.8–−1.0 ◦C) (Tables 4 and A1).

The fluid inclusions in Stage II (Figure 7b) were measured in veinlets and euhedral
crystals. The primary inclusions were small (3.8–9.0 µm) and mostly occurred in rows
along fractures; the secondary and pseudo-secondary inclusions are relatively rare. Their
morphology, size, freezing temperature (−7.6–−0.5◦C) and initial melting temperature
(−25–−20◦C) are similar to those of Stage I. However, their homogenization temperatures
(137–314◦C, with an average of 237 ◦C) (Tables 4 and A2) were lower than those of most
primary inclusions in Stage I.

The fluid inclusions in Stage III (Figure 7c) were studied in veinlets and veins. The
proportion accounted for by the vapor phase (5–35 vol.%, mostly 15–25 vol.%) decreased
(Tables 4 and A3). Their morphology, size (3.8–8.5 µm), freezing temperature (−7.8–−0.7 ◦C),
and initial melting temperature (−25–−21 ◦C) were similar to those of Stages I and II.
However, their homogenization temperatures (122–268 ◦C, with an average of 198 ◦C) were
lower than those of most primary inclusions in Stages I and II.

The initial melting temperature of inclusions in Stages I, II, and III were around−21 ◦C,
suggesting that the ore-forming fluids comprised a H2O-NaCl system. This suggests that
the fluids involved in the hydrothermal episodes were similar.

The salinity of the fluid inclusions (ω, wt%) was calculated using Equation (1) [42].

ω, wt% = 1.78θ − 0.0442θ2 + 0.000557θ3 (1)

In Equation (1): θ is the depression of the freezing temperature in degrees Celsius.
The calculated values for the salinity of the fluid inclusions ranged from 5.6 to 11.2%,

4.2 to 11.2%, and 4.2 to 8.4% for Stages I, II, and III, respectively (Figure 8b).
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Figure 8. Histograms of homogenization temperature (a) and salinity (b) of fluid inclusions in
Xiaojiashan gold deposit.

Figures 8 and 9 show that the temperature of the ore-forming fluid is highest during
mineralization stage I, and the salinity of the ore-forming fluid is highest during miner-
alization stage II. In addition, a weak positive relationship between the homogenization
temperatures and the salinity was identified for each stage of the fluid inclusions. The
ore-forming fluid in this study may be a relatively hot and saline fluid, and the drop (from
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Stages II to III) in salinity and temperature may have been caused by the addition of some
colder and less saline fluid.
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6. Discussion
6.1. Source of Ore-Forming Material

The contents of Au, Cu, Pb, Zn, As and Sb in the rocks of the Lengjiaxi Group in
northeastern Hunan were 1.65, 1.68, 1.93, 1.70, 22.89 and 8.38 times the average concentra-
tions of the upper crust, respectively (Table 5) [43,44]. The ore bodies of the Xiaojiashan
gold deposit occur in the epi-metamorphic rocks of the Lengjiaxi Group. Fresh, unaltered,
and mineralized samples of the Lengjiaxi Group’s epi-metamorphic sandstone along with
slate from the Yanlinsi ore section and its periphery were collected by Huang et al. [37]. In
northeastern Hunan, Au, Cu, Zn and As were measured with varying degrees of enrich-
ment. Both showed that the Lengjiaxi Formation is a rich source of Au. Figure 5 depicts the
patterns of the chondrite-normalized REE distribution for the hosted rocks and ore, which
were similar to those of the Lengjiaxi Group [39]. These features suggest that the Lengjiaxi
Group provided a material source for mineralization.

Table 5. Abundance and parameters of some metallic elements in the Lengjiaxi Group and Xiaojiashan
gold deposit in northeastern Hunan (ω(B)/ppm,ω(Au)/ppb).

