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Abstract: The occurrence of rockburst can seriously impact the construction and production of
deep underground engineering. To prevent rockburst, machine learning (ML) models have been
widely employed to predict rockburst based on some related variables. However, due to the costs
and complicated geological conditions, complete datasets to evaluate rockburst cannot always be
obtained in rock engineering. To fill this limitation, this study proposed an ensemble tree model
suitable for incomplete datasets, i.e., the histogram gradient boosting tree (HGBT), to build intelligent
models for rockburst prediction. Three hundred fourteen rockburst cases were employed to develop
the HGBT model. The hunger game search (HGS) algorithm was implemented to optimize the
HGBT model. The established HGBT model had an excellent testing performance (accuracy of
88.9%). An incomplete database with missing values was applied to compare the performances of
HGBT and other ML models (random forest, artificial neural network, and so on). HGBT received
an accuracy of 78.8% in the incomplete database, and its capacity was better than that of other
ML models. Additionally, the importance of input variables in the HGBT model was analyzed.
Finally, the feasibility of the HGBT model was validated by rockburst cases from Sanshandao
Gold Mine, China.

Keywords: rockburst prediction; histogram gradient boosting tree; hunger game search algorithm

1. Introduction

Rockburst is a ground pressure disaster during rock mass excavation, accompanied by
a violent release of energy [1]. Peak particle velocity can be applied to assess the stability of
rock mass excavation [2]. Rockburst has been reported in the deep underground engineer-
ings of numerous countries [1,3]. As burial depth, ground stress, and ground temperature
increase, so does the frequency of rockburst in rock excavation engineering [4]. Rockburst
generally leads to roadway failure, equipment destruction, and casualties, which cause
economic losses and adverse social consequences [5]. It has been crucial and challenging to
predict and prevent rockburst effectively in deep underground engineering [6].

Many factors affect the occurrence of rockburst, and the rockburst mechanism is very
complicated [7–11]. According to the dynamic failure modes, rockburst can be classified as
strainburst, fault-slip rockburst, and pillar burst [12]. The fault-slip rockburst is usually
more intense than strainburst. Additionally, rockburst assessments can be summarized as
long-term and short-term assessments [13,14]. Long-term rockburst assessment is generally
conducted in the early stages of engineering design [15]. It is mainly used to determine the
long-term propensity of rockburst in different locations. The evaluated results can provide
guidance for subsequent excavation or operation. The evaluation of short-term rockburst is
usually carried out in the excavation stage [16,17]. Based on the field data, the short-term
risk of rockburst can be estimated in the near future. This study aims at the prediction of
long-term rockburst.

To ensure the construction safety of deep rock excavation, numerous researchers
have conducted investigations on the prediction of long-term rockburst [18–20]. The
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methods to predict long-term rockburst mainly include the single empirical criterion,
comprehensive model composed of multiple indexes, numerical simulation, and nonlinear
theory [9,13,21,22]. The single empirical criterion considers a single indicator (such as
strength, energy, and brittleness indexes) to evaluate the intensity levels of rockburst
according to field experiences. It is easy to apply the single empirical criterion on site,
but its performance and application are poor [21]. To address the limitation of the single
empirical criterion, multiple indicators are considered comprehensively to predict rockburst.
The methods to combine multiple indicators include uncertainty theory [23,24], rank-based
models [25,26], and machine learning algorithms [27–29]. Moreover, numerical simulation
is applied to foretell rockburst based on the rockburst mechanism [30,31]. The nonlinear
theory is employed for the estimation of rockburst according to the essential nonlinear
characteristics of rock damage, deformation, and failure. Catastrophe theory is the typical
nonlinear theory for the prediction of rockburst [32].

As artificial intelligence and big data advance, machine learning algorithms have been
widely accepted to estimate rockburst [13,33–43]. The ML models only consider the input
parameters and rockburst intensity levels and do not give an insight into the rockburst
mechanism. Additionally, ML models have better applicability and accuracy when more
factors related to the rockburst are considered. However, the performances of ML models
are heavily dependent on the quality of datasets.

Linear models [44,45], artificial neural network (ANN) [6,46–50], support vector ma-
chine (SVM) [34,51], decision tree (DT) [35,41,46], k-nearest neighbor (KNN) [46,52], ensem-
ble models [53], and Bayesian models [46] are representative ML models for the evaluation
of rockburst. It is noted that ensemble models have better robustness and generalization
compared to other single models [54–56]. Accordingly, ensemble models have been widely
applied to evaluate rockburst recently. For example, Zhang et al. [53] combined seven single
models by voting to develop an ensemble model for rockburst prediction. The ensemble
model had better testing performance than other individual classifier models. Xin et al. [57]
applied the stacking strategy to combine KNN and recurrent neural networks (RNN) to
assess rockburst. The accuracy of the stacking ensemble model had significant improve-
ment compared to KNN and RNN. Wang et al. [58] used bagging and boosting ensemble
trees to foretell rockburst, and they found that the bagging ensemble tree was the best.
Shukla et al. [59] used XGBoost to establish intelligent models for rockburst prediction, and
XGBoost had a powerful capability. Li et al. [60] applied the bagging, voting, and stacking
methods to develop ensemble models and compared their performances. Their findings
showed that the ensemble models had superior performances even though the input pa-
rameters varied. Li et al. [61] implemented a deep forest (DF) model based on random
forest (RF) and complete RF to forecast rockburst. Rockburst cases from the Sanshandao
Gold mine in China validated the feasibility of the developed DF model. Ahmad et al. [62]
applied the adaptive boosting tree to predict rockburst based on 165 rockburst cases, and
they found that the developed ensemble model has satisfactory performance.

