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Abstract: The water leaching solid residues (WLSR) obtained from salt-roasting Egyptian boiler ash
are considered an essential secondary resource for (13%) nickel and (5.6%) zinc extraction. Hence,
the current study aims for the cost-effective and high purity Ni, Zn, Fe and Mg metal ion extraction
from (WLSR) using a sulfuric acid leaching process. The factors affecting the percentage recovery
of Ni, Zn, Fe and Mg from WLSR, including leaching temperature, time, acid concentration and
solid/liquid ratio, have been investigated. The obtained leaching solutions were analyzed chemically
using ICP, and the different precipitates were analyzed mineralogically using XRD and EDX analysis
and chemically using XRF. The maximum percentage recovery of Ni, Zn, Fe and Mg was 95.02%,
90.13%, 66.29% and 75.73%, which was obtained under the optimum leaching conditions of 8% H2SO4

concentration and 1/15 solid/liquid ratio at 85 ◦C for 240 min. The effect of pH, Fe2O3 dosage as
nucleating agent and the precipitation duration on iron removal and Ni and Zn loss have been
thoroughly studied. It has been found that >95% of the contained iron impurity can be removed,
while nickel and zinc losses are around 4.2% and 3.8%, respectively. Additionally, a pH of 6 and
0.45 mol/L concentration of H2C2O4 was utilized to precipitate Mg as MgC2O4.2 h2O, demonstrating
that the precipitation efficiency of Mg reaches 96.9%. Nickel and zinc precipitation efficiency was
92.25% and 85.51%, respectively, by raising the solution pH to approximately 9. The kinetic of
Ni and Zn dissolution has been investigated to explain the mechanism prevalent and the factors
influencing the leaching process. It has been found that the nickel leaching kinetic is controlled by
both diffusion through an inert porous layer and by chemical reaction with an activation energy of
20.25 kJ.mol−1. Meanwhile, the kinetic of zinc leaching is controlled by solid product layer diffusion
with an activation energy of 11.67 kJ mol−1.

Keywords: extractive metallurgy; nickel; zinc; Egyptian boiler ash; waste recycling; sulfuric acid
leaching; precipitation; leaching kinetics; activation energy

1. Introduction

Nickel has unique physical and chemical properties that enhance its utilization in
a wide range of industrial and everyday applications including alloy production; food,
military, electroplating and energy industries; and the production of nickel-cadmium
batteries and automobiles [1–3]. Until now, stainless steel has been the primary use of
nickel production by about 65% due to the mechanical and anticorrosive qualities of nickel
when mixed with other metals [4–6]. On the other hand, there are two main categories of
users in industrial applications of zinc first and end-users. Brass, die-casters, galvanizers
manufacturers and comparatively modest applications such as chemical processing are
among the first users. End-users of Zn, such as cathodes in batteries and those in the
hardware, automotive, building, furniture, electronics, medical, toy and textile sectors,
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utilize the product of the initial users as an input in their manufacturing processes [7].
The International Zinc Association has confirmed that over 70% of Zn production globally
comes from mined ores, with the remaining 30% coming from recycled or secondary Zn
resources. The production of Zn from natural sources is both expensive and complicated.
Currently, the firstly mined Zn ores only contain 5%–15% Zn, and sphalerite mineral is
the most abundant source of Zn. Oxidized ores containing Zn in various carbonate and
silicate minerals have long been a significant source of Zn [8,9]. Ni-sulphide ore contains
0.2%–2% Ni and contributes approximately 60% of global Ni output, and it represents 30%
of all known reserves. On the other hand, Ni laterites contain 1%–4% Ni, which accounts
for 70% of all known resources, and are responsible for the remaining 40% of worldwide
Ni output [10–13].

The depletion of Ni/Zn ores and the increasing global demand for these metals has
necessitated extensive research on their extraction from secondary resources and/or low-
grade ores [14]. Hence, its availability is a vital criterion for maintaining the output levels
required to meet the demands of end customers [6,15]. Compared to the low content of Ni
and Zn in the Ni/Zn-containing ores, Ni/Zn-containing wastes and scrap are considered a
promising alternative to produce Ni and Zn due to their high Ni and Zn contents and easy
extraction. Only around 40% of accessible nickel-bearing scrap is now recycled, indicating
that nickel production from secondary materials containing (30%–72% Ni) has a lot of
potential. The other 60%, in the form of solid wastes such as batteries, spent nickel-based
catalysts, scrap metal, spent solutions, superalloys and non-land resources such as sea
nodules, can be found and treated [16]. On the other hand, some industrial processes
generate solid wastes in the form of ashes with relatively high amounts of vanadium
(4.4%–19.2%), nickel (2.7%–8.5%) and zinc (1.3%–4.2%) [17–20], which makes it a beneficial
and promising resource for the recovery of these important elements [14,21,22]. This
material has no mining or grinding expenses, unlike other resources that are restricted
and/or of low quality, because the material is generated on a regular basis as fine and
agglomerate wastes from electricity stations [23].

