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Abstract: Several gold ore-concentrated areas have been recognized in the destruction zone of the
North China Craton (NCC). However, the deposits in the western part of the destruction zone have
received less attention. Miaoan, a typical Au-polymetallic deposit in the northern Taihang Mountain,
provides a good sample for deepening our understanding of the genesis of gold deposits in the
western destruction zone. In this study, detailed ore geology, pyrite Rb-Sr age, trace element and
S-C-O isotopes of Au-bearing ores were conducted to constrain the source of ore-forming materials
and their tectonic setting. The pyrites obtain an Rb-Sr isochron age of 129.5 ± 2.5 Ma, consistent with
those of magmatic rocks in this deposit, suggesting their genetic relationship. The δ34S values ranging
from −5.5‰ to 1.6‰ and the high Co/Ni and Y/Ho ratios of pyrites indicate the mantle-crust
mixing characteristics of ore-forming fluids. The δ13C (−6.3‰ to −2.0‰) and δ18O (9.3‰ to 17.6‰)
values of Au-bearing ores and calcites suggest mixing characteristics as well. Geochronologically, the
Miaoan Au-polymetallic deposit was formed during the destruction of the NCC. We propose that the
Miaoan Au-polymetallic deposit is a decratonic gold deposit and that its ore-forming materials have
a mixed source of mantle and crust.

Keywords: Miaoan Au-polymetallic deposit; S-C-O isotopes; pyrite Rb-Sr dating; northern Taihang
Mountain; North China Craton

1. Introduction

The margin of the craton is often abnormally rich in gold, molybdenum, and rare
earth element (REE) deposits [1–4]. Several large-scale Au mineralization provinces formed
around the NCC destruction zone during the Mesozoic, such as the Jiaodong, Xiaoqinling,
Liaodong, and Jidong mineralization provinces [2,5–11]. The genesis of these Au deposits
has received much attention, especially in the Jiaodong region [5,6,12–17]. Several models
have been proposed, such as orogenic type, Jiaodong type, and decratonic type [2,3,15–23].
Addressing the genesis of these Au deposits may require looking at the issue from a broader
perspective. Studies in recent years have shown that the northern Taihang Mountain (TM),
west of the NCC destruction zone, developed a large number of gold deposits, such as
the Shihu, Yixingzhai, Liyuan, and Gengzhuang gold deposits (Figure 1a). However,
these deposits have received relatively less attention [13,24–27]. This is not conducive to
understanding the genesis of Mesozoic gold deposits in the entire NCC destruction zone.
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The Miaoan Au-polymetallic deposit is located in the northern TM and is a medium-
sized deposit in the western part of the NCC destruction zone. Detailed geological surveys
have been carried out in recent years. The orebodies occur in the Proterozoic dolomite
strata surrounding the Mesozoic Laiyuan complex intrusion, which can be divided into
the Xiaolinggen, Pinggou, and Niulan ore blocks. The deposit has total ore reserves of
~3.90 Mt and total metal reserves of ~5.0 t Au, ~40 t Ag, ~22,000 t Cu, and ~2000 t Zn.
The average grades are ~9.3 g/t of Au, ~51.0 g/t of Ag, ~0.66% of Cu, and ~3.27% of Zn.
Based on detailed field exploration work, this paper summarizes the detailed geological
characteristics of the Miaoan Au-polymetallic deposit and further analyzes trace elements
and S-C-O isotopic compositions of pyrite and calcite for the first time, aiming to constrain
the sources of ore-forming materials and the genesis of this deposit. This is of great
significance to further mineral exploration in the northern TM.

2. Regional Geology

The Miaoan Au-polymetallic deposit is located in the western part of the NCC destruc-
tion zone. The NCC, one of the oldest cratons in the world, is surrounded by the Central
Asian orogenic belt to the north and the Qinling–Dabie–Sulu orogenic belt to the south
(Figure 1a). It has experienced several stages of tectonic evolution from the Precambrian
to the Cenozoic [28–31]. The NCC was severely destroyed in the late Mesozoic, with a
destruction peak of ~125 Ma [32]. The lithosphere is strongly thinned, accompanied by
extensive magmatic activity and large-scale mineralization [2,33,34]. A lot of studies have
focused on the destruction of the NCC and its relationship with mineralization [1,2,35–39].

The Laiyuan complex intrusion, consisting of the Dahenan, Dahaituo, Sigezhuang,
and Wang’anzhen plutons, was mainly formed in the northern TM, belonging to a part of
magmatic activity induced by the destruction of the NCC. The lithology of the Laiyuan
complex intrusion includes gabbro, diorite, quartz monzonite, biotite granite, granodiorite,
quartz diorite, and syenite porphyry. From the early to late stage, the lithology of the
Laiyuan complex intrusion displays an obvious lithologic change from basic to intermediate
and to acidic (Figure 1b) [40–42]. Previous studies show that the rock-forming ages are
from the Late Jurassic to the Early Cretaceous (142–134 Ma) [13,41,43].

The strata in the Miaoan region are mainly composed of the Archean metamorphic
basement, the Proterozoic–Mesozoic caprock, and the Quaternary sediments. The Archean
metamorphic basement is composed of the middle and lower strata of the Fuping Group,
including the Nanying, Manshan, and Muchang formations. Its lithology is predominantly
biotite plagioclase gneiss, leptite, marble, and plagioclase amphibolite. The Proterozoic
caprock, including the Gaoyuzhuang Formation of the Changcheng System and the Wu-
mishan Formation of the Jixian System, is mainly dolomite with a small amount of quartz
sandstone and carbonaceous shale. The flint-bearing banded dolomite of the Gaoyuzhuang
Formation is the host rock of skarn-type Fe–Cu deposits in this region. The Paleozoic strata
mainly formed during the Cambrian–Ordovician periods, consisting of limestone, clastic
rock, clay rock, and shale, which are the host rocks of skarn-type Cu–Zn–Mo deposits.
The Mesozoic strata are mainly the Jurassic Tiaojishan Formation, and its predominant
lithology is pyroclastic rock, molten tuff, and andesite. The Quaternary sediments are
mainly alluvial and slope sediments. The fault structure is developed in this region. The
regional NNE-trending Shanghuangqi–Wulonggou deep-large fault is the dominant fault,
which is overlapped by the NW-trending and NE-trending faults. These faults control the
attitude of Au and nonferrous metal deposits.
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Figure 1. (a) Geological map of the North China Craton (modified after [2]); (b) simplified geological
map of the northern Taihang Mountains (modified after [44]).