As mentioned above, ensemble models have been proven to have superior capabilities
in rockburst prediction. Nevertheless, building a powerful ensemble model is still limited
by the quality of datasets. Ensemble models cannot obtain satisfying results in incomplete
datasets. When ensemble models are implemented to evaluate rockburst in practical rock
engineering, there are often missing values in measured datasets due to the difficulty of
measuring some parameters and costs. In particular, rockburst is prone to occur in the deep
strata. However, the environment in deep strata is more complex than that in shallow strata,
and it is challenging to obtain a complete dataset in deep strata. For instance, it is difficult
to obtain intact rock blocks due to core disking in deep rock masses with high in-situ
stress [63,64]. Some parameters, such as uniaxial compressive strength (UCS), cannot be
measured in broken rock blocks, as shown in Figure 1. UCS represents the property of intact
rock and is an essential parameter to evaluate rockburst. Accordingly, it is meaningful
to develop an ensemble model suitable for incomplete datasets to predict rockburst. To
fill this gap, this study applies the histogram gradient boosting tree (HGBT) to evaluate
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rockburst. HGBT is an ensemble model based on DT, and it supports datasets with missing
values [65].
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In the following sections of this study, the theory and structure of HGBT are described.
For modeling, real rockburst cases are compiled to establish a database, and statistical
analysis is performed on the database. The HGBT model is developed according to the
compiled database. The performance and superiority of the HGBT are analyzed. Finally,
the developed HGBT model is validated by rockburst cases from an engineering field.

2. Methodology
2.1. Histogram Gradient Boosting Tree

Boosting is a strategy to combine multiple weak models to generate a strong model.
HGBT belongs to the boosting model, and it is the development of gradient boosting trees
(GBT). GBT uses the negative gradient value of the loss function of the current model as
an approximation of the residual to fit the classification and regression trees (CART) [55].
The CART generated by each iteration is linearly combined through the addition model
to obtain the final classifier. The GBT model has high prediction accuracy and strong
robustness, and it can flexibly process various types of data and avoid the over-fitting
problem to a certain extent. Figure 2 shows the schematic diagram used to build the
GBT model.
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HGBT employs the histogram-based algorithm to build the GBT model [65]. The
histogram-based algorithm first discretizes the continuous values into multiple integers



Minerals 2023, 13, 103 4 of 18

and constructs a histogram. When traversing the data, statistics are accumulated in the
histogram based on the discretized values as indexes. After traversing the data once,
the histogram accumulates the required statistics and then traverses to find the optimal
segmentation point according to the discrete value of the histogram. Figure 3 shows the
schematic diagram of the histogram-based algorithm. The HGBT has a faster computation
speed compared to the traditional GBT model. The HGBT model is suitable for incomplete
datasets. The HGBT model learns from the data that the sample has missing values during
training and thus divides the sample with missing values in accordance with the potential
gain at the split point. For inference, the sample with missing values is divided based on
the learned rules.
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2.2. Hunger Games Search

Hunger game search (HGS) algorithm is introduced to optimize the hyperparameters
of the HGBT. HGS [66] was proposed based on starvation-driven activity and the behavior
of animals. Animals rely on their sensory knowledge to survive under specific rules and
interact with the environment. Animal survival, reproduction, and food opportunities are
provided by their numerical logic rules. Hunger is the most important factor in animal
life because it directly affects the body balance, behavior, decision, and action. Therefore,
animals constantly seek food to maintain this balance and alternate between exploration,
defense, and competition activities according to needs. The mathematical model of HGS is
as follows

(1) Approach food

Social animals often cooperate with each other in foraging, but a few individuals
might not participate in cooperation. Equation (1) depicts the individual cooperative
communication and foraging behavior.

→
A(s + 1) =


Game1 :

→
A(s) · (1 + randn(1)), a1 < l

Game2 :
→

M1 ·
→
Ab +

→
R ·

→
M2 ·

∣∣∣∣→Ab −
→

A(s)
∣∣∣∣, a1 > l, a2 > E
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→
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→
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→
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→
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E = sech(|F(i)− BF|) (2)

sech(x) =
2

ex + e−x (3)

where
→
R ∈ rand[−c, c], rand(1) depicts a random value obeying Gaussian distribution,

→
M1

and
→

M2 stand for weight of hunger,
→
Ab is the location of the optimal individual,

→
A(s) is the
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location of every individual, F(i) depicts the fitness of the individual, and BF is the current
optimal fitness.

(2) Hunger role

At this stage, the hunger characteristics of the individual in the search are mathemati-

cally simulated by Equation (1). Equations (4) and (5) show the formulas to calculate
→

M1

and
→

M2.
→

M1(l) =

{
hungry(i) N

SHungry × a4, a3 < l
1, a3 > l

(4)

→
M2(l) = (1− exp(− | hungry(i)− SHungry |))× a5 × 2 (5)

where hungry represents the hunger value of each individual, N represents the number of
individuals, SHungry represents the sum of all individual hunger, and a3, a4, a5 ∈ [0, 1].

3. Database
3.1. Data Collection and Description

This study applied the database collected by Li et al. [50], and there were 314 rockburst
cases in the database. According to Russenes criteria [67], the intensity levels of rockburst
can be classified into none (50 datasets), light (96 datasets), moderate (115 datasets), and
strong (53 datasets). Maximum tangential stress (MTS), UCS, tensile strength (TS), stress
concentration factor (SCF, i.e., MTS/UCS), brittleness index (BI, i.e., UCS/TS), and elastic
strain energy (ESE) were chosen as input variables to develop intelligent models. MTS
depicts the strata stress characteristic of rockburst. UCS and TS are the main characteristics
of intact rock that impact rockburst. ESE is a measure of the rock’s ability to store elastic
energy. SCF and BI are experiential criteria used to evaluate rockburst [6]. These six
variables can describe rockburst from different perspectives [6]. Figure 4 shows the scatter
distribution of datasets with four intensity levels of rockburst. The range of each variable
is shown, and the relationship between any two variables is presented. The distribution
of strong rockburst is obviously different from others. Moreover, there are some outliers
in the database. These outliers are not processed because the source of the outliers is
unknown. Figure 5 shows the histogram distribution of the database. The correlation
among the six parameters is calculated, as shown in Figure 6. It can be found that MTS has
a strong positive correlation with SCF, and BI has a strong negative correlation with TS.
The correlation between other variables is weak.