Boiler ash is a solid waste formed by the combustion of heavy fuel oil (HFO) in
power plants, from which several million tons of waste are produced annually. The
generation of this ash has negative effects on the environment [24]. In order to reduce
the environmental negative effects of this ash, the extraction of metals including nickel
and zinc from boiler ash is of critical importance because: (1) nickel and zinc are two of
the most hazardous metals and need to be reclaimed; and (2) their existence in this ash
poses a serious hydrometallurgical and environmental conservation challenge [17,19,25].
Currently, there are many methods and techniques used for the processing of boiler ash,
including salt roasting-water leaching and direct acidic leaching. One of the previously
stated technologies, direct acidic leaching, has numerous drawbacks, such as the lack
of selectivity in leaching the target metals, such as vanadium, nickel, zinc, iron, and
magnesium, that are all dissolved in the solution. Additionally, the process uses large
quantities of high acid concentration and generates leachate containing a lot of hazardous
elements that cause some problems in the later precipitation and purification processes; the
process also uses an oxidizing agent, which makes it costly [26–29]. On the other hand, salt
roasting–water/acid leaching of boiler ash is a traditional way to recover vanadium and
concentrate the ashes to increase its nickel and zinc content [30–35]. After the extraction of
high-purity vanadium, the water leaching residue (WLSR) still contains a significant level
of heavy metals and other important minerals, such as Ni, Zn and Pb; therefore, they are
regarded as prospective resources for the extraction of Ni and Zn [36–38].

There are two principal methods for processing the solid waste to extract the valuable
metals from it, including the following. (1) Hydrometallurgy, in which the valuable metal
is leached from solid waste into a solution and then recovered from this solution. The
main hydrometallurgical methods are classified according to the type of used leaching
agent into three main groups of acidic leaching (i.e., HCl, H2SO4 and HNO3), alkaline
leaching (i.e., NaOH and Na2CO3) and a combination of acidic and alkaline leaching.
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(2) Pyrometallurgy, in which the solid waste is heated to a high temperature to allow the
separation of valuable metal [16,39,40]. Due to the cheap operational and energy costs,
hydrometallurgical processing is frequently chosen as the preferred method for recovering
nickel and zinc from fly ash [25]. Direct acidic leaching is used to dissolve almost all
valuable metals into the solution from various types of solid wastes and then extract these
metals separately by appropriate methods [41–56].

Due to the previous mentioned advantages, extracting nickel and zinc from boiler ash
is a compelling alternative, as it allows the recovery and recycling of the metal values and,
at the same time, avoids potential environmental damage or risks of these wastes. The main
objective of the current study is the extraction of nickel, zinc, iron and magnesium with
high purity from water leaching solid residue (WLSR) using a cost-effective and selective
dilute sulfuric acid leaching process. The parameters affecting the leaching process, in
addition to the mechanism of metal leaching in solutions and its subsequent precipitation,
have been investigated. The kinetics of metal ion leaching process have been also studied.

2. Materials and Method
2.1. Materials

Water leaching solid residue (WLSR) containing high-grade nickel and zinc was
obtained from the processing of Egyptian boiler ash (collected from one of the biggest
Egyptian thermal power plants, which uses natural gas and heavy oil as a fuel, located
in kuriemat, Egypt, supplied by Nuclear Material Authority) using salt roasting–water
leaching processes for Vanadium extraction. The optimum conditions for roasting and
water leaching processes have been optimized in the previous study as follows: 850 ◦C,
20 wt.% NaCl dosage, 2.5 h and 1/10 solid/liquid ratio for 90 min. The used water leaching
solid residue (WLSR) sample was dried and ground to 63 µm and then mixed thoroughly
to be processed in the subsequent leaching processes for the extraction of valuable metals
including Ni, Zn and others.