Position No. Au Cu Pb Zn As Sb Sources

1© Northeastern Hunan 120 2.97 41.88 38.61 120.69 34.34 1.67 [43,44]
2© Yanlinsi section 33 19.02 50.09 31.49 131.56 87.04 1.65 [37]

4© Upper crust 1.8 25 20 71 1.5 0.2 [45]
1©/ 4© 1.65 1.68 1.93 1.70 22.89 8.38
2©/ 1© 6.40 1.20 0.82 1.09 2.53 0.99

Original metamorphic rocks can be restored using rock-geochemical methods. The
La/Yb-REE diagram is often used to discuss rock types and material sources due to its low
level of errors and high accuracy [46,47]. The La(N)/Yb(N) versus ΣREE diagram (Figure 10)
demonstrates sample plots within the field of sedimentary rock and continental tholeiitic,
signifying that the original rocks of Stages I and II and the hosted rocks were likely to have
been sedimentary rock mixed with magmatic rock.

The δ34S values of the sulfide can be approximately regarded as the δ34S∑ values of
the ore-forming fluid when the mineral assemblage lacks sulfate [48]. The Xiaojiashan gold
deposit possesses barren sulfate minerals, consisting of large amounts of pyrite, as well as
small amounts of chalcopyrite, arsenopyrite, and galena. Therefore, the value of δ34S in the
pyrite is approximately equal to that in the ore-forming fluid.
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The δ34S values of the pyrite in Stage I were low (−8.0‰), with similar values
to the test samples from Xiaojiashan [18,28] and the Lengjiaxi Group in northeastern
Hunan [13,21,40]. Furthermore, the pyrite in Stage I contained less 34S than the magmatic
sulfur (δ34S = 0 ± 3‰) [49] from the same region (Figure 11 and Table 3). This indicates
that the source of pyrite in Stage I was probably metamorphic sulfur, which is sourced
from the metamorphism of sedimentary strata. The pyrite in Stage II and III had similar
δ 34S values, which were also similar to the δ34S values from Xiaojiashan (Figure 11 and
Table 3) [18,28], Yanlinsi [21,22], and Zhengchong [14]. The pyrite in Stages II and III con-
tained more 34S than the Lengjiaxi Group in northeastern Hunan [13,21,40]. This indicates
that there was an external magmatic sulfur source (δ34S = 0 ± 3‰) [49], which may have
migrated from the concealed plutons resulting from the magnetic anomaly beneath the
Zhengchong–Xiaojiashan–Yanlinsi goldfield [18,37]. The trace element compositions and
ratios of pyrite also suggest that the sulfur source and composition may have shifted from
metamorphic (Stage I) to magmatic (Stage II) [18].
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Figure 11. S isotopic compositions of pyrite and granodiorite from regional gold deposits. Sulfur
isotope data of the Lengjiaxi Group [13,21,40], Yanlinsi [21,22], Zhengchong [14], Stages I and II [18],
Xiaojiashan [28], and Zhengchong granodiorite [14] are shown for comparison.

It is thus estimated that the gold in Xiaojiashan was from the Lengjiaxi Formation, and
that magmatic materials were added to the mineralization.
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6.2. Fluid Evolution

It is known that fluid inclusions in minerals play an important role in the study of
the ore-forming process, as these inclusions can reflect the properties of ore-forming fluid
and invert the ore-forming process [50,51]. The vapor–liquid two-phase inclusions were
found to develop in the hydrothermal quartz veins of the Xiaojiashan deposit, wherein
no other inclusion types were discovered. The values of the homogenization temperature
for the inclusions range mostly from 180 to 300 ◦C. This temperature range implies that
the inclusions belonged to a hydrothermal solution with medium–low temperatures. The
calculated salinity mainly varied from 4.2 to 11.2 % (wt% NaCl, eq), and no salt crystal
was found in the inclusions, indicating a medium–low salinity for the ore-forming fluids.
It is therefore considered that the ore-forming fluid of the Xiaojiashan gold deposit had
a medium–low temperature and salinity range.

From the La(N)/Yb(N) versus ΣREE diagram, the temperature and salinity diagram,
and the δ34S values of the pyrite, it can be shown that the ore-forming hydrothermal fluids
were metamorphic–hydrothermal, with Au extracted from the strata during its migration
in Stage I. According to the δ34S values of the pyrite in Stages II and III, which contained
a higher value of 34S than that of the Lengjiaxi Group in northeastern Hunan, it was found
that the ore-forming hydrothermal fluids may have shifted to the magmatic stage (Stages II
and III) from the metamorphic stage (Stage I). A similar fluid-evolution process in vein-
hosted gold deposits has also been proposed in many orogenic gold deposits worldwide,
such as the gold deposit in northeastern Hunan, China [13] and the Lac Herbin deposit in
Canada [52].