3.2. Step-by-Step Study Flowchart

In this study, HGBT and HGS are implemented to build ensemble models suitable
for incomplete datasets for rockburst prediction. According to Figure 7, the database is
randomly divided into training (80%) and testing (20%) parts. The training datasets are
applied to develop the HGBT model. The HGS algorithm is employed to optimize the
hyperparameters of the HGBT. The optimal HGBT model is obtained when the termination
condition is satisfied. The testing datasets are used to assess the capability of the HGBT
model. Finally, rockburst cases from the engineering field are employed to validate the
feasibility of the developed HGBT model.
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4. Modeling

MTS, UCS, TS, SCF, BI, and ESE in training datasets were normalized (Equation (6))
and input to the HGBT model. Python library, Scikit-learn [68], was applied to develop
the histogram gradient boosting tree (HGBT) model. HGS was applied to optimize the
parameters of the HGBT model for predicting rockburst intensity levels. The number of
swarms affected the performance of models and running time. Population sizes were set
to 40, 50, 60, 70, and 80 when optimization techniques were performed. The computation
time was 3252.18 s (the CPU was Intel(R) Core(TM) i7-10875H). Figure 8 shows the fitness
variation with the increase of iterations. Accuracy (ACC), Kappa, and Matthews correlation
coefficient (MCC) were applied to evaluate the performances of developed models. The
three classification indicators can be calculated according to Figure 9. When accuracy,
Kappa, and MCC were closer to 1, the developed models had more excellent performance.

V′ =
V −V

σ
(6)

where V represents the mean value and σ stands for the standard deviation.
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Figure 8. The fitness variation during the optimization process.

Table 1 lists the ACC, Kappa, and MCC of the developed models in the training and
testing sets. Rank systems are introduced to compare the optimized HGBT models with
different swarm sizes. Training and test performances are ranked separately. HGS-HGBT
models with different swarm sizes are ranked according to their performances in each
classification indicator, and better performance is associated with a high rank. The ranks of
three classification indicators are summed to get the total rank. Table 1 presents the rank
systems of these hybrid models. The HGS-HGBT models with different swarm sizes have
the same training performances. The HGS-HGBT model with swarm sizes of 80 is the best
in terms of testing capacity. To consider the training and testing performances, the total
ranks in training and testing sets are summed to obtain the final rank. The final rank is
applied to select models, and a higher final rank is accompanied by a better comprehensive
performance. Figure 10 displays the final rank of the five hybrid models. The HGS-HGBT
model with swarm sizes of 80 is the optimal model according to the final rank. It receives
an accuracy of 0.89, Kappa of 0.84, and MCC of 0.85 in testing datasets.
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Table 1. The capacity of the HGS-HGBT in the training and testing sets.

Models ACC ACC Rank Kappa Kappa Rank MCC MCC Rank Total Rank

Training

Swarm = 40 1.00 5 1.00 5 1.00 5 15
Swarm = 50 1.00 5 1.00 5 1.00 5 15
Swarm = 60 1.00 5 1.00 5 1.00 5 15
Swarm = 70 1.00 5 1.00 5 1.00 5 15
Swarm = 80 1.00 5 1.00 5 1.00 5 15

Testing

Swarm = 40 0.84 3 0.78 3 0.78 3 9
Swarm = 50 0.87 4 0.82 4 0.82 4 12
Swarm = 60 0.87 4 0.82 4 0.82 4 12
Swarm = 70 0.87 4 0.82 4 0.82 4 12
Swarm = 80 0.89 5 0.84 5 0.85 5 15
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5. Discussion
5.1. Performance Evaluation of HGBT in Incomplete Datasets

The HGBT model was developed and chosen based on the collected database. To
analyze the superiority of HGBT, an additional database with missing values was collected.
The database with missing values was from Afraei et al. [9]. Table 2 presents the database.
These datasets with missing values were input into the HGBT model, and the accuracy was
computed. Additionally, these missing values were filled by 0 and the mean, median, and
most frequent values of training datasets. RF, gradient boosting machine (GBM), adaptive
gradient boosting (AdaBoost), XGBoost, SVM, ANN, and KNN were also developed by
training datasets. The incomplete database was completed by four different methods
and then was applied to evaluate these models. Figure 11 exhibits the accuracy of HGBT
and other models in completed databases by four different methods. HGBT received an
accuracy of 77.78% in the incomplete database. In the other seven models, AdaBoost and
KNN had the best performance in the databases filled with 0 and the most frequent value,
and ANN had the optimal capability in databases filled with the mean value and median
value. HGBT had higher accuracy than AdaBoost, KNN, and ANN. The results suggested
that HGBT had a huge advantage in rockburst prediction with incomplete datasets. The
developed HGBT was more suitable for field application, considering the cost and difficulty
of measuring datasets.

Table 2. The collected database with missing values.

