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Abstract: The Middle–Lower Yangtze River Metallogenic Belt is an important copper and iron poly-
metallic metallogenic belt in China. Today’s economic development is inseparable from the support
of metal mineral resources. With the continuous exploitation of shallow and easily identifiable mines
in China, the prospecting work of deep and hidden mines is very important. Mineral prospectivity
modeling (MPM) is an important means to improve the efficiency of mineral exploration. With the
increase in resource demands and exploration difficulty, the traditional 2DMPM is often difficult to
use to reflect the information of deep mineral deposits. More large-scale deposits are needed to carry
out 3DMPM research. With the rise of artificial intelligence, the combination of machine learning
and geological big data has become a hot issue in the field of 3DMPM. In this paper, a case study of
3DMPM is carried out based on the Xuancheng–Magushan area’s actual data. Two machine learning
methods, the random forest and the logistic regression, are selected for comparison. The results show
that the 3DMPM based on random forest method performs better than the logistic regression method.
It can better characterize the corresponding relationship between the geological structure combination
and the metallogenic distribution, and the accuracy in the test set reaches 96.63%. This means that the
random forest model could provide more effective and accurate support for integrating predictive
data during 3DMPM. Finally, five prospecting targets with good metallogenic potential are delineated
in the deep area of the Xuancheng–Magushan area for future exploration.

Keywords: 3D mineral prospectivity modeling; random forest; logistic regression; Xuancheng–
Magushan area

1. Introduction

A huge prospecting potential is in concealed and deep mines, especially in the so-
called “Second depth space” (500 m–2000 m); there are very likely to be abundant mineral
resources there [1,2]. At present, some domestic and foreign examples of deep mineral
exploration have proved the views of experts and scholars [3,4]. Although a series of deep
mine exploration results show the prospecting potential of concealed and deep mines,
there are also many problems, such as difficulty in exploration and imperfect exploration
methods [5–7]. Therefore, more reasonable and effective technology is needed at this stage
to adapt to the prospecting work in the large-scale Quaternary strata coverage area and the
lower-cost method to find hidden and deep mines.

In recent years, with the development of computer technology and the support of
geophysical methods, 3D modeling technology can fully integrate multivariate and mul-
tidimensional data to accurately depict deep geological structures [8–11]. At present, the
wide application of artificial intelligence, especially machine learning technology, can
provide a new way to process massive geological big data. Compared with traditional
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methods, machine learning often has higher prediction accuracy, especially for geological
data with massive and high-dimensional characteristics, which can effectively explore
the complex nonlinear relationship between ore-control characteristics and ore-forming
mechanisms. At present, machine learning methods include the probabilistic neural net-
work, the support vector machine, the random forest, adaptive learning, the restricted
Boltzmann machine, etc.; most of them have been applied and developed in the field of
2DMPM. Oh et al. [12] analyzed the potential of hydrothermal gold–silver mineral de-
posits in the Taebaeksan mineralized district, Korea, and the Artificial neural network
(ANN) method and selected factors related to the occurrence of gold and silver minerals
as ore-control factors, including magnetic anomaly geophysical data, geological and fault
structure geological data, geochemical data, etc. Good results have been achieved [12].
Xiong et al. [13] identified multiple geochemical anomalies related to Fe polymetallic min-
eralization in the southwestern Fujian district (China) by using the limited Boltzmann
machine. The research shows that most of the known skarn-type iron deposits are located
in geochemical anomaly areas, which can provide reference for further exploration [13]. In
order to effectively delineate favorable exploration targets for Cu-Au mineralization in the
Moalleman District, NE Iran, Ghezelbash et al. [14] integrated several effective evidence
layers such as geochemistry, geology, structure, and hydrothermal alteration in the study
area; used SVM with radial basis function kernel to predict mineralization; and delineated
the metallogenic prospect area [14]. However, the above methods are only based on two-
dimensional geological data for prediction, which cannot fully characterize the multiple
geological characteristics and may be difficult to make fine prediction of deep mines and
hidden mines. The combination of 3D technology and artificial intelligence is beneficial to
more fully excavate and integrate 3D prediction information and achieve more accurate
positioning and quantitative predictions of deeply hidden ore bodies [15–18].