3. Characteristics of Ore Deposits

The exposed strata in the Miaoan area are mainly the Gaoyuzhuang Formation of
the Mesoproterozoic Changcheng system, a small amount of the Muchang Formation of
the Archean Fuping Group, and the Quaternary strata (Figure 2). The main lithologies
of the Gaoyuzhuang Formation are dolomite and carbonaceous silty shale, which are
widely distributed in the western and southeastern parts of the mining area. These strata
experienced strong fold deformation and mineralization alteration, and the intersection of
the fold core and the NW-trending fault is the favorable ore-hosting site for the Au orebody.
The Muchang Formation is mainly gneiss. The fault structure in the mining area can be
classified into three groups: NW-, NE-, and near SN-trending. The NW-trending faults are
characterized by multistage activity and are commonly filled by diabase, which are the
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main ore-controlling faults of Au orebodies. Intermediate-acid magmatic rocks, such as
quartz monzonite, granodiorite, and granite, are developed in the mining area.

Minerals 2022, 12, 1144 4 of 22 
 

 

 

Figure 2. Geological map of the Miaoan Au-polymetallic deposit. 

3.1. Orebody Characteristics 

The Miaoan Au-polymetallic deposit is composed of several orebodies with different 

ore types. Based on the type and combination of ores, the deposit can be divided into three 

ore belts: (I) the Cu–Fe ore belt, (II) the Cu–Zn ore belt, and (III) the Au ore belt. 

3.1.1. The Cu–Fe Ore Belt 

The Cu–Fe ore belt is developed in the skarn contact zone between intermediate-acid 

magmatic rocks (granite, quartz monzonite, and diorite) and dolomite of the Gaoyu-

zhuang Formation in the northwestern part of the mining area. The length of the belt con-

trolled by the project is ~1500 m, and the width is 100–300 m. A total of 12 orebodies have 

been found in this belt, with 70°–90° dips and 60°–75° dip angles. The I-1 orebody is the 

largest orebody (Figure 3). 

Figure 2. Geological map of the Miaoan Au-polymetallic deposit.

3.1. Orebody Characteristics

The Miaoan Au-polymetallic deposit is composed of several orebodies with different
ore types. Based on the type and combination of ores, the deposit can be divided into three
ore belts: (I) the Cu–Fe ore belt, (II) the Cu–Zn ore belt, and (III) the Au ore belt.

3.1.1. The Cu–Fe Ore Belt

The Cu–Fe ore belt is developed in the skarn contact zone between intermediate-acid
magmatic rocks (granite, quartz monzonite, and diorite) and dolomite of the Gaoyuzhuang
Formation in the northwestern part of the mining area. The length of the belt controlled
by the project is ~1500 m, and the width is 100–300 m. A total of 12 orebodies have been
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found in this belt, with 70◦–90◦ dips and 60◦–75◦ dip angles. The I-1 orebody is the largest
orebody (Figure 3).
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Figure 3. Section map of the No. 8 exploration line in the Xiaolinggen ore block of the Miaoan
Au-polymetallic deposit.

The I-1 orebody is located in the northern section of the Cu–Fe ore belt and has a total
length of ~800 m. The orebody attitude is the same as that of this ore belt. It is stratiform
and saddle in shape and exhibits expansion, contraction, and pinch-out reappearance along
the strike and dip. The inclination depth of the orebody is generally 80–120 m, and the
maximum depth is 160 m. The maximum burial depth of the ore-bearing elevation is
559–692 m. The thickness of the orebody is generally 1.02–6.80 m, and the average thickness
is 4.73 m. The orebody is generally associated with Au and Ag, with resources of 1.6 t
and 28.65 t, respectively. The grades of Au and Ag can reach 17.35 g/t and 62.00 g/t,
respectively.

3.1.2. The Cu–Zn Ore Belt

The Cu–Zn ore belt is located in the marble dolomite and hornfels shale of the
Gaoyuzhuang Formation in the northern part of the mining area. Skarnization is de-
veloped in this belt. The ore belt is ~2000 m in length and 50–300 m in width and has an ore
belt strike of 20◦–30◦. Seven Cu–Zn orebodies are developed in the belt, all of which are
controlled by NE-trending faults. Among these, the II-2, II-4, and II-6 orebodies are large.

The II-2 orebody is located in the northern section of the Cu–Zn ore belt, with a length
of 420 m and a thickness of 1.00–1.46 m. It has veined shapes and occurs in the fractured
alteration zone among dolomite layers. It is characterized by expansion, contraction,
and pinch-out reappearance along the strike and dip. The attitude of the orebody is
115◦–135◦∠56◦–71◦, consistent with NE-trending faults. The orebody composition follows
the change rule of Cu→ Cu–Zn→ Zn from south to north along the strike, with Cu grades
of 0.26%–0.34% and Zn grades of 0.52%–3.62%.
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The II-4 orebody is located in the middle of the Cu–Zn ore belt, with a length of
100 m and thickness of ~1.00 m. The attitude of the orebody is 125◦∠75◦. The orebody is
composed of Cu, Au, and Ag, with grades of 0.43%, 16.35 g/t, and 51.00 g/t, respectively.