No. Project MTS/MPa UCS/MPa TS/MPa BR SCF ESE Rockburst Level

1 FSU Kirov mine Nan Nan Nan 20.40 0.30 5.00 M

2 Long exploratory tunnel Nan Nan Nan 27.30 0.87 3.10 S
3 Nan Nan Nan 27.30 0.68 3.10 M

4

Jiangban hydropower station

104.99 164.05 Nan Nan 0.64 8.41 S
5 84.86 146.31 Nan Nan 0.58 5.13 M
6 39.56 131.86 Nan Nan 0.30 4.22 N
7 81.32 147.85 Nan Nan 0.55 5.60 M
8 55.40 138.50 Nan Nan 0.40 5.38 L
9 59.57 116.80 Nan Nan 0.51 3.04 L

10 105.88 168.07 Nan Nan 0.63 7.90 S
11 91.01 154.26 Nan Nan 0.59 4.85 M
12 55.51 129.10 Nan Nan 0.43 3.41 L
13 41.22 124.90 Nan Nan 0.33 3.96 N
14 60.58 140.88 Nan Nan 0.43 4.87 L
15 86.47 151.70 Nan Nan 0.57 7.26 M
16 47.53 125.07 Nan Nan 0.38 4.08 N
17 109.36 160.83 Nan Nan 0.68 7.09 M
18 40.45 130.47 Nan Nan 0.31 3.96 N
19 84.64 159.70 Nan Nan 0.53 5.15 M
20 118.10 166.34 Nan Nan 0.71 8.32 S
21 58.84 143.50 Nan Nan 0.41 4.67 L
22 37.39 128.93 Nan Nan 0.29 4.02 N
23 88.98 145.87 Nan Nan 0.61 7.16 M
24 39.06 130.21 Nan Nan 0.30 4.21 N
25 60.29 140.21 Nan Nan 0.43 3.14 L
26 80.96 137.22 Nan Nan 0.59 3.46 M
27 110.19 159.70 Nan Nan 0.69 4.15 M

Note: Nan represents a missing value.

5.2. Model Interpretation

The rockburst mechanism was very complex, and the rockburst events were related to
multiple factors. This study considered six factors to evaluate rockburst intensity levels.
The analysis of essential factors and their influence on rockburst grades was conducive to
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predicting and preventing rockburst. To determine the influence of the input parameters,
Shapley additive explanation (SHAP) was introduced to explain the established HGBT
model. SHAP was mainly used to account for the predicted process of an individual, and
it was developed according to the optimal Shapley in game theory [69]. In SHAP, the
predicted process of a sample was derived by calculating the contribution of each feature
to the predicted result. Shapley value was calculated, and it depicted the average division
of prediction between features. A detailed introduction to SHAP can be found in Lundberg
and Lee [69].
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The importance of variables can be obtained by SHAP, and the variable with the
larger absolute value of Shapley is more important. Figure 12 presents an overview
diagram of SHAP to explain the HGBT in rockburst evaluation with different intensity
levels. The overview diagram of SHAP combines the importance of parameters and their
impact on rockburst intensity levels. In the figure, the vertical axis exhibits the six input
variables, and the horizontal axis stands for the Shapley value. Each point depicts a
sample and the Shapley value of the sample. The color variations of points from blue to
red represent the value variations of variables from low to high. The overlapping points
vibrate on the ordinate, and the variables are sorted from top to bottom according to their
importance. According to this law, SCF and BI are essential for the prediction of none and
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light rockbursts, respectively. ESE is crucial for the prediction of four types of rockburst,
especially for moderate and strong rockburst. The results are consistent with previous
studies [47,50,52,53,60,61], which suggests that the developed HGBT model was reasonable.
Moreover, it is noted that the occurrence of strong rockburst is associated with large ESE.
Some measures to reduce ESE can be applied to alleviate rockburst, such as borehole
pressure relief, smooth blasting, and energy-absorbing anchors.
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5.3. Model Feasibility Verification

To validate the model feasibility, the developed HGBT model was implemented to
evaluate the rockburst in Sanshandao Gold Mine, Shandong, China. Sanshandao Gold
Mine is a typical submarine-mining metal mine. As one of the largest gold mines in China,
Sanshandao Gold Mine has reached a mining depth of more than kilometers. The depth of
proven exploitable resources in Sanshandao Gold Mine is below 1500 m, and the exploitable
depth is 1225 m. Deep mining is faced with a harsh environment of high temperature,
high ground pressure, and high seepage, which is obviously different from shallow mining.
Due to the influence of high ground pressure, rockburst becomes a major factor limiting
deep mining in Sanshandao Gold Mine. The rockburst propensity of rock masses at depths
below 700 m is high, and rockburst events with different intensity levels have been reported
in Sanshandao Gold Mine. The typical rockburst disasters of Sanshandao Gold Mine are
shown in Figure 13. To prevent rockburst and ensure production safety, site investigations
and rock tests were conducted. Nine datasets, including MTS, UCS, TS, SCF, BI, and ESE,
were measured, and the rockburst intensity levels were determined according to failure
conditions in the field and Russenes criteria. Table 3 compiles these measured rockburst
datasets. HGBT received an accuracy of 100% in these datasets. The results indicated that
the developed HGBT had satisfactory engineering practicability.

Table 3. The measured datasets in Sanshandao Gold Mine.