Compared with other mineralized areas in the Middle-Lower Yangtze River Metal-
logenic Belt, the Quaternary strata in the Xuancheng–Magushan area within the Middle-
Lower Yangtze River Metallogenic Belt have a large coverage area and shallow geological
exploration. The deep geological structure is not yet clear. It is difficult to describe the
deep geological structure in this area in detail, which seriously affects the research of deep
ore prospecting and prediction there [19]. Aiming at the Xuancheng–Magushan area, this
paper firstly builds a 3D geological model that can accurately describe the deep geological
structure with the support of geophysical methods and geological data. Based on this, two
machine learning methods, the logistic regression model and the random forest model,
were used to predict skarn deposits in the study area in three dimensions. Then, we divide
the training set and the test set according to the data, the former trains the model, and
the latter evaluates the performance of the model. The optimal results were selected to
delineate the prospecting. Finally, the target area is expected to provide a new prospecting
direction for further deep prospecting and exploration work in this area.

2. Methods
2.1. 3D Mineral Prospectivity Modeling

In recent years, the MPM has become an important means of prospecting and explo-
ration. It can guide on-site prospecting work, thereby reducing the risk of prospecting. With
the development of computer technology, a quantitative-based MPM method system has
been put forward at home and abroad, which promotes the development of MPMfrom qual-
itative to quantitative and can more accurately delineate the metallogenic target area [20–24].
However, the above-mentioned quantitative MPM methods are mainly oriented towards
the traditional two-dimensional prediction, which mostly uses two-dimensional geological
data. However, the deep metal mineral resources have experienced multiple periods of geo-
logical evolution, resulting in weak surface indication information and complex geological
structures. It is difficult to indicate prospecting work with traditional prediction methods
based on two-dimensional geological data [25]. As deep ores and hidden ores have become



Minerals 2022, 12, 1174 3 of 14

the focus of prospecting in recent years, the research on the quantitative prediction of
mineralization has moved from “two-dimensional” to “three-dimensional” [26].

The rise of artificial intelligence also provides a new way to process and mine massive
geological data contained in 3D models [27]. Machine learning simulates human learning
behavior through computers. It utilizes its nonlinear learning ability to characterize poten-
tial complex geological features by continuously training models and fitting parameters. In
recent years, many scholars have begun to try to carry out 3DMPM research, including us-
ing the evidence weight model, the logistic regression model, the random forest model, and
the artificial neural network model [28–31]. The above methods have shown good research
potential in the field of 3DMPM. They can effectively process massive multi-dimensional
geological data and have become an important development trend in this field.

In this paper, 3D geological modeling, 3D spatial analysis and 3DMPM based on
machine learning are integrated. First, a 3D geological model is established based on
geological data, and then a variety of 3D spatial analysis methods are used to analyze the
3D geological model and relevant metallogenic indicative characteristics, so as to obtain
quantitative ore control and indicative characteristic information. Then, the prediction
method based on machine learning is used to predict the mineralization of the deep edge of
the mining area, and its effect is evaluated. Finally, the prediction results are used to divide
the metallogenic prospective area, to realize the positioning and quantitative prediction of
the hidden ore bodies at the deep edge of the known deposits. The forecast flow chart is
shown in Figure 1.
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2.2. Logistic Regression Algorithm

Logistic regression is a representative algorithm in machine learning. This algorithm
has been applied in many fields such as medicine, biology, and geology [32–34]. It can
calculate the correlation between the independent input variable and the dependent vari-
able through the regression principle and calculate the specific probability value of the
dependent variable belonging to a certain category according to the existing state of the
independent variable. As a multivariate nonlinear regression model, it can better fit the
nonlinear relationship between various ore-controlling characteristics and metallogenic
facts [35,36]. In this paper, metallogenic facts are used as the dependent variable, and
various ore -controlling factors related to the metallogenic mechanism are used as the
independent variables. The logistic regression method calculates the probability of ore
bodies’ existence in the corresponding blocks.

P(Z) =
1

(1 + e−Z)
(1)

Z = α + βixj (2)

In the above formulas: P(Z) is the favorable degree of mineralization, xi is the i-th
ore control or indicator element, (i = 1, 2, . . . , n), α is a constant, βi is a regression factor,
that is, each control contribution of ore elements to the existence of ore bodies. It can be
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determined by fitting with the maximum likelihood estimation method. Each parameter is
optimally solved using the gradient descent method.