The II-6 orebody is located in the southern parts of the Cu–Zn ore belt, with a length
of 500 m and thickness of 1.40–2.50 m. It is vein-like along the NE-trending fault, with
an orebody attitude of 102◦–135◦∠45◦–65◦. The primary components are Cu, Au, and Ag,
with grades of 0.20%–3.2%, 0.22–0.32 g/t, and 8.54–17.93 g/t, respectively.

3.1.3. The Au Ore Belt

The Au ore belt is located in the central and eastern parts of the Miaoan mining area,
outside of the Cu–Fe and Cu–Zn ore belts. It is controlled by the NW-trending fracture
zone and is divided into three ore blocks: Xiaolinggen, Pinggou, and Niulan.

The Xiaolinggen ore block is located in the eastern part of the mining area. The
mineralized zone is strictly controlled by the NW-trending fault, with a strike of ~310◦, a
dip of 40◦–50◦, a dip angle of 40◦–65◦, and a thickness of 1.00–8.00 m with an average of
3.00 m. It is composed of phlogopitized diabase and pyritized marble. The length of the
altered mineralization zone exceeds 2600 m, but Au mineralization is discontinuous. Three
industrial orebodies have primarily formed at the intersection of the NW- and NE-trending
faults (Figure 3). The XLG-1 orebody is lenticular with a strike of ~40◦, a dip angle of
~55◦, a length of 29 m, and an average thickness of 0.79 m. The Au grade is 18.30 g/t.
The XLG-2 orebody is pod-like and has expansion and contraction characteristics, with
an overall strike of 315◦–320◦, a dip angle of 41◦–66◦, NE-trending dip, a length of 434 m
on the surface, a thickness of 0.20–3.20 m, and an average thickness of ~1.35 m. The Au
grade is 32.10 g/t. The XLG-3 orebody is NW-trending, with a dip angle of ~57◦, a length
of ~110 m, burial depth of ~65 m, an average thickness of ~0.84 m, and an Au grade of
6.05 g/t.

The Pinggou ore block is located in the southeastern part of the mining area. The
altered mineralization zone trends NNW, with lengths greater than 2300 m and widths of
~150 m. Four Au orebodies are recognized in this ore block. These orebodies are developed
in the contact zone between the marble and lamprophyre dikes.

The PG-7 orebody has a control length of 2100 m and a thickness of 0.30–0.80 m. The
elements of attitude are 55◦–65◦∠75◦–85◦ and the Au grade is 8.45–12.88 g/t. The PG-29
orebody has a control length of 130–180 m and a thickness of 0.40–0.49 m. The elements
of attitude are 50◦–65◦∠70◦–80◦ and the Au grade is 14.86–15.10 g/t. The PG-30 orebody
has a control length of 150–450 m, an average thickness of 0.72 m, elements of attitude of
65◦∠75◦–85◦, and an average Au grade of 15.97 g/t. The PG-31 orebody has a control length
of ~120 m, an average thickness of 0.44 m, elements of attitude are 100◦–115◦∠70◦–75◦, and
an average Au grade of 12.48 g/t.

The Niulan ore block is located in the southern part of the mining area. The orebodies,
mainly structurally altered rock and quartz veins, occur in the diorite intrusion and the
contact zone between dolomite and diorite. They are veined and strictly controlled by
NNW-trending faults. The wallrock alteration is primarily characterized by silicification,
K-feldspathization, sericitization, chloritization, and kaolinization. This ore block mainly
developed three altered mineralization zones and five Au orebodies.

The NL-1 orebody has a control length of 113 m and an average thickness of 0.33 m.
It inclines to the SW trend with a dip angle of 68◦. It displays irregular veins and occurs
in the diorite intrusion, and the average Au grade is 2.25 g/t. The NL-2 orebody has a
control length of 318 m and an average thickness of 0.41 m. It inclines to the SW trend
and the dip angle is 62◦–85◦. It displays irregular and lenticular veins and occurs in the
contact zone between the diorite intrusion and lamprophyre dyke. The average grade of
Au is 2.25 g/t. The NL-3 orebody has a control length of 591 m and an average thickness
of 0.27 m. It inclines to the SW trend and the dip angle is 70◦–87◦. It occurs in the contact
zone between the diorite dike and the lamprophyre vein. Along the strike and dip, it has
wavy fluctuation, expansion and contraction, and branch compounding characteristics.
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The average Au grade is 15.37 g/t. The NL-4 orebody has a control length of 333 m and
an average thickness of 0.28 m. It inclines to the SW trend, and the dip angle is 72◦–82◦. It
displays irregular veins and occurs in the diorite intrusion, with an average Au grade of
3.62 g/t. The NL-5 orebody has a control length of 606 m and an average thickness of 0.33 m.
It inclines to the SW trend, and the dip angle is 73◦–85◦. It displays irregular and lenticular
veins and occurs in the contact zone between the diorite dike and the lamprophyre vein.
The average Au grade is 13.49 g/t.

3.2. Ore Characteristics
3.2.1. Ore Type

The Cu–Fe ores are located in the skarn zone between the intermediate-acid intrusion
and dolomite wallrock. The skarn-type Cu–Zn ores with a small amount of hydrothermal
veins mainly occur in dolomite, which is far from the intrusion. The Au ores occur in the
fracture zone in the periphery of the intrusion, dominated by quartz-sericite-pyrite altered
rock and quartz vein types (Figure 4).
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Figure 4. The mineralization characteristics of the Miaoan Au-polymetallic deposit. (a–c) Pyrite in
marble; (d) massive pyrite; (e) symbiosis of euhedral pyrite and chalcopyrite; (f) pyrite is closely
associated with carbonate veins; (g) pyrite is euhedral and cataclastic, and chalcopyrite is filled along
pyrite fractures; (h) symbiosis of pyrite with galena and sphalerite; chalcopyrite exsolution in galena
in the form of a milk drop; (i) symbiosis of pyrite with chalcopyrite, galena, and sphalerite. Py: Pyrite;
Ccp: Chalcopyrite; Gn: Galena; Sp: Sphalerite.