No. Depth/m MTS/MPa UCS/MPa TS/MPa SCF BI ESE Level Predicted Level

1 300 49.53 110.59 16.72 0.45 6.61 4.81 L L
2 300 50.35 154.93 12.829 0.32 12.08 7.16 M M
3 600 27.3 200.72 14.53 0.14 13.81 13.9 M M
4 600 68.854 48.96 13.66 1.41 3.58 1.35 M M
5 900 80.06 67.65 8.28 1.18 8.17 3.98 M M
6 900 83.633 112.3 10.13 0.74 11.09 3.21 M M
7 1500 103.82 206.28 12.1 0.5 17.05 6.33 M M
8 1550 112.38 178.81 12.07 0.63 14.81 7.68 S S
9 1900 120.366 75.21 9.53 1.6 7.89 4.15 M M
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6. Conclusions

The HGBT model, an ensemble model based on decision trees, was implemented to
build intelligent models for rockburst prediction. An incomplete database was applied to
validate the application of HGBT in datasets with missing values. HGBT had a higher accu-
racy compared to the combination of other models and strategies of completing missing
values. The results suggested that the developed HGBT model had a significant advantage
in incomplete datasets, which was more suitable for application in engineering sites. More-
over, SHAP was introduced to interpret the developed HGBT model. The key parameters
affecting different rockburst grades were determined. ESE was the crucial variable for
the prediction of moderate and strong rockburst. The happening of strong rockburst was
associated with large ESE. Finally, real rockburst cases were collected in Sanshandao Gold
Mine, China. These datasets were applied to verify the feasibility of the developed HGBT
model. The evaluated results of the HGBT model matched the real rockburst events on site,
which demonstrated the great feasibility of the HGBT model.

Six factors reflecting the characteristics of strata stress and rock properties were con-
sidered to evaluate rockburst in this study. However, some other factors, such as rock mass
structure, blasting disturbance, and excavation method, also had an influence on rockburst.
In the future, considering more related variables is beneficial to predict rockburst efficiently
and precisely. Additionally, collecting more rockburst cases to increase the database size
can improve the robustness of intelligent models.

Author Contributions: Conceptualization, H.L. and G.Z.; methodology, H.L.; software, H.L.; valida-
tion, P.X.; investigation, P.X.; writing—original draft preparation, H.L.; writing—review and editing,
P.X., G.Z. and Y.Y.; visualization, H.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.



Minerals 2023, 13, 103 16 of 18

References
1. Keneti, A.; Sainsbury, B.-A. Review of published rockburst events and their contributing factors. Eng. Geol. 2018, 246,

361–373. [CrossRef]
2. Skrzypkowski, K. A new design of support for burst-prone rock mass in underground ore mining. E3S Web Conf. 2018,

71, 00006. [CrossRef]
3. Shirani Faradonbeh, R.; Taheri, A.; Karakus, M. The propensity of the over-stressed rock masses to different failure mechanisms

based on a hybrid probabilistic approach. Tunn. Undergr. Space Technol. 2022, 119, 104214. [CrossRef]
4. Wang, J.-A.; Park, H. Comprehensive prediction of rockburst based on analysis of strain energy in rocks. Tunn. Undergr. Space

Technol. 2001, 16, 49–57. [CrossRef]
5. Chen, B.-R.; Feng, X.-T.; Li, Q.-P.; Luo, R.-Z.; Li, S. Rock Burst Intensity Classification Based on the Radiated Energy with Damage

Intensity at Jinping II Hydropower Station, China. Rock Mech. Rock Eng. 2015, 48, 289–303. [CrossRef]
6. Zhou, J.; Li, X.; Shi, X. Long-term prediction model of rockburst in underground openings using heuristic algorithms and support

vector machines. Saf. Sci. 2012, 50, 629–644. [CrossRef]
7. Lee, S.M.; Park, B.S.; Lee, S.W. Analysis of rockbursts that have occurred in a waterway tunnel in Korea. Int. J. Rock Mech. Min.

Sci. 2004, 41, 911–916. [CrossRef]
8. Manouchehrian, A.; Cai, M. Numerical modeling of rockburst near fault zones in deep tunnels. Tunn. Undergr. Space Technol.

2018, 80, 164–180. [CrossRef]
9. Afraei, S.; Shahriar, K.; Madani, S.H. Developing intelligent classification models for rock burst prediction after recognizing

significant predictor variables, Section 1: Literature review and data preprocessing procedure. Tunn. Undergr. Space Technol. 2019,
83, 324–353. [CrossRef]

10. Afraei, S.; Shahriar, K.; Madani, S.H. Developing intelligent classification models for rock burst prediction after recognizing
significant predictor variables, Section 2: Designing classifiers. Tunn. Undergr. Space Technol. 2019, 84, 522–537. [CrossRef]

11. Shirani Faradonbeh, R.; Taheri, A.; Ribeiro e Sousa, L.; Karakus, M. Rockburst assessment in deep geotechnical conditions using
true-triaxial tests and data-driven approaches. Int. J. Rock Mech. Min. Sci. 2020, 128, 104279. [CrossRef]

12. Dowding, C.H.; Andersson, C.-A. Potential for rock bursting and slabbing in deep caverns. Eng. Geol. 1986, 22, 265–279. [CrossRef]
13. Pu, Y.; Apel, D.B.; Liu, V.; Mitri, H. Machine learning methods for rockburst prediction-state-of-the-art review. Int. J. Min. Sci.

Technol. 2019, 29, 565–570. [CrossRef]
14. Shirani Faradonbeh, R.; Taheri, A. Long-term prediction of rockburst hazard in deep underground openings using three robust

data mining techniques. Eng. Comput. 2018, 35, 659–675. [CrossRef]
15. Liang, W.; Zhao, G. A review of long-term and short-term rockburst risk evaluations in deep hard rock. Yanshilixue Yu Gongcheng

Xuebao/Chin. J. Rock Mech. Eng. 2022, 41, 19–39. [CrossRef]
16. Liang, W.; Sari, Y.A.; Zhao, G.; McKinnon, S.D.; Wu, H. Probability Estimates of Short-Term Rockburst Risk with Ensemble

Classifiers. Rock Mech. Rock Eng. 2021, 54, 1799–1814. [CrossRef]
17. Ullah, B.; Kamran, M.; Rui, Y. Predictive Modeling of Short-Term Rockburst for the Stability of Subsurface Structures Using

Machine Learning Approaches: T-SNE, K-Means Clustering and XGBoost. Mathematics 2022, 10, 449. [CrossRef]
18. He, M.; Cheng, T.; Qiao, Y.; Li, H. A review of rockburst: Experiments, theories, and simulations. J. Rock Mech. Geotech. Eng.