2.3. Random Forest Algorithm

In the ensemble learning model [37,38], first proposed by Leo Breiman, the essence
of the random forest is a classifier or regression model composed of multiple unrelated
decision trees: i.e., determine the category and, if it is a regression scenario, take the average
of the solution parameters as the final result. The algorithm has two important randomness
characteristics. The first point is to randomize the samples. By performing multiple random
extractions with replacements from the total data set, multiple subsets of the same number
of data samples are obtained as training sets to reduce the phenomenon of overfitting. The
second point is to randomize the features. For each decision tree, a different subset of
features is extracted from the feature set for learning. In this way, the robustness of the
feature selection can be enhanced, so that the user does not need to deliberately filter the
features. At the same time, the important indicators of all of the features of the model’s
results can be obtained.

Each decision tree in the random forest selects the feature that can maximize the infor-
mation gained in the feature subset as the current split node. Multiple regression decision
trees constitute the random forest regression algorithm. Based on the idea of ensemble
learning, the mean value of the decision tree is taken as the prediction result, namely

−
h(x) =

1
T ∑T

t=1 h(x, θt), (3)

where
−
h(x) is the model prediction result; is h(x, θt) the output x based on x sum, is the

independent θt variable, θt is the independent and identically distributed random vector,
and T is the number of regression decision trees.

3. Case Study Area and Data
3.1. Geological Background

The stratigraphic area of the study area belongs to the Changzhou–Xuancheng strati-
graphic community in the Jiangnan stratigraphic subdivision of the Yangtze stratigraphic
area (Figure 2). Neritic and littoral clastic rocks dominate the Silurian and Devonian
strata, the Permian early and middle Triassic strata are dominated by carbonate rocks, and
subsequent continental by clastic rock and pyroclastic rock series. The accumulated total
thickness reaches more than 3000 m [39,40].
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The structure of the study area is complex, and numerous faults have developed. The
faults are mainly concentrated in the vicinity of Magushan and the southeastern part of the
area. The magmatic rock activity in the area is strong, consisting of mid-acid intrusions in
the late Yanshan period.

The deposits of Magushan Cu-Mo, Xishishan Au-Pb, Beishan Cu-Mo and Fenghuang-
shan Cu-Mo have been discovered in the study area. Among them, the Magushan Cu-Mo
deposit (Figure 3) is a typical skarn deposit in the area, with a large scale and a relatively
high degree of research [44].
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Figure 3. Geological map of Magushan Cu-Mo deposit. (Modified from Bian. [19], Ye. [43],
and Hong et al. [44]).

3.2. Database

In previous studies [43], 2D geological profiles covering the whole area were first
established in the Magushan ore field, and these geological profiles were interpreted
using the gravity and magnetic joint inversion method. Combined with prior geological
constraints and based on the collected regional physical property data, the joint inversion of
gravity and magnetic fields finally obtains a 2D profile that can show the thickness, depth,
extension direction, hidden rock mass shape, and geological structure of each layer in the
region. After the gravity and magnetic joint inversion, a set of verification methods based on
the 3D visualization function of the profile is used to verify the rationality of the interpreted
profile, and the unreasonable parts in the profile are modified. The whole process of gravity
and magnetic inversion interpretation and profile verification and modification is shown in
Figure 4. Then, based on the two-dimensional geological profile, geological map, borehole,
and other geological information interpreted by gravity and magnetic joint inversion, a 3D
geological model of the Magushan ore field with a depth of 3km is established. The 3D
geological model can realize the 3D visualization of each geological body in the region and
can better display the geological information of the study area, such as the thickness and
depth of the strata, the shape of the hidden rock mass, and the geological structure in the
region. After completing the 3D geological model, the study further uses the geophysical
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forward modeling method to verify the rationality of the 3D geological model and modify
and improve the 3D geological model. The modeling results are shown in Figure 5. The
relevant modeling results will provide an important data basis for 3DMPM research.
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Figure 5. 3D model of the Xuancheng–Magushan Area. (Modified from Ye. [43] and Hu et al. [45]).