7. Conclusions

The following conclusions were reached from the evaluation and discussion of the
results obtained from the present work:

(1) The Lengjiaxi Group and magmatic components provided the ore-forming materials.
(2) The ore-forming hydrothermal fluids of the Xiaojiashan gold deposit were meta-

morphic hydrothermal in Stage I, which may have been derived from the metamorphism
of the strata, and then shifted to magmatic–hydrothermal in Stages II and III. For the
Xiaojiashan gold deposit, the temperature and salinity of the ore-forming fluids were at
a medium–low level.

(3) The temperature and salinity of the ore-forming fluid decreased during the met-
allogenic epoch, which might have been a result of the gradually reduced ore-forming
materials and mineralization, along with the addition of groundwater.
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Appendix A

Table A1. Microthermometry results of primary fluid inclusions in Stage I of Xiaojiashan gold deposit.

No. Host Mineral Size (µm) Vapor (%) Th (◦C) Tm (◦C) Ti (◦C) Salinity (wt% NaCl eq)

X1

Qz 7.5 40 186 −1.9 −20 3.2
Qz 5.8 35 196 −1.2 −22 2.0
Qz 8.0 40 243 −2.6 −20 4.3
Qz 4.8 30 206 −1.7 −22 2.9
Qz 6.2 35 257 −3.6 −21 5.8
Qz 7.8 45 251 −2.9 −20 4.8
Qz 4.8 25 232 −2.6 −20 4.3
Qz 5.5 20 227 −2.3 −21 3.8
Qz 6.4 30 257 −2.8 −20 4.6
Qz 5.7 35 277 −5.7 −21 8.8
Qz 5.8 25 286 −4.7 −22 7.4
Qz 6.1 20 332 −6.8 −20 10.2
Qz 5.4 25 331 −6.6 −21 9.9
Qz 5.5 30 330 −6.7 −22 10.1
Qz 5.2 30 288 −5.0 −20 7.8
Qz 6.1 25 211 −2.3 −22 3.8
Qz 6.4 15 273 −4.0 −21 6.4
Qz 6.1 20 274 −4.3 −22 6.8
Qz 5.7 30 283 −5.2 −20 8.1
Qz 4.5 10 293 −5.2 −21 8.1
Qz 4.0 25 276 −4.3 −22 6.8
Qz 4.3 20 279 −4.2 −20 6.7

X2

Qz 7.6 30 219 −1.0 −23 1.7
Qz 6.8 35 246 −2.4 −22 4.5
Qz 8.2 40 226 −2.4 −20 4.0
Qz 6.3 20 289 −5.4 −22 8.4
Qz 5.8 30 290 −5.2 −21 8.1
Qz 5.5 20 259 −3.0 −20 4.9
Qz 4.2 25 286 −5.5 −23 8.5
Qz 8.6 30 276 −5.8 −22 8.9
Qz 7.7 35 263 −3.8 −21 6.1
Qz 7.2 30 270 −4.2 −20 6.7
Qz 6.7 25 255 −2.8 −22 4.6
Qz 6.4 30 282 −4.5 −21 7.1
Qz 5.8 20 283 −4.8 −23 7.5
Qz 6.8 15 260 −3.5 −20 5.7
Qz 5.7 30 271 −4.0 −22 6.4
Qz 4.3 25 343 −6.4 −21 9.7
Qz 4.2 45 281 −5.2 −20 8.1
Qz 3.9 35 300 −6.5 −21 9.8
Qz 3.5 30 321 −6.5 −22 9.8
Qz 6.7 35 275 −5.3 −21 8.2
Qz 6.5 40 301 −5.6 −20 8.6
Qz 6.9 30 304 −6.2 −22 9.4
Qz 5.2 35 305 −6.4 −20 9.7
Qz 6.4 30 306 −6.3 −21 9.6
Qz 5.7 20 308 −6.6 −22 9.9
Qz 6.2 35 309 −6.4 −22 9.7
Qz 6.0 30 309 −6.3 −23 9.6
Qz 6.1 25 310 −6.5 −20 9.8
Qz 5.3 20 302 −6.5 −21 9.8
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Table A1. Cont.