2022. [CrossRef]
19. Kabwe, E.; Wang, Y. Review on Rockburst Theory and Types of Rock Support in Rockburst Prone Mines. Open J. Saf. Sci. Technol.

2015, 5, 18. [CrossRef]
20. Askaripour, M.; Saeidi, A.; Rouleau, A.; Mercier-Langevin, P. Rockburst in underground excavations: A review of mechanism,

classification, and prediction methods. Undergr. Space 2022, 7, 577–607. [CrossRef]
21. Zhou, J.; Li, X.; Mitri, H.S. Evaluation method of rockburst: State-of-the-art literature review. Tunn. Undergr. Space Technol. 2018,

81, 632–659. [CrossRef]
22. Xiao, P.; Li, D.; Zhao, G.; Liu, M. Experimental and Numerical Analysis of Mode I Fracture Process of Rock by Semi-Circular

Bend Specimen. Mathematics 2021, 9, 1769. [CrossRef]
23. Zhou, X.; Zhang, G.; Song, Y.; Hu, S.; Liu, M.; Li, J. Evaluation of rock burst intensity based on annular grey target decision-making

model with variable weight. Arab. J. Geosci. 2019, 12, 43. [CrossRef]
24. Xue, Y.; Li, Z.; Li, S.; Qiu, D.; Tao, Y.; Wang, L.; Yang, W.; Zhang, K. Prediction of rock burst in underground caverns based on

rough set and extensible comprehensive evaluation. Bull. Eng. Geol. Environ. 2019, 78, 417–429. [CrossRef]
25. Liang, W.; Zhao, G.; Wu, H.; Dai, B. Risk assessment of rockburst via an extended MABAC method under fuzzy environment.

Tunn. Undergr. Space Technol. 2019, 83, 533–544. [CrossRef]
26. Xue, Y.; Bai, C.; Kong, F.; Qiu, D.; Li, L.; Su, M.; Zhao, Y. A two-step comprehensive evaluation model for rockburst prediction

based on multiple empirical criteria. Eng. Geol. 2020, 268, 105515. [CrossRef]
27. Xue, Y.; Bai, C.; Qiu, D.; Kong, F.; Li, Z. Predicting rockburst with database using particle swarm optimization and extreme

learning machine. Tunn. Undergr. Space Technol. 2020, 98, 103287. [CrossRef]
28. Zhou, J.; Koopialipoor, M.; Li, E.; Armaghani, D.J. Prediction of rockburst risk in underground projects developing a neuro-bee

intelligent system. Bull. Eng. Geol. Environ. 2020, 79, 4265–4279. [CrossRef]
29. Ribeiro e Sousa, L.; Miranda, T.; Leal e Sousa, R.; Tinoco, J. The Use of Data Mining Techniques in Rockburst Risk Assessment.

Engineering 2017, 3, 552–558. [CrossRef]

http://doi.org/10.1016/j.enggeo.2018.10.005
http://doi.org/10.1051/e3sconf/20187100006
http://doi.org/10.1016/j.tust.2021.104214
http://doi.org/10.1016/S0886-7798(01)00030-X
http://doi.org/10.1007/s00603-013-0524-2
http://doi.org/10.1016/j.ssci.2011.08.065
http://doi.org/10.1016/j.ijrmms.2004.03.157
http://doi.org/10.1016/j.tust.2018.06.015
http://doi.org/10.1016/j.tust.2018.09.022
http://doi.org/10.1016/j.tust.2018.11.011
http://doi.org/10.1016/j.ijrmms.2020.104279
http://doi.org/10.1016/0013-7952(86)90028-1
http://doi.org/10.1016/j.ijmst.2019.06.009
http://doi.org/10.1007/s00366-018-0624-4
http://doi.org/10.13722/j.cnki.jrme.2021.0165
http://doi.org/10.1007/s00603-021-02369-3
http://doi.org/10.3390/math10030449
http://doi.org/10.1016/j.jrmge.2022.07.014
http://doi.org/10.4236/ojsst.2015.54013
http://doi.org/10.1016/j.undsp.2021.11.008
http://doi.org/10.1016/j.tust.2018.08.029
http://doi.org/10.3390/math9151769
http://doi.org/10.1007/s12517-018-4193-z
http://doi.org/10.1007/s10064-017-1117-1
http://doi.org/10.1016/j.tust.2018.09.037
http://doi.org/10.1016/j.enggeo.2020.105515
http://doi.org/10.1016/j.tust.2020.103287
http://doi.org/10.1007/s10064-020-01788-w
http://doi.org/10.1016/J.ENG.2017.04.002


Minerals 2023, 13, 103 17 of 18

30. Wang, J.; Apel, D.B.; Pu, Y.; Hall, R.; Wei, C.; Sepehri, M. Numerical modeling for rockbursts: A state-of-the-art review. J. Rock
Mech. Geotech. Eng. 2021, 13, 457–478. [CrossRef]

31. Zubelewicz, A.; Mróz, Z. Numerical simulation of rock burst processes treated as problems of dynamic instability. Rock Mech.
Rock Eng. 1983, 16, 253–274. [CrossRef]