3.3. 3D Prospectivity Modeling Model and 3D Prediction Data Set Construction

The 3DMPM method is mainly based on expert experience, the metallogenic model,
and the exploration model summarized by the predecessors to obtain the MPM model.
Various spatial analysis methods are used to analyze the deep 3D geological model and
related metallogenic indicative features and obtain quantitative results. Based on this
information, prediction information is constructed. Finally, the metallogenic favorable
degree is calculated. The prospecting target area is delineated for the position with the high
metallogenic favorable degree. Thus, it provides a new quantitative prediction support for
ore prospecting on the deep edge of the mining area.

We took the skarn type deposit represented by Magushan Cu-Mo deposit in the study
area as the research object. Firstly, according to the geological and metallogenic character-
istics of the Magushan skarn Cu-Mo deposit [43], the metallogenic law and prospecting
signs of the skarn copper deposit in the study area were summarized. A 3DMPM model
was constructed. It includes prediction elements such as the Carboniferous stratigraphic
contact surface, the Permian stratigraphic contact surface, the Triassic stratigraphic contact
surface, the rock mass contact zone, and the diorite uplift position.

After that, combined with the 3DMPM model in the study area, the 3D geological
model was further analyzed in 3D space. The 3D prediction elements were extracted. The
3D geological body surface extraction method is mainly used for the Triassic stratigraphic
contact surface, and rock mass contact zone are extracted, respectively; the 3D geological
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structure surface analysis function extracts the uplift position of the diorite rock mass. The
analysis and extraction methods are shown in Table 1:

Table 1. 3DMPM model and analysis and extraction method of ore control and indicator elements.
(Modified from Ye [43]).

Classification Exploration Criteria Spatial Analysis Methods

Strata

Carboniferous stratigraphic contact
surface distance field

3D geological body surface
extraction function

3D Distance Field Analysis

Permian stratigraphic contact surface
distance field

3D geological body surface
extraction function

3D Distance Field Analysis

Triassic stratigraphic contact surface
distance field

3D geological body surface
extraction function

3D Distance Field Analysis

Intrusions Rock mass contact zone distance field
3D geological body surface

extraction function
3D Distance Field Analysis

Structures Distance field of diorite uplift location
3D Mathematical

Morphological Methods
3D Distance Field Analysis

Based on the constructed 3D block model of the Xuancheng–Magushan area, this
paper constructs the sample data period. The parameters of the 3D model are defined
as shown in Table 2. The predicted depth is in the shallow space range of −3000 m. A
single predicted cubic unit is defined as 100 m × 100 m × 25 m. The predicted space has
7.0735 million cubic units (Figure 6).

Table 2. Definition of spatial parameters for 3DMPM in Xuancheng–Magushan Area.

Parameter Value (m)

North-south extent (x axis) 23,500
East-west extent (y axis) 21,500
Vertical extent (z axis) 500~−3000

X axis block size 100
Y axis block size 100
Z axis block size 25

Minerals 2022, 12, 1174 8 of 14 
 

 

Table 2. Definition of spatial parameters for 3DMPM in Xuancheng–Magushan Area. 

Parameter Value (m) 

North-south extent (x axis) 23,500 

East-west extent (y axis) 21,500 

Vertical extent (z axis) 500~−3000 

X axis block size 100 

Y axis block size 100 

Z axis block size 25 

 

Figure 6. Block model of Xuancheng–Magushan Area. 

Based on the geological and metallogenic characteristics of the Magushan skarn Cu-

Mo deposit, this study summarizes the metallogenic regularity and prospecting markers 

of the skarn copper deposit in the study area. Prediction factors include the stratigraphic 

contact surface, the Triassic stratigraphic contact surface, the rock mass contact zone, and 

the diorite uplift position. A sample dataset for MPM was constructed by combining the 

metallogenic facts. In order to verify the generalization ability of the prediction model in 

the study area, a north–south division was made according to the known ore body loca-

tions. The south is used as a training area for the model to learn nonlinear ore-controlling 

characteristics, and the north is used as a test area to test the model’s performance. There 

are 730 known ore body unit blocks in the study area, all of which are used as positive 

sample units, of which 614 were placed in the training set, and 116 were placed in the test 

set. To ensure a balance of positive and negative samples, 1500 non-ore body units around 

the known ore body were selected as negative samples. Of these, 1200 were put into the 

training set, and 300 were put into the test set.  