2.2. Methods
2.2.1. Acidic Leaching of Nickel and Zinc

In the leaching process, the WLSR sample was digested using a sulfuric acid solution
in a 250 mL three-neck flask. The sulfuric acid solution with different concentration was
prepared by adding the predetermined specific amount of H2SO4 to the distilled water at
atmospheric pressure, and all experiments were carried out using a constant weight of the
solid sample of 20 g. The three-neck flask was designed so that one neck was fitted with a
reflux condenser to maintain the concentration of the species in the solution, the second for
a thermometer, and the last was used either for a mechanical starrier or inlet/withdrawal
of the samples or for pH measurements. The reaction suspension was agitated with a
mechanical stirrer at a rate of 500 rpm, then heated directly to the specified temperature
using a hot plate. After the completion of the leaching experiment, the obtained slurry
was cooled and then filtered with a vacuum pump. The filter cake was washed with a
small amount of warm distilled water to remove and separate the released Zn and Ni
ion and then made up to volume; then, the washed spent cake was dried at 110 ◦C in
a drying oven. The metals (Ni, Zn, Mg and Fe) content in the pregnant solution was
analyzed by inductively coupled plasma–atomic mass spectrometry (ICP-MS, a Perkin
Elmer ELAN model 9000, Waltham, MA, USA). To confirm the results obtained by (ICP-MS),
the differences in the chemical compositions of the WLSR before leaching and their sulfuric
acid solid residue (SASR) after leaching were measured using the X-ray fluorescence (XRF)
data, which represent the Ni and Zn percentage recovery. The extraction of these metals
was calculated according to Equation (1).

η (Ni, Zn) =
(

m1·v1

m0·v0

)
× 100% (1)
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where m0 and m1 are the mass of WLSR used in leaching experiments (g) and the concen-
tration of metal ions (Ni, Zn, Mg and Fe) in the filtrate (g/L), respectively. v0 and v1 are the
mass percentage age of metal ions (Ni, Zn, Mg and Fe) in WLSR (%) and the volume of
filtrate (L), respectively.

2.2.2. Removal of Iron and Magnesium from Pregnant Solution

During sulfuric acid leaching, some impurities of Mg, Si, Fe and Al are transferred
into the pregnant solution accompanied with Ni and Zn, which, in turn, affects the Ni and
Zn precipitation rate and hence the purity of the final product, so that they need firstly to
be removed from the pregnant solution.

Firstly, the iron contained in the leachate mainly exists in the form of Fe2+, but Fe3+

ions are inevitable. To maximally improve the purity of the finally produced Ni-Zn, they
had to be eliminated to the minimum possible level. Consequently, the leachate needed
to be pre-treated with an excess of hydrogen peroxide to ensure that all the low valence
Fe2+ were oxidized completely to Fe3+ and reduce the loss of nickel and zinc due to pH
changes in the solution. Then, the iron ions in the pregnant solution were removed by the
method of chemical precipitation method at room temperature. The pregnant solution pH
value was adjusted at pH = 3 by using sodium hydroxide. Additionally, Fe2O3 powder was
added in amounts from 3 g/L to 15 g/L, which was used as nucleating agent. Then, this
mixture was agitated for 10 min to precipitate the iron ions [57]. The obtained precipitate
was filtered from the purified solution by vacuum filtration. Finally, the contents of Ni, Zn
and iron in the purified solution were determined by using ICP-MS instruments. Then,
the concentration of metal ion and the Ni and Zn loss rate were calculated by generalized
Equation (2).

ρ =

(
1− Ca·βa

Cb·βb

)
× 100% (2)

where Cb and Ca refer to the concentration of metal ions (Ni, Zn, Mg and Fe) in the liquor
before and after the precipitation experiment (g/L), respectively. βb and βa are volumes of
the liquor before and after the precipitation experiment (L), respectively.

Additionally, the possibility of recovering magnesium from a solution using the oxalic
acid precipitation method to obtain magnesium oxalate has been investigated, and the
optimal conditions of precipitation have been investigated [57].

2.2.3. Nickle and Zinc Precipitation

After the iron and magnesium were precipitated and removed from the pregnant
solution, the Ni and Zn concentrations in the purified solution increased. The recovery
of Ni and Zn from the leachate was conducted by a direct precipitation method at pH 8.0
for 10 min at 25 ◦C. The Ni and Zn in the solution were subsequentially precipitated as
Ni (OH)2 and Zn (OH)2 until the solution settled. Then, the precipitate was filtered out,
washed, dried at 60 ◦C and calcined at 450 ◦C for 2 h to obtain NiO and ZnO products.