3.2.2. Mineral Composition, Texture, and Structure

The skarn-type ores are predominantly composed of magnetite, chalcopyrite, spha-
lerite, pyrite, pyrrhotite, and chalcocite. The ores are mainly subhedral-anhedral granular,
replacement, and poikilitic textures and are dominated by massive and banded structures,
followed by disseminated and taxitic structures. For the hydrothermal vein-type ores,
the ore minerals are mainly pyrite, followed by magnetite, ilmenite, chalcopyrite, and
molybdenite. The ores mainly have granular, colloidal, and crystalloblastic textures and
have disseminated and honeycombed structures, followed by veined and filling structures.
Gold occurs in the fissure and intercrystalline of pyrite or the cavity of limonite. The gold
grade is positively correlated with ore minerals, especially fine pyrite.



Minerals 2022, 12, 1144 8 of 21

3.2.3. Wall-Rock Alteration

The Miaoan deposit has extensive and intense wallrock alteration, and the main types
are skarnization, silicification, beresitization, chloritization, and carbonatation. Skarniza-
tion develops along the contact zone between intermediate-acid magmatic rocks and the
dolomite strata, which is usually located at the edge of the mineralized alteration zone and
is the main mineralization type of Cu–Fe and Cu–Zn ores. Silicification is the main symbol
of hydrothermal alteration, which is developed in the central part of the mineralization
alteration zone. It is formed by the filling of siliceous-rich hydrothermal fluid in the fault
zone or fracture and is closely related to Au mineralization. Beresitization is mostly devel-
oped in the central part of the mineralized alteration zone, superimposed with extensive
sericitization. It is mainly composed of pyrite, sericite, and quartz, accompanied by poly-
metallic sulfide mineralization. Chloritization is primarily developed in the outermost Au
ore belt along the contact zone of the diabase vein and the intermediate-acid rock, and the
nearby fracture surfaces. Carbonation developed on both sides of the fault zone and in the
fissures, often in the form of veinlets or reticulate veins. The altered minerals are mainly
calcite, which is the product of low-temperature alteration in the mineralization stage.

4. Samples and Methods

Pyrite samples for Rb-Sr isotopic dating, trace element and sulfur isotopic analyses,
and calcite samples for C–O isotopic composition analyses were collected from the Xi-
aolinggen ore block in the Miaoan Au-polymetallic deposit (Figures 2 and 3). Sample
preprocessing and mineral separation were conducted in the Hebei Regional Geological
Survey and Research Institute laboratory. The pyrite and calcite grains were selected under
a binocular microscope. Then, they were crushed to 200 mesh without pollution.

4.1. Pyrite Rb-Sr Isotopic Dating

Rb and Sr cannot enter pyrite in large quantities. However, trace element abundances
in pyrites show relatively high levels of Rb, Sr, and rare earth elements, which may reside in
inclusions or crystal defects [45]. With the development of analytical technology, numerous
studies have shown that there are sufficient amounts of Rb and radiogenic Sr contents
and variable Rb/Sr ratios in pyrite for Rb-Sr isotopic dating [46,47]. Therefore, pyrite
Rb-Sr isotopic dating is widely used in determining the age of mineralization [48–51].
In this study, pyrite samples were first crushed to 40–60 mesh, and then fresh and high-
purity particles were selected under binoculars. The Rb and Sr concentrations and isotopic
composition of pyrite were determined at the Technical Service Center, Institute of Soil
Science, Chinese Academy of Sciences. The pyrite samples were washed with deionized
water, dried at low temperature, and then ground to 200 mesh in an agate mortar. The
200-mesh powder was digested with a mixed acid to form a clear solution, and it was left
to stand for 12 h. The solution was divided into two parts, which were used to determine
the isotope ratio (without spikes) and the isotope content (with spikes). The elements
were separated by ion exchange columns, and isotopic determination was performed
using VG354 multicollector mass spectrometry manufactured by British VG Company.
A reference standard of NBS987 = 0.710241 ± 7 (2σ) was used for monitoring the data
quality. The whole produce blank of Sr is 3 ng. The 87Sr/86Sr ratios were normalized to
86Sr/88Sr = 0.1194 to correct for instrument fractionation. The isochron age was calculated
using the ISOPLOT program [52]. A more detailed analytical process can be found in a
previous study [53].

4.2. Trace Element and S-C-O Isotopic Composition Analyses

All analyses were conducted at the Analysis and Test Center of the Beijing Institute
of Geology of Nuclear Industry. The pyrite trace elements were determined using a
Thermo Fisher ELEMENT XR inductively coupled plasma mass spectrometer (ICP-MS).
The analytical accuracy is better than 5% when the element content is more than 10−6, and
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the analytical accuracy is better than 10% when the element content is less than 10−6. The
detailed analytical process can be found in Chen, et al. [54] and Guo, et al. [55].

The S isotopes of pyrites were determined using a Finnigan MAT-251 gas isotope mass
spectrometer. The analytical results are described relative to V-CDT, and the analytical
accuracy is better than ±0.2%. The detailed analytical process can be found in Li, et al. [56].
The C–O isotopes of calcites were determined using a Finnigan MAT-253 gas isotope mass
spectrometer. The C isotopic values are reported relative to the Pee Dee Belemnite standard
(V-PDB). The reference standards of the O isotopic values are V-PDB and Vienna Standard
Mean Ocean Water (V-SMOW). The analytical accuracy is better than ±0.2%. The detailed
analytical process is described in Xue, et al. [57].