4. Prospectivity Modeling Process and Results 

4.1. Predictive Model Building 

In order to fully explore the nonlinear relationship between the 3D ore-controlling 

factors and the ore-forming facts, based on the sample data set established above, this 

paper selects two machine learning methods, logical regression and random forest, to 

carry out 3D ore-forming predictions in the deep part of the mining area. 

In addition to the support of a large number of effective datasets, the machine learn-

ing model also needs to set the model’s parameters for the current dataset, which is an 

important factor in determining the model’s performance. The random forest algorithm 

includes the two most important parameters: the number of decision trees M and the num-

Figure 6. Block model of Xuancheng–Magushan Area.



Minerals 2022, 12, 1174 8 of 14

Based on the geological and metallogenic characteristics of the Magushan skarn Cu-Mo
deposit, this study summarizes the metallogenic regularity and prospecting markers of the
skarn copper deposit in the study area. Prediction factors include the stratigraphic contact
surface, the Triassic stratigraphic contact surface, the rock mass contact zone, and the diorite
uplift position. A sample dataset for MPM was constructed by combining the metallogenic
facts. In order to verify the generalization ability of the prediction model in the study area,
a north–south division was made according to the known ore body locations. The south
is used as a training area for the model to learn nonlinear ore-controlling characteristics,
and the north is used as a test area to test the model’s performance. There are 730 known
ore body unit blocks in the study area, all of which are used as positive sample units, of
which 614 were placed in the training set, and 116 were placed in the test set. To ensure a
balance of positive and negative samples, 1500 non-ore body units around the known ore
body were selected as negative samples. Of these, 1200 were put into the training set, and
300 were put into the test set.

4. Prospectivity Modeling Process and Results
4.1. Predictive Model Building

In order to fully explore the nonlinear relationship between the 3D ore-controlling
factors and the ore-forming facts, based on the sample data set established above, this
paper selects two machine learning methods, logical regression and random forest, to carry
out 3D ore-forming predictions in the deep part of the mining area.

In addition to the support of a large number of effective datasets, the machine learning
model also needs to set the model’s parameters for the current dataset, which is an impor-
tant factor in determining the model’s performance. The random forest algorithm includes
the two most important parameters: the number of decision trees M and the number of
attributes K in the randomly selected attribute set. In this paper, the sampling dataset will
be used to determine the appropriate number of decision trees and attributes of the random
forest classification model using cross-validation. Due to the regression model adopted in
this paper, after obtaining the error estimates of the results of each cross-validation set, the
standard deviation is taken as the evaluation standard to evaluate the consistency of the
model on different data sets (Figure 7).
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According to the results, this paper uses logistic regression and random forest (M = 200,
K = 12) methods to carry out a 3DMPM on the deep edge of the Xuancheng–Magushan
area and obtains the distribution map of favorable areas (Figure 8).
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4.2. Model Performance Analysis

The confusion matrix is a standard format for expressing the accuracy evaluation. It
is often used in binary classification scenarios. Each column of the matrix represents the
prediction of the sample, and each row of the matrix represents the real situation of the
sample. To more intuitively express the quality of the model’s performance, we extend
three metrics from the matrix: precision, recall, and specificity. The trained model is used
in the test set divided above to test the performance of the model. According to the results,
the blocks with favorable degrees of mineralization greater than 0.5 predicted in the test set
are selected as favorable units for mineralization. Finally, we compare the real value and
the predicted value of each block in the test set and use these three prediction indicators to
compare the model (Table 3).

Table 3. Comparison of performance indicators.

Models Accuracy Recall Speciality

Logistic regression 90.625% 83.62% 93.33%
Random forest 96.63% 93.97% 97.67%

Comparing the three performance indicators, it can be concluded that the random
forest model performs better than the logistic regression model, which can effectively
distinguish non-ore body units in the case of predicting more known ore bodies in the test
set and has a good generalization ability.