No. Host Mineral Size (µm) Vapor (%) Th (◦C) Tm (◦C) Ti (◦C) Salinity (wt% NaCl eq)

X1′

Qz 4.3 10 286 −3.6 5.8
Qz 6.2 10 268 −1.9 −22 3.2
Qz 4.6 15 274 −5.3 8.2
Qz 4.9 15 272 −5.6 −21 8.6
Qz 5.1 10 228 −4.7 7.4
Qz 6.3 10 256 −4.6 −20 7.3
Qz 5.0 10 265 −6.1 9.3

Table A2. Microthermometry results of primary fluid inclusions in Stage II of Xiaojiashan gold deposit.

No. Host Mineral Size (µm) Vapor (%) Th (◦C) Tm (◦C) Ti (◦C) Salinity (wt% NaCl eq)

X3

Qz 6.8 30 169 −0.5 −22 0.8
Qz 5.9 25 180 −0.7 −20 1.2
Qz 6.2 20 197 −3.0 −21 4.9
Qz 7.3 30 273 −6.1 −20 9.3
Qz 7.0 30 181 −1.8 −23 3.0
Qz 6.8 20 201 −3.1 −20 5.1
Qz 6.1 15 240 −4.6 −22 7.3
Qz 5.7 20 308 −6.1 −21 9.3
Qz 6.0 10 270 −5.5 −20 8.5
Qz 5.8 30 310 −6.1 −23 9.3
Qz 6.8 25 314 −6.0 −21 9.2
Qz 7.5 20 241 −5.0 −23 7.8
Qz 6.5 25 201 −3.2 −20 5.2
Qz 6.2 20 231 −4.3 −22 6.8
Qz 5.7 15 237 −4.4 −21 7.0
Qz 4.8 20 229 −4.2 −22 6.7
Qz 4.5 15 238 −4.2 −22 6.7
Qz 6.1 25 252 −5.6 −20 8.6
Qz 5.8 20 242 −5.1 −21 8.0

X5

Qz 4.8 30 167 −1.4 −22 2.4
Qz 4.6 30 171 −0.8 −23 1.4
Qz 4.0 25 271 −6.0 −20 9.2
Qz 6.3 35 176 −0.9 −21 1.5
Qz 6.9 20 228 −4.2 −23 6.7
Qz 4.5 10 187 −1.0 −22 1.7
Qz 3.8 20 230 −4.3 −20 6.8
Qz 4.3 25 296 −5.9 −23 9.0
Qz 8.4 20 239 −4.4 −21 7.0
Qz 9.0 25 204 −3.4 −22 5.5
Qz 8.1 25 230 −4.2 −23 6.7
Qz 6.7 30 245 −5.4 −20 8.4
Qz 6.9 20 247 −5.2 −23 8.1
Qz 5.6 35 216 −3.9 −22 6.3
Qz 4.8 40 240 −4.4 −20 7.0
Qz 5.8 20 193 −3.0 −21 4.9
Qz 6.2 25 225 −4.1 −23 6.5
Qz 5.1 20 251 −5.7 −22 8.8
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Table A2. Cont.

No. Host Mineral Size (µm) Vapor (%) Th (◦C) Tm (◦C) Ti (◦C) Salinity (wt% NaCl eq)