5. Results
5.1. Pyrite Rb-Sr Isochron Age

Pyrite is the most important gold-bearing mineral and has a close genetic relationship
with gold mineralization. It is an important means of obtaining the age of gold mineral-
ization. Four valid pyrite Rb-Sr isotope dating samples were obtained, and the results are
summarized in Table 1. The Rb and Sr concentrations of the pyrite samples range from
0.2952 to 0.8907 ppm and from 0.6592 to 7.586 ppm, respectively. The 87Rb/86Sr ratios range
from 0.1176 to 3.981, and the 87Sr/86Sr ratios range from 0.712953 to 0.720021. Four samples
are plotted in Figure 5, and a straight line is fitted through the least square method, which
defines a robust isochron age of 129.5 ± 2.5 Ma (MSWD = 1.6) with an initial 87Sr/86Sr
value of 0.712685 ± 0.000078 (Figure 5). This age can represent the mineralization age.

Table 1. Rb-Sr isotopic compositions of pyrites from the Miaoan Au-polymetallic deposit.

Pyrite Rb (ppm) Sr (ppm) 87Rb/87Sr 87Sr/86Sr 2σ

D6-1 0.3018 7.586 0.1176 0.712953 0.00005
D8-1 0.8907 0.6592 3.981 0.720021 0.00005
D9-1 0.5623 1.093 1.527 0.715513 0.00005

D11-1 0.2952 0.9964 0.8732 0.714215 0.00005
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Figure 5. Pyrite Rb-Sr isochron age for the Miaoan Au-polymetallic deposit.

5.2. Trace Element Compositions of Pyrites

The trace element compositions of the pyrites from the Miaoan Au-polymetallic deposit
are listed in Table 2. The REE contents in pyrites are 0.36–8.60 ppm, with an average of 3.45 ppm.
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They show right-inclined chondrite-normalized REE patterns (LREE/HREE = 4.86–18.64;
(La/Yb)N = 7.77–35.38) with obviously negative Eu anomalies (δEu = EuN/(SmN ∗ GdN)1/2

is 0.18–0.94, where the subscript N represents chondrite normalization) (Figure 6). The
contents of siderophile and chalcophile in pyrites have a large variation range, with Co
contents of 24.5–4093 ppm, Ni contents of 2.23–343 ppm, Cu contents of 24.2–287 ppm,
Pb contents of 8.14–1402 ppm, and Zn contents of 18.1–247 ppm. High field strength
elements also have a large variation range, with Nb contents of 0.009–0.21 ppm, Ta contents
of 0.002–0.048 ppm, Zr contents of 0.29–3.40 ppm, and Hf contents of 0.003–0.069 ppm.
Correspondingly, these pyrites show high Y/Ho ratios of 24.6–34.4 and Co/Ni ratios of
1.50–23.39 (Figure 7). In addition, Hf/Sm ratios of 0.029–1.59, Nb/La ratios of 0.011–0.81,
Th/La ratios of 0.027–2.04, Zr/Hf ratios of 19.4–243, and Nb/Ta ratios of 4.38–70.0 show a
large variation range.

Table 2. Trace element compositions (ppm) of pyrites from the Miaoan Au-polymetallic deposit.

D6-1 D7-1 D9-2 D10-1 D14-2 D16-1 D17-2

La 0.88 0.66 1.06 0.24 2.17 0.077 0.26
Ce 1.55 1.32 2.50 0.59 4.18 0.16 0.37
Pr 0.16 0.14 0.31 0.086 0.40 0.013 0.042
Nd 0.68 0.45 1.66 0.45 1.25 0.051 0.17
Sm 0.074 0.073 0.31 0.084 0.14 0.012 0.037
Eu 0.014 0.010 0.019 0.004 0.037 0.004 0.010
Gd 0.077 0.054 0.20 0.042 0.17 0.014 0.052
Tb 0.008 0.008 0.025 0.005 0.016 0.002 0.008
Dy 0.035 0.041 0.10 0.022 0.098 0.011 0.044
Ho 0.006 0.007 0.009 0.003 0.019 0.003 0.013
Er 0.024 0.018 0.029 0.013 0.061 0.007 0.035
Tm 0.004 0.002 0.003 0.002 0.007 0.002 0.004
Yb 0.024 0.016 0.023 0.008 0.044 0.006 0.024
Lu 0.002 0.003 0.002 0.002 0.005 0.002 0.003
Y 0.20 0.21 0.31 0.099 0.49 0.083 0.32

∑REE 3.54 2.8 6.25 1.55 8.60 0.36 1.07
LREE/HREE 18.6 17.8 15.0 15.0 19.5 6.74 4.86

(La/Yb)N 26.2 29.5 33.1 21.5 35.4 9.21 7.77
δEu 0.56 0.47 0.22 0.18 0.73 0.94 0.70
δCe 0.94 1.02 1.06 1.01 1.02 1.13 0.79
Co 2034 1360 24.5 56.4 4093 514 1066
Ni 151 218 2.23 3.86 175 343 171
Cu 128 125 24.2 57.8 246 148 287
Pb 139 304 238 229 8.14 688 1402
Zn 193 216 154 247 18.1 149 26.9
Nb 0.020 0.014 0.012 0.009 0.14 0.015 0.21
Ta 0.002 0.002 0.002 0.002 0.002 0.002 0.048
Th 0.024 0.078 0.050 0.11 0.13 0.033 0.53
Zr 0.31 0.38 0.45 0.29 2.37 3.40 1.72
Hf 0.016 0.016 0.009 0.003 0.069 0.014 0.059
Li 5.46 5.33 8.19 7.21 5.67 5.17 5.63
Sc 0.28 0.17 0.15 0.13 0.93 0.49 0.38
V 9.08 0.82 2.12 1.99 3.27 2.64 5.90
Cr 1.29 0.71 0.92 0.99 1.99 0.78 1.54
Mo 3.47 2.79 0.29 0.39 7.22 1.27 1.12
W 0.30 0.24 0.18 0.13 0.25 0.13 10.10
Cd 0.82 0.87 0.39 0.75 0.048 0.49 0.12
Tl 0.13 0.14 0.017 0.064 0.22 0.13 0.088
U 0.035 0.032 0.013 0.12 2.77 0.044 0.16
Sr 2.19 2.31 2.26 1.44 2.68 2.02 1.52
Ba 2.86 2.48 0.10 1.73 5.14 2.17 2.70

Co/Ni 13.47 6.24 10.99 14.61 23.39 1.50 6.23
Hf/Sm 0.22 0.22 0.029 0.036 0.50 1.17 1.59
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Table 2. Cont.