2.3. Sample Characterization

The chemical compositions of the original water leaching solid residue (WLSR) sample
and the chemical changes that resulted from the acidic leaching process were determined
and measured by the method of X-ray fluorescence (XRF), using a Shimadzu XRF-1800
analyzer (XRF-1800, 90 mA, 40 kV, Re anode, Kyoto, Japan). The changes in the mineralogi-
cal composition of WLSR, microstructural compositions during the phase transformations
of the WLSR as well as sulfuric acid solid residue (SASR) and the final precipitate of
nickel and zinc were determined by the method of X-ray diffraction (XRD) (Analytical
X-Ray Diffraction equipment model X′ ′ Pert PRO with Monochromator, Cu-Kα radiation
(λ = 1.542 A) at 50 KV, 40 mA and scanning speed 0.02/s). In order to determine the phase
transformation during the leaching process, different products were also prepared and
carefully investigated using a scanning electron microscope (SEM) Tescan TS 5130MM
equipped with an energy dispersive X-ray (EDX) detector (prepared by Oxford Instruments,
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Abingdon, UK, active crystal area—50 mm2) in addition to a microanalysis system and
YAG crystal as a backscattered electron (BSE) detector. Inductively coupled plasma atomic
mass spectrometry (ICP-MS, a Perkin Elmer ELAN model 9000, Waltham, MA, USA) was
also used to determine metal content accurately on the obtained pregnant solutions after
the acidic leaching process and chemical precipitation.

3. Results and Discussion
3.1. Chemical and Mineralogical Composition of the Used WLSR

The chemical composition of the water leaching solid residue (WLSR) using X-ray
fluorescence analysis (XRF) tabulated in Table 1.

Table 1. Overall chemical analysis of water leaching solid residue (WLSR).

Compound
wt.% Fe2O3 NiO SiO2 ZnO V2O5 CaO Na2O Al2O3 TiO2 MnO MgO K2O P2O5 SO3 PbO L.O.I Others

Water
Leaching

Solid
Residue

24.83 13.23 15.04 5.67 1.25 4.54 1.04 4.67 0.552 0.628 14.21 0.106 0.302 1.38 1.61 1.09 9.85

The mineralogical phase composition of the WLSR analyzed by X-Ray Diffraction anal-
ysis is presented in Figure 1a,b. The results revealed that the WLSR was composed mainly
of the following phases: hematite Fe2O3, magnesioferrite MgFe2O4, nickel magnesium
silicate (Ni, Mg)2(SiO4), zinc aluminum iron oxide Zn(Al, Fe)O4, calcium silicate (Ca2SiO4)
and jadeite (NaAlSi2O6). Meanwhile, the minor phases were nickel sulfide (NiS2), lead
silicate (Pb2SiO4) and nickel sulfate oxide (NiSO4).
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because the Gibbs free energy change (ΔG) of the above Equations (3)–(14) had negative 

Figure 1. XRD patterns of water leaching solid residue (WLSR) of boiler ash (a) before and (b) after
leaching with H2SO4 at the optimum operating conditions.

Further investigation of the water leaching solid residue (WLSR) was carried out
using the backscattered electron image and the corresponding EDX microanalysis results
of the whole area, as shown in Figure 2. The leaching residue had increased roughness
and degradation with irregular semi-circular and cube surface and exhibited very different
morphology from those of the ash roasting process obtained at the optimum operating
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conditions optimized in a previous study by the research group, as shown by Figure 2A.
This confirms that most of the vanadium was leached, leaving nickel and zinc in WLSR.
The EDX results in Figure 2B show that the particles mainly consisted of Ni, 10.47 wt.%; Fe,
19.48 wt.%; Si, 12.49 wt.%; Zn, 5.11 wt.%; and O, 35.15 wt.%, in good agreement with the
data obtained by XRF analysis.
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Figure 2. SEM images of used water leaching solid residue (WLSR) obtained under optimum leaching
conditions of the Egyptian boiler ash (A) and EDX element analysis (B).