32. Wang, S.Y.; Lam, K.C.; Au, S.K.; Tang, C.A.; Zhu, W.C.; Yang, T.H. Analytical and Numerical Study on the Pillar Rockbursts
Mechanism. Rock Mech. Rock Eng. 2006, 39, 445–467. [CrossRef]

33. Pu, Y.; Apel, D.B.; Wei, C. Applying Machine Learning Approaches to Evaluating Rockburst Liability: A Comparation of
Generative and Discriminative Models. Pure Appl. Geophys. 2019, 176, 4503–4517. [CrossRef]

34. Pu, Y.; Apel, D.B.; Wang, C.; Wilson, B. Evaluation of burst liability in kimberlite using support vector machine. Acta Geophys.
2018, 66, 973–982. [CrossRef]

35. Pu, Y.; Apel, D.B.; Lingga, B. Rockburst prediction in kimberlite using decision tree with incomplete data. J. Sustain. Min. 2018,
17, 158–165. [CrossRef]

36. Liu, Z.; Armaghani, D.-J.; Fakharian, P.; Li, D.; Ulrikh, D.-V.; Orekhova, N.-N.; Khedher, K.-M. Rock Strength Estimation Using
Several Tree-Based ML Techniques. Comput. Model. Eng. Sci. 2022, 133, 799–824. [CrossRef]

37. Li, G.; Xue, Y.; Qu, C.; Qiu, D.; Wang, P.; Liu, Q. Intelligent prediction of rockburst in tunnels based on back propagation neural
network integrated beetle antennae search algorithm. Environ. Sci. Pollut. Res. 2022. [CrossRef]

38. Kadkhodaei, M.H.; Ghasemi, E. Development of a Semi-quantitative Framework to Assess Rockburst Risk Using Risk Matrix and
Logistic Model Tree. Geotech. Geol. Eng. 2022, 40, 3669–3685. [CrossRef]

39. Kadkhodaei, M.H.; Ghasemi, E.; Sari, M. Stochastic assessment of rockburst potential in underground spaces using Monte Carlo
simulation. Environ. Earth Sci. 2022, 81, 447. [CrossRef]

40. Wang, H.; Li, Z.; Song, D.; He, X.; Sobolev, A.; Khan, M. An Intelligent Rockburst Prediction Model Based on Scorecard
Methodology. Minerals 2021, 11, 1294. [CrossRef]

41. Ghasemi, E.; Gholizadeh, H.; Adoko, A.C. Evaluation of rockburst occurrence and intensity in underground structures using
decision tree approach. Eng. Comput. 2019, 36, 213–225. [CrossRef]

42. Shaidurov, G.Y.; Kudinov, D.S.; Kokhonkova, E.A. On the possibility of creating a comprehensive system for rockburst prediction
in mines and mining plants. J. Phys. Conf. Ser. 2019, 1399, 033100. [CrossRef]

43. Shirani Faradonbeh, R.; Shaffiee Haghshenas, S.; Taheri, A.; Mikaeil, R. Application of self-organizing map and fuzzy c-mean
techniques for rockburst clustering in deep underground projects. Neural Comput. Appl. 2020, 32, 8545–8559. [CrossRef]

44. Zhou, J.; Shi, X.-z.; Dong, L.; Hu, H.-y.; Wang, H.-y. Fisher discriminant analysis model and its application for prediction of
classification of rockburst in deep-buried long tunnel. J. Coal Sci. Eng. 2010, 16, 144–149. [CrossRef]

45. Li, N.; Jimenez, R. A logistic regression classifier for long-term probabilistic prediction of rock burst hazard. Nat. Hazards 2018, 90,
197–215. [CrossRef]

46. Zhou, J.; Li, X.; Mitri, H.S. Classification of Rockburst in Underground Projects: Comparison of Ten Supervised Learning Methods.
J. Comput. Civ. Eng. 2016, 30, 04016003. [CrossRef]

47. Zhou, J.; Guo, H.; Koopialipoor, M.; Jahed Armaghani, D.; Tahir, M.M. Investigating the effective parameters on the risk levels of
rockburst phenomena by developing a hybrid heuristic algorithm. Eng. Comput. 2020, 37, 1679–1694. [CrossRef]

48. Zhang, M. Prediction of rockburst hazard based on particle swarm algorithm and neural network. Neural Comput. Appl. 2021, 34,
2649–2659. [CrossRef]

49. Zhang, G.; Gao, Q.; Du, J.; Li, K. Rockburst criterion based on artificial neural networks and nonlinear regression. J. Cent. South
Univ. 2013, 44, 2977–2981.

50. Li, D.; Liu, Z.; Xiao, P.; Zhou, J.; Jahed Armaghani, D. Intelligent rockburst prediction model with sample category balance using
feedforward neural network and Bayesian optimization. Undergr. Space 2022, 7, 833–846. [CrossRef]

51. Pu, Y.; Apel, D.B.; Xu, H. Rockburst prediction in kimberlite with unsupervised learning method and support vector classifier.
Tunn. Undergr. Space Technol. 2019, 90, 12–18. [CrossRef]

52. Xue, Y.; Li, G.; Li, Z.; Wang, P.; Gong, H.; Kong, F. Intelligent prediction of rockburst based on Copula-MC oversampling
architecture. Bull. Eng. Geol. Environ. 2022, 81, 209. [CrossRef]

53. Zhang, J.; Wang, Y.; Sun, Y.; Li, G. Strength of ensemble learning in multiclass classification of rockburst intensity. Int. J. Numer.
Anal. Methods Geomech. 2020, 44, 1833–1853. [CrossRef]