D6-1 D7-1 D9-2 D10-1 D14-2 D16-1 D17-2

Nb/La 0.023 0.021 0.011 0.038 0.065 0.19 0.81
Th/La 0.027 0.12 0.047 0.46 0.060 0.43 2.04
Y/Ho 33.3 30.0 34.4 33.0 25.8 27.7 24.6
Zr/Hf 19.4 23.8 50.0 96.7 34.4 242.9 29.2
Nb/Ta 10.00 7.00 6.00 4.50 70.00 7.50 4.38
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typical gold deposits in the Jiaodong and Taihang regions (modified after references [60,61]).

5.3. Sulfur Isotopic Composition of Pyrite

The sulfur isotopic compositions of nine pyrites from the ores in the Miaoan Au-
polymetallic deposit are listed in Table 3 and plotted in Figure 8. Most δ34S values range
from −2.0‰ to 1.6‰, except for samples D11-1 and D14-2, which are −5.5‰ and −5.0‰,
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respectively. The S isotopic compositions of the Au and Cu deposits in the northern TM
determined by previous studies are also displayed in Figure 8. The δ34S values of the
Shihu Au deposit range from −2.2‰ to 3.0‰ [13,62,63], the Yixingzhai Au deposit from
−0.3‰ to 3.6‰ [24], and the Mujicun Cu–Mo deposit from −3.5‰ to 4.3‰ [64–66]. The
δ34S values of pyrite, chalcopyrite, and sphalerite in the Liyuan Au deposit range from
0.9‰–4.3‰, and those of galena range from −12.8‰ to 1.4‰ [67]. Thus, the S isotopes
of these polymetallic deposits in the northern TM have a large range, but most values are
concentrated in a narrow range of −1‰ to 4‰ (Figure 8). These results possibly mean that
the ore-forming fluids mainly originated from magma but involved other fluids.

Table 3. Sulfur isotopic compositions of pyrites from the Miaoan Au-polymetallic deposit.

Sample No. Ore Type Minerals δ34SV-CDT (‰)

D6-1

Hydrothermal vein type Pyrite

1.3
D7-1 0.9
D8-1 1.6
D9-2 −0.6

D10-1 −1.5
D16-1 −2.0
D17-1 −1.1
D11-1 −5.5
D14-2 −5.0
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Figure 8. Histogram of S isotope data for gold and nonferrous metal deposits in the northern Taihang
Mountain. The data of this histogram are sourced from this study and the literature (the Miaoan Au-
polymetallic deposit (this study), the Mujicun Cu deposit [64–66], the Shihu gold deposit [13,62,63],
the Yixingzhai gold deposit [24], and the Liyuan gold deposit [67]).

5.4. Carbon and Oxygen Isotopic Compositions of Calcite and Ore

The results of the C–O isotopic compositions of hydrothermal calcites and ores in the
Miaoan Au-polymetallic deposit are shown in Table 4 and plotted in Figure 9. The δ13CV-PDB
values of the calcite and ore samples ranged from −4.2‰ to −2.0‰ and −6.3‰ to −2.5‰,
respectively. Relative to the V-PDB standard, the δ18OV-PDB values of calcite and ore varied
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from −21.0‰ to −15.0‰ and −20.1‰ to −12.9‰, respectively. For the V-SMOW, the
δ18OV-SMOW values of calcite and ore varied from 9.3‰ to 15.4‰ and 9.3‰ to 17.6‰,
respectively. The results show that ore and calcite have similar C–O isotope compositions.
They lie in the field between magmatic rocks and marine carbonates, suggesting multiple
sources of ore-forming fluids.

Table 4. Carbon and oxygen isotopic compositions of calcites and ores from the Miaoan Au-
polymetallic deposit.

Sample No. Mineral δ13CV-PDB(‰) δ18OV-PDB(‰) δ18OV-SMOW(‰)

D6-1 calcite −3.9 −16.7 13.7
D11-1 −2.8 −18.1 12.3
D14-2 −2.9 −15.0 15.4
D16-1 −4.2 −21.0 9.3
D17-1 −2.0 −18.5 11.9

D6-2 ore −6.3 −20.9 9.3
D8-2 −4.6 −12.9 17.6
D9-1 −2.8 −20.1 10.1

D10-2 −3.0 −19.5 10.8
D11-2 −2.5 −16.0 14.4
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6. Discussion
6.1. Geochronology

A robust ore-forming age is critical to understanding petrogenesis and tectonic settings.
In this study, pyrites from the Miaoan Au-polymetallic deposit yield an Rb-Sr isochoron
age of 129.5 ± 2.5 Ma. Pyrite is the most important gold-carrying mineral, and this age
constrains the time of gold mineralization. The ore-forming age is consistent with the
pyrite Re–Os isochron age of the Shihu gold deposit in the southern part of the TM [68].
The Miaoan Au-polymetallic deposit is spatially close to the Laiyuan intrusion. A large
number of chronological studies have been conducted previously [1,35,41,42,65,69–72]. The
granitoids in the Laiyuan complex have ages of 137–128 Ma [42,72], which are close to the
ore-forming age of the Miaoan Au-polymetallic deposit, suggesting their genetic relation-



Minerals 2022, 12, 1144 14 of 21

ship. The magmatic activity may have provided thermo or material for the mineralization.
In addition, the rock- and ore-forming ages agree well with the timing of the destruction of
the NCC [2]. Mineralization may be associated with this tectonic setting.