The ROC curve is also often used in the performance evaluation of the two-class
network [46]. It can indicate the ability to identify the sample at a certain threshold. The
vertical and horizontal coordinates of the points on the curve represent the true positive
rate (TPR) and the false positive rate (FPR) of the output results under different thresholds,
respectively. The ROC curve indicates the percentage of true positive units in the known
mineralization units in the different positive prediction ranges of the model. The area under
the curve is called the AUC value. The larger the AUC value, the better the model effect.
This paper compares the ROC curves of the two models (Figure 9) and finds that the image
of the MPM method based on the random forest is more inclined to the upper left corner
than the logistic regression model. The AUC values of the two models are 0.989 and 0.969,
indicating the random forest model has better performance and more reliable results.
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The performance of the two models was further quantitatively evaluated by plotting
the capture efficiency curves [47,48] (Figure 10). First, the predicted metallogenic favorable-
ness of all blocks is sorted in descending order. Then various thresholds are set according
to the sorting results to reclassify the unit blocks in the study area. Finally, the capture effi-
ciency is calculated by counting the number of known ore body units in different sections.
The calculation process of the capture efficiency is to perform the statistical calculation
on all blocks in the study area. From the capture efficiency curve, it can be obtained that
the blocks in the top 4‰ of the metallogenic favorable degree predicted by the random
forest model in the study area can cover all the known ore bodies. In the logistic regression
model results, only the blocks in the top 20‰ of the favorable degree of mineralization in
the study area can cover all known ore bodies. It can be shown that the random forest can
contain more known ore body units in the block unit with high posterior probability and
can screen out the metallogenic prospect area more finely.
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5. Discussion

After analyzing the indicators of the logistic regression model and the random forest
model, it can be seen that the prediction results of the random forest model are better. The
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accuracy of the random forest model in the test set is 96.63%, which is higher than that
of the logistic regression model by 6.005%, i.e., 10.35% higher in recall and 4.34% higher
in specificity, indicating that random forest can better characterize the characteristics of
the mineral control in the study area. At the same time, compared with logistic regression,
the random forest model can better identify ore body characteristics and can cover more
known ore body units in the same number of block units with high metallogenic favorable
degrees. By comparing the distributions and shapes of favorable areas predicted by the two
methods, it can be seen that the random forest can constrain the specific locations of the
prospectivity targets more finely, thereby effectively improving the efficiency of prospecting
and exploration.

In this paper, the prediction results of random forest are used to delineate the metallo-
genic target area, and the unit block with a metallogenic favorable degree greater than 0.5
is selected as the potential metallogenic unit.

According to the prediction results, there are 7652 favorable areas in the study area,
accounting for 1.08 % of the whole study area, including 96.71 % of the known ore bodies.
Therefore, the random forest model can not only effectively identify the known ore bodies,
but also screen out Blocks with greater metallogenic potential. Then five metallogenic
potential areas are divided (Figure 11).
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The five metallogenic prospective areas classified in this paper all have high metal-
logenic potential. The No. I and No. II target areas are located in the prospecting area
of Magushan. The burial depth of the No. I target area is about −900 m~−1200 m, and
the burial depth of the No. II target area is about −1500 m~−2000 m. The target area is
located in the middle of the high gravity anomaly in Magushan as a whole, with a trend
near east–west, and the isolines on the north and south sides change rapidly; in terms of the
aeromagnetization pole anomaly, the Magushan anomaly clearly shows a high magnetic
anomaly, with a trend near the pear-shaped distribution in the north and the south: the
contour changes smoothly, the gradient changes rapidly on the north side, and extends to
the south, showing the subsidence direction of the concealed rock mass. The measurement
anomalies of 1:200,000 water system sediments show that Cu, Hg, and W are anomalous
in the vicinity of the Magushan deposit. The No. III target area is located on the surface
of the high-density body, and the burial depth is about −2100 m~−2800 m. The No. IV
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target area is generally controlled by structural forms, such as the uplift and depression
of the rock mass, and the buried depth is about −1100 m~−1500m. The No. V target area
is located at the intersection of the faults, and there are certain magnetic anomalies on
the surface of this area, and the burial depth is about −2100 m~−2900 m. Therefore, the
five prospectivity targets classified in this paper can be the priority exploration targets for
future mineral exploration in this area.

6. Conclusions

(1) The 3DMPM is an important tool for deep targets delineation for future exploration.
This paper delineates five prospectivity targets with good mineralization potentials in the
deep area of the Xuancheng–Magushan area, which can be used for future exploration.

(2) In the Xuancheng–Magushan area, the favorable areas divided by the random
forest model contain 96.71% of known ore bodies and only account for 1.08% of the study
area, which can show that the random forest model can perform better than the logistic
regression model in the 3DMPM using the dataset of the study area. It means that the
random forest model could provide more effective and accurate support for integrating
predictive data during the 3DMPM.
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