54. Breiman, L. Random Forests. MLear 2001, 45, 5–32. [CrossRef]
55. Friedman, J.H. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 2001, 29, 1189–1232. [CrossRef]
56. Geurts, P.; Ernst, D.; Wehenkel, L. Extremely randomized trees. MLear 2006, 63, 3–42. [CrossRef]
57. Yin, X.; Liu, Q.; Pan, Y.; Huang, X.; Wu, J.; Wang, X. Strength of Stacking Technique of Ensemble Learning in Rockburst Prediction

with Imbalanced Data: Comparison of Eight Single and Ensemble Models. Nat. Resour. Res. 2021, 30, 1795–1815. [CrossRef]
58. Wang, S.-m.; Zhou, J.; Li, C.-q.; Armaghani, D.J.; Li, X.-b.; Mitri, H.S. Rockburst prediction in hard rock mines developing bagging

and boosting tree-based ensemble techniques. J. Cent. South Univ. 2021, 28, 527–542. [CrossRef]
59. Shukla, R.; Khandelwal, M.; Kankar, P.K. Prediction and Assessment of Rock Burst Using Various Meta-heuristic Approaches.

Min. Metall. Explor. 2021, 38, 1375–1381. [CrossRef]
60. Li, D.; Liu, Z.; Armaghani, D.J.; Xiao, P.; Zhou, J. Novel ensemble intelligence methodologies for rockburst assessment in complex

and variable environments. Sci. Rep. 2022, 12, 1844. [CrossRef]

http://doi.org/10.1016/j.jrmge.2020.09.011
http://doi.org/10.1007/BF01042360
http://doi.org/10.1007/s00603-005-0075-2
http://doi.org/10.1007/s00024-019-02197-1
http://doi.org/10.1007/s11600-018-0178-2
http://doi.org/10.1016/j.jsm.2018.07.004
http://doi.org/10.32604/cmes.2022.021165
http://doi.org/10.1007/s11356-022-24420-8
http://doi.org/10.1007/s10706-022-02122-9
http://doi.org/10.1007/s12665-022-10561-z
http://doi.org/10.3390/min11111294
http://doi.org/10.1007/s00366-018-00695-9
http://doi.org/10.1088/1742-6596/1399/3/033100
http://doi.org/10.1007/s00521-019-04353-z
http://doi.org/10.1007/s12404-010-0207-5
http://doi.org/10.1007/s11069-017-3044-7
http://doi.org/10.1061/(ASCE)CP.1943-5487.0000553
http://doi.org/10.1007/s00366-019-00908-9
http://doi.org/10.1007/s00521-021-06057-9
http://doi.org/10.1016/j.undsp.2021.12.009
http://doi.org/10.1016/j.tust.2019.04.019
http://doi.org/10.1007/s10064-022-02659-2
http://doi.org/10.1002/nag.3111
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1214/aos/1013203451
http://doi.org/10.1007/s10994-006-6226-1
http://doi.org/10.1007/s11053-020-09787-0
http://doi.org/10.1007/s11771-021-4619-8
http://doi.org/10.1007/s42461-021-00415-w
http://doi.org/10.1038/s41598-022-05594-0


Minerals 2023, 13, 103 18 of 18

61. Li, D.; Liu, Z.; Armaghani, D.J.; Xiao, P.; Zhou, J. Novel Ensemble Tree Solution for Rockburst Prediction Using Deep Forest.
Mathematics 2022, 10, 787. [CrossRef]

62. Ahmad, M.; Katman, H.Y.; Al-Mansob, R.A.; Ahmad, F.; Safdar, M.; Alguno, A.C. Prediction of Rockburst Intensity Grade in
Deep Underground Excavation Using Adaptive Boosting Classifier. Complexity 2022, 2022, 6156210. [CrossRef]

63. Xiao, P.; Li, D.; Zhao, G.; Liu, H. New criterion for the spalling failure of deep rock engineering based on energy release. Int. J.
Rock Mech. Min. Sci. 2021, 148, 104943. [CrossRef]

64. Lim, S.S.; Martin, C.D. Core disking and its relationship with stress magnitude for Lac du Bonnet granite. Int. J. Rock Mech. Min.
Sci. 2010, 47, 254–264. [CrossRef]

65. Aljamaan, H.; Alazba, A. Software defect prediction using tree-based ensembles. In Proceedings of the 16th ACM International
Conference on Predictive Models and Data Analytics in Software Engineering, Virtual Event, 8–9 November 2020; pp. 1–10.

66. Yang, Y.; Chen, H.; Heidari, A.A.; Gandomi, A.H. Hunger games search: Visions, conception, implementation, deep analysis,
perspectives, and towards performance shifts. Expert Syst. Appl. 2021, 177, 114864. [CrossRef]

67. Russenes, B. Analysis of rock spalling for tunnels in steep valley sides. Master’s Thesis, Norwegian Institute of Technology,
Department of Geology, Trondheim, Norway, 1974.

68. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.
Scikit-learn: Machine learning in Python. the J. Mach. Learn. Res. 2011, 12, 2825–2830.

69. Lundberg, S.M.; Lee, S.-I. A unified approach to interpreting model predictions. In Proceedings of the Advances in Neural
Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 4768–4777.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3390/math10050787
http://doi.org/10.1155/2022/6156210
http://doi.org/10.1016/j.ijrmms.2021.104943
http://doi.org/10.1016/j.ijrmms.2009.11.007
http://doi.org/10.1016/j.eswa.2021.114864

	Introduction 
	Methodology 
	Histogram Gradient Boosting Tree 
	Hunger Games Search 

	Database 
	Data Collection and Description 
	Step-by-Step Study Flowchart 

	Modeling 
	Discussion 
	Performance Evaluation of HGBT in Incomplete Datasets 
	Model Interpretation 
	Model Feasibility Verification 

	Conclusions 
	References