6.2. The Properties of the Ore-Forming Fluids

Trace elements have difficulty entering the lattice of pyrite and primarily occur in
the fluid inclusions or crystal defects of pyrite. Therefore, the trace elements of pyrite can
reflect the characteristics of ore-forming fluids [2,56,73–77].

The pyrites in the Miaoan Au-polymetallic deposit have low REE contents (0.36–8.60 ppm)
and are enriched in LREEs relative to HREEs (LREE/HREE ratios of 4.86–18.64 and
LaN/YbN ratios of 7.77–35.38; Table 2). The REE distribution pattern of pyrite is weakly
right-inclined (Figure 6), which should be due to the high Cl- or F- ions in the ore-forming
fluid [78,79]. The Hf/Sm, Th/La, and Nb/La ratios were generally less than 1 in Cl-rich
hydrothermal fluids and were generally greater than 1 in F-rich hydrothermal fluids. The
HFSEs are commonly enriched in F-rich hydrothermal fluids [80]. The trace elements in
the pyrites of the Miaoan Au-polymetallic deposit were depleted in HFSE and relatively
enriched in chalcophile elements, such as Co, Cu, Zn, and Pb, and large ion lithophile
elements, such as Li, Sc, Y, and Nb (Figure 6). This suggests that the ore-forming fluid has
Cl-rich features. The ratios of Th/La and Nb/La were less than 1, which is also in good
agreement with the Cl-rich feature for the ore-forming fluid. This is similar to those of the
Jiaojia gold deposit in the Jiaodong Peninsula [56].

Co and Ni may replace Fe2+ in pyrite by isomorphism. Therefore, the Co/Ni ratio is
significant in terms of the formation of pyrite [61]. The results show that the Co/Ni ratio
of sedimentary pyrite is typically less than 1, averaging 0.63. The average Co/Ni ratio of
hydrothermal pyrite is approximately 1.7, and the individual values are generally less than
5. The Co/Ni ratio of pyrite related to magmatic origin is generally greater than 5 and
typically from 5 to 50 [81]. In the Miaoan Au-polymetallic deposit, the Co/Ni ratios of
pyrite range from 1.50 to 23.39, with an average value of 10.92, which is consistent with
those of magmatic origin. In Figure 7, the pyrite of the Miaoan Au-polymetallic deposit
plots in the magmatic, hydrothermal, and lower left range, all of which are located near
the line of Co/Ni = 10, with a relatively concentrated distribution. The Co and Ni contents
and the Co/Ni ratios are similar to those of the Liyuan gold deposit in the center of the
NCC but higher than those of the gold deposits in the Jiaodong area. Compared with that
of the Jiaodong gold deposits [56], the distribution of the pyrite Co/Ni ratios of the Miaoan
Au-polymetallic deposit was relatively concentrated (Figure 7), indicating that pyrite is
likely related to volcanism and hydrothermal fluids.

The ratios of Y/Ho, Zr/Hf, and Nb/Ta were stable in the same hydrothermal system.
However, these ratios will have a large range when hydrothermal activity is affected by
metasomatism or other hydrothermal activities [82,83]. In this study, the Y/Ho values of
pyrite (24.6–34.4) were similar to those of the mantle (25–30), indicating the contribution of
mantle materials. The Zr/Hf and Nb/Ta ratios of pyrite in the Miaoan Au deposit vary
widely (19.4–243 and 4.38–70.0). This suggests that the ore-forming hydrothermal system
may have undergone strong metasomatism or been affected by external fluids.

6.3. Physicochemical Conditions of Mineralization

The pyrite in the Miaoan Au-polymetallic deposit has no obvious Ce anomalies
(δCe = 0.79–1.13), but Eu shows a clear negative anomaly (δEu = 0.18–0.94). Ce and Eu are
variable valence elements in REEs that are sensitive to changes in redox conditions. Under
oxidizing conditions, Ce3+ is oxidized to Ce4+ and separated from the other REEs. This
result demonstrates a Ce anomaly, which reflects the redox environment of the system [56].
The range of δCe variation in pyrite in the Miaoan Au-polymetallic deposit was relatively
small, showing a change from a weak negative anomaly to a weak positive anomaly. This
implies that the ore-forming system is in a physical and chemical environment of relative
reduction. In a high-temperature reducing hydrothermal solution, Eu3+ is easily reduced
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to Eu2+ and separated from the hydrothermal system to enter the mineral phase, resulting
in a positive Eu anomaly in the minerals. When the corresponding system is in a low-
temperature reducing environment, it easily produces negative europium anomalies in
minerals [54,56]. The δEu values of the Miaoan Au-polymetallic deposit show significant
negative anomalies (δEu = 0.18–0.94), indicating that the metallogenic system was a low-
temperature reducing environment.

6.4. Source of Ore-Forming Fluids

The δ13CV-PDB values in the Miaoan Au-polymetallic deposit range from −6.3‰ to
−2.0‰, with a relatively concentrated range and heavy C deficiency. The δ18OV-SMOW
values range from 9.3‰ to 17.6‰ and have a wide range (Table 4). The C–O isotopic
composition in the δ13C–δ18O diagram was observed in the region between magmatic-
origin carbonate and marine carbonate rocks (Figure 7).