X7

Qz 6.2 20 240 −4.7 −20 7.4
Qz 5.8 20 183 −2.6 −24 4.3
Qz 5.4 25 186 −2.3 −21 3.8
Qz 4.5 20 302 −6.9 −23 10.3
Qz 5.5 25 302 −6.8 −21 10.2
Qz 7.2 20 282 −6.8 −24 10.2
Qz 6.5 25 239 −4.5 −20 7.1
Qz 5.4 20 300 −6.8 −21 10.2
Qz 5.1 15 300 −6.7 −22 10.1
Qz 4.5 10 301 −6.8 −20 10.2
Qz 7.5 25 190 −2.7 −24 4.4
Qz 7.0 20 215 −4.0 −21 6.4
Qz 6.8 35 278 −6.5 −22 9.8
Qz 6.4 40 207 −3.2 −23 5.2
Qz 5.7 20 250 −5.5 −24 8.5
Qz 5.3 20 208 −3.3 −20 5.4
Qz 6.1 30 214 −3.6 −24 5.8
Qz 5.7 25 281 −6.7 −21 10.1
Qz 6.3 20 216 −3.8 −22 6.1
Qz 5.8 25 244 −5.2 −24 8.1
Qz 6.0 20 279 −6.5 −24 9.8
Qz 5.7 20 280 −6.8 −20 10.2
Qz 6.8 25 240 −4.5 −20 7.1
Qz 5.9 25 276 −6.1 −22 9.3

X8

Qz 6.7 15 150 −1.7 −21 2.9
Qz 7.4 10 137 −1.3 −24 2.2
Qz 6.4 20 183 −1.9 −20 3.2
Qz 5.8 5 138 −1.6 −20 2.7
Qz 4.0 20 151 −1.6 −22 2.7
Qz 4.5 25 178 −1.7 −21 2.9
Qz 8.4 30 153 −1.7 −23 2.9
Qz 8.1 20 218 −3.9 −20 6.3
Qz 8.6 35 288 −5.8 −20 8.9
Qz 6.5 45 281 −5.9 −21 9.0
Qz 6.1 20 220 −4.0 −24 6.4
Qz 7.4 25 241 −5.0 −22 7.8
Qz 6.8 30 223 −4.0 −25 6.4
Qz 5.7 20 227 −4.1 −23 6.5
Qz 7.9 30 243 −5.2 −21 8.1
Qz 7.0 25 246 −5.4 −22 8.4
Qz 6.8 30 256 −5.5 −20 8.5
Qz 6.4 35 248 −5.3 −20 8.2
Qz 5.8 30 249 −5.4 −22 8.4
Qz 6.1 25 270 −5.8 −21 8.9

X9

Qz 7.2 20 188 −2.9 −23 4.8
Qz 6.5 15 286 −7.6 −24 11.2
Qz 6.2 25 209 −3.3 −21 5.4
Qz 5.7 10 184 −2.4 −24 4.0
Qz 4.6 5 211 −3.5 −20 5.7
Qz 6.4 20 213 −3.6 −22 5.8
Qz 6.9 25 295 −7.6 −21 11.2
Qz 7.2 20 270 −6.8 −20 10.2
Qz 6.4 30 293 −7.6 −24 11.2
Qz 5.7 35 291 −7.6 −22 11.2
Qz 6.5 30 294 −7.6 −23 11.2
Qz 5.8 25 240 −4.6 −20 7.3
Qz 6.1 20 241 −4.7 −21 7.4
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Table A2. Cont.

No. Host Mineral Size (µm) Vapor (%) Th (◦C) Tm (◦C) Ti (◦C) Salinity (wt% NaCl eq)

Qz 8.7 15 241 −4.8 −23 7.5
Qz 10.7 20 250 −5.2 −24 8.1
Qz 7.2 15 273 −6.1 −21 9.3
Qz 6.8 20 250 −5.5 −23 8.5
Qz 6.4 25 277 −6.5 −20 9.8
Qz 5.9 30 251 −5.5 −24 8.5
Qz 6.1 25 275 −6.1 −21 9.3

X3′

Qz 4.6 15 286 −4.7 7.4
Qz 5.7 10 253 −4.6 −20 7.3
Qz 5.1 15 267 −4.1 6.5
Qz 6.2 20 250 −4.8 −22 7.5
Qz 5.4 10 224 −3.3 5.4
Qz 6.4 15 234 −3.9 −21 6.3
Qz 5.7 10 212 −3.9 6.3

X5′

Qz 5.3 10 246 −4.5 7.1
Qz 4.1 15 226 −3.5 5.7
Qz 6.5 5 237 −4.1 −20 6.5
Qz 4.7 20 179 −1.7 2.9
Qz 8.3 15 202 −4.0 −22 6.4
Qz 6.2 10 225 −5.5 −23 8.5

Table A3. Microthermometry results of primary fluid inclusions in Stage III of Xiaojiashan gold deposit.

No. Host Mineral Size (µm) Vapor (%) Th (◦C) Tm (◦C) Ti (◦C) Salinity (wt% NaCl eq)

X10

Qz 5.7 25 190 −4.4 −21 7.0
Qz 6.4 15 161 −2.9 −22 4.8
Qz 7.1 10 145 −1.0 −22 1.7
Qz 6.8 20 151 −1.7 −23 2.9
Qz 6.5 20 251 −7.6 −21 11.2
Qz 4.6 25 243 −6.6 −23 9.9
Qz 4.2 20 249 −7.3 −22 10.8
Qz 7.0 25 268 −7.4 −23 10.9
Qz 6.7 20 240 −6.1 −23 9.3
Qz 4.8 25 216 −5.1 −23 8.0
Qz 7.6 15 193 −4.6 −22 7.3
Qz 6.6 30 241 −5.9 −23 9.0
Qz 5.8 25 242 −6.4 −23 9.7
Qz 4.7 25 188 −4.0 −21 6.4
Qz 6.1 25 201 −4.8 −23 7.5
Qz 5.4 20 236 −5.5 −23 8.5

X11

Qz 6.5 25 180 −1.4 −22 2.4
Qz 5.7 30 179 −3.0 −24 4.9
Qz 4.5 25 223 −7.8 −24 11.4
Qz 6.2 30 238 −5.5 −23 8.5
Qz 7.0 20 181 −3.3 −25 5.4
Qz 5.2 10 183 −3.4 −23 5.5
Qz 4.8 5 201 −4.7 −21 7.4
Qz 4.3 20 184 −4.0 −23 6.4
Qz 7.2 25 186 −3.6 −22 5.8
Qz 6.4 20 211 −3.8 −23 7.4
Qz 6.1 20 213 −5.0 −21 7.8
Qz 5.8 15 204 −4.7 −21 7.4
Qz 4.6 20 226 −5.4 −23 8.4
Qz 5.1 25 206 −4.8 −21 7.5
Qz 4.9 20 197 −4.7 −23 7.4
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Table A3. Cont.

No. Host Mineral Size (µm) Vapor (%) Th (◦C) Tm (◦C) Ti (◦C) Salinity (wt% NaCl eq)

X12

Qz 5.2 25 150 −1.9 −24 3.2
Qz 8.0 15 140 −1.7 −24 2.9
Qz 7.6 20 147 −1.6 −23 2.7
Qz 8.5 10 124 −3.2 −22 5.2
Qz 7.8 20 122 −0.7 −21 1.2
Qz 8.0 30 214 −5.2 −23 8.1
Qz 5.2 35 204 −4.7 −24 7.4
Qz 3.8 20 215 −4.9 −21 7.7
Qz 6.4 15 160 −2.8 −23 4.6
Qz 5.4 20 218 −5.1 −22 8.0
Qz 6.2 25 153 −2.8 −21 4.6
Qz 7.1 30 169 −3.2 −24 5.2
Qz 6.7 20 152 −2.1 −25 3.5
Qz 5.8 25 167 −3.0 −23 4.9
Qz 5.3 20 250 −5.4 −21 8.4
Qz 6.4 15 183 −3.6 −24 5.8
Qz 6.2 20 239 −5.3 −25 8.2
Qz 5.4 15 220 −5.2 −21 8.1
Qz 5.2 20 187 −4.2 −25 6.7

X10′

Qz 4.1 20 185 −1.4 2.4
Qz 6.4 15 169 −1.9 3.2
Qz 5.1 10 206 −4.0 6.4
Qz 5.3 15 190 −5.3 −22 8.2
Qz 4.3 10 216 −5.3 8.2
Qz 5.6 20 223 −6.1 9.3
Qz 4.8 15 201 −2.8 4.6
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