The CO2 degassing of the hydrothermal fluid had no significant effect on the O isotopic
composition of the fluid, although it significantly impacted the C isotopic composition;
the corresponding calcite δ13C values varied over a wide range [84]. The range of the
δ13C values of hydrothermal calcite in the Miaoan Au-polymetallic deposit was narrow
(from −6.3‰ to −2.0‰). Its genesis was unrelated to the degassing of CO2, although
it is the product of the water–rock interaction between the hydrothermal fluid and wall
rock [84,85]. Previous studies have shown that the δ13CV-PDB values of mantle ejection and
magma range from −5‰ to −2‰ and −9‰ to −3‰ [86], respectively. The δ13CV-PDB
values of sedimentary carbonate range from −2‰ to 3‰, and the δ13CV-PDB values of
marine carbonate are approximately 0‰ [87]. The δ13CV-PDB values of organic carbon
in various rocks range from −30‰ to −15‰ [88]. The δ13CV-PDB values of the Miaoan
Au-polymetallic deposit (from −6.3‰ to −2.0‰) were similar to those of mantle-derived
or magmatic-origin deposits (from −5‰ to −2‰ and −9‰ to −3‰, respectively). These
results are consistent with the C isotopic composition of the Early Cretaceous gold deposits
in the NCC (the δ13CV-PDB is between −7‰ and −3‰) [2]. This interpretation is also
consistent with the high-temperature C isotopic composition in granite intrusive rocks
and basalts [89]. It is suggested that ore-forming hydrothermal fluid may be related to the
devolatilization of magma or the degassing of the mantle during the cooling process.

There were also significant differences in the O isotopic compositions of hydrothermal
fluids from different sources [90]. The δ18OV-SMOW value of the Miaoan Au-polymetallic
deposit (9.3‰–17.6‰) was similar to that of magma or deep crustal fluid (6‰–15‰)
and significantly higher than that of atmospheric precipitation, groundwater, or seawater
(approximately 0‰). This indicates that the source of the ore-forming materials was closely
related to magma or deep crustal fluid. According to the δ13C–δ18O diagram (Figure 9),
the ore-forming fluid should largely be from magmatic sources and contaminated by
crustal materials.

The S isotopic composition of pyrite in the Miaoan Au-polymetallic deposit (δ34S
isotopes from −5.5‰ to 1.6‰) is generally within the range of magmatic S (from −5‰ to
5‰) [74,88,91–93]. This indicated that the ore-forming materials had characteristics of deep
magmatic origin, consistent with the findings of a previous study on the western gold belt
of the NCC gold metallogenic province [2]. Previous studies on the S isotopic compositions
of Au–Cu (Mo) deposits in the central and northern TM regions have a small difference
(Table 3) and a tower distribution (Figure 8), indicating that the main fluid sources of gold
and nonferrous metal deposits in this area are similar. The δ34S values of pyrite, chal-
copyrite, and sphalerite were predominantly between −3.5‰ and 4.3‰ [13,24,27,62–67],
displaying characteristics of deep-seated magmatic sulfur. The variation of pH or oxygen fu-
gacity in hydrothermal systems may be responsible for the fractionation of S isotopes [27,67].
The S isotopic composition of various sulfides and sulfates crystallized from the hydrother-
mal system is largely dependent on temperature, pH, oxygen fugacity (ƒO2), and ionic
strength. Statistical analysis of the S isotopic composition of metal sulfides and sulfates in
different deposits in the northern TM shows that δ34S values exhibited a descending trend:
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δ34Spyrite > δ34Ssphalerite > δ34Schalcopyrite > δ34Sgalena [13,24,62,64,68]. This indicates that the
S isotopes in the ore-forming system have reached fractionation equilibrium, and the S
isotopic composition of sulfide represents the S isotopic composition in the ore-forming
fluids. In addition, the δ34S values of gold and nonferrous metal deposits are consistent
with those of Mesozoic granites (Figure 10), indicating that gold and nonferrous metal
mineralization may be closely related to the Cretaceous magmatic activity. The S isotopic
composition in the Liyuan gold deposit obviously shows a larger variation range com-
pared to other deposits in this area. This may be due to some ore-forming fluids from the
surrounding rocks.
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6.5. Formation Mechanism of the Deposit

The trace element and S–C–O isotope compositions of pyrite grains show that the
ore-forming fluid of the Miaoan Au-polymetallic deposit was a Cl-rich reductive fluid.
Its ore-forming materials were mainly derived from mantle magma sources and were
contaminated by crustal materials. The Mesozoic complex intrusions (e.g., the Laiyuan
complex intrusion) in the NTM region show a crust-mantle mixing genesis. The magmatic
activity during this period was spatiotemporally related to the mineralization of Au, Cu,
and Mo in this region. Importantly, eastern China experienced drastic tectonic transitions
and the destruction of the North China Craton in the Mesozoic [96–99]. The destruction
of the North China Craton, Mesozoic magmatism, and large-scale gold mineralization
in the NTM region, which share the same peak age, suggest a close genetic relationship
between them [2,3,100]. Thus, we propose that the Miaoan Au-polymetallic deposit is a
decratonic gold deposit. The destruction of the North China Craton induced the upwelling
of asthenospheric materials, which resulted in intense crust-mantle interactions, large-
scale Mesozoic magmatic activity, and simultaneous Au mineralization around the NCC
destruction zone during the Mesozoic (Figure 11).
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7. Conclusions

(1) The Au mineralization shows a close spatial relationship with skarn-type Cu–Fe and
Cu–Zn mineralization in the Miaoan Au-polymetallic deposit.

(2) The Miaoan Au-polymetallic deposit was formed at 129.5 ± 2.4 Ma as indicated by
the pyrite Rb–Sr isochron age, which is consistent with the age of magmatic rocks
exposed in this deposit, suggesting a genetic relationship between them.

(3) Large amounts of mantle-derived materials were involved in ore-forming fluids, as
indicated by the S isotopes of pyrites and the C–O isotopes of calcites and ores.

(4) The destruction of the North China Craton induced the upwelling of asthenospheric
materials, which resulted in intense crust-mantle interactions, magmatic activity, and
Au mineralization.
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