3.2. Thermodynamics Analysis of Leaching Process

The reactions of the components in WLSR with H2SO4 according to Equations (3)–(14)
are presented in the thermodynamic diagrams (Figure 3). The original crystal structure
of the residue has been totally changed by means of sulfuric acid leaching. The metallic
components such as iron, zinc, nickel and magnesium in the WLSR were converted into the
corresponding sulfate and leached by the sulfuric acid solution; on the other hand, calcium,
lead and silicon were converted into lead sulfate (PbSO4), calcium sulfate (CaSO4) precipi-
tate and metasilicic acid (H2SiO3) as colloidal precipitate, respectively. The thermodynamic
results shown in Figure 3 illustrate the feasibility of this method for leaching water leaching
solid residue (WLSR) with sulfuric acid to obtain dissolved metal sulfate because the Gibbs
free energy change (∆G) of the above Equations (3)–(14) had negative values in the range
from 0 to 100 ◦C [57,58]. The free energy change of the metals varies in the sequence of
dissolution of Ni > Fe > Mg > Zn.

NiS2 + 2.5O2 + H2SO4 = NiSO4 + 2SO2↑ + H2O (3)

NiSO4 + 2 h+ + 1/2O2 = NiO + SO3↑ + H2O (4)

NiO + H2SO4 = NiSO4 + H2O (5)

Ca2SiO4 + 2 h2SO4 = 2CaSO4↓ + H2SiO3↓ + H2O (6)

MgFe2O4 + H2SO4 = MgSO4 + Fe2O3 + H2O (7)

Pb2SiO4 + 2 h2SO4 = 2PbSO4↓ + H2SiO3↓ + H2O (8)

ZnO + H2SO4 = ZnSO4 + H2O (9)

ZnFe2O4 + H2SO4 = ZnSO4 + Fe2O3 + H2O (10)

Mg2SiO4 + 2 h2SO4 = 2MgSO4 + H2SiO3↓ + H2O (11)

Fe2O3 + 3H2SO4 = Fe2(SO4)3 + 3H2O (12)
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Ni2SiO4 + 2 h2SO4 = 2NiSO4 + H2SiO3↓ + H2O (13)

Fe3O4 + 4H2SO4 = FeSO4 + Fe2(SO4)3 + 4H2O (14)
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3.3. Optimizing the Factors Affecting the Leaching Process of WLSR

The factors affecting the leaching process of WLSR and hence the percentage recov-
ery of Ni, Zn and Fe have been investigated to obtain the maximum recovery. These
factors include the acid concentration, the leaching temperature, solid/liquid ratio and
leaching time.

The effect of sulfuric acid concentration on the extraction of Ni, Zn and Fe has been
investigated by using different acid concentrations in the range 2%–12% (vol%), for 120 min
leaching time, 75 ◦C leaching temperature, 1/10 solid/liquid ratio and 500 rpm rotation
speed [17,20]. The results indicate that the WLSR sample is easily amenable to sulfuric
acid leaching, as shown in Figure 4a. Hence, by gradually increasing acid concentration
from 2% to 8%, the dissolution percentage of Ni, Zn and Fe increased almost linearly
from 43%, 36% and 15% until they reached 79%, 74%, 42%, respectively. This means
that low acid concentration is insufficient to dissolve metal ions from WLSR sample,
while at 8% acid concentration, the participation of a large part of the acid in the internal
reactions has been noted in Equations (10)–(13), which improves the extraction of metal ions.
Otherwise, by increasing the acid concentration more than 10%, the metal leaching efficiency
remained stable due to more generation of colloidal silicic acid and solid CaSO4, which
prevent unreacted particles and hinder the dissolution of more desirable ions [14,19,59]. In
consideration of reducing the acid consumption cost, a sulfuric acid concentration of 8%
was selected as the best value and used in the subsequent leaching experiments.
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The effect of leaching temperature on the dissolution of Ni, Zn and Fe has been studied
by varying the leaching temperature range from 35 ◦C to 95 ◦C, and the other leaching
conditions were fixed as mentioned above. The results presented in Figure 4b reveal the
important effect of leaching temperature on obtaining a reasonable dissolution of Ni, Zn
and Fe from WLSR. Leaching at a low temperature (35 ◦C) under the above conditions
gives a low recovery of Ni, Zn and Fe of no more than 47.9%, 42% and 10%, respectively.
Further increasing the leaching temperature to 85 ◦C increases the dissolution of Ni, Zn and
Fe to 83%, 78% and 45%, respectively. This can be attributed to the fact that the increased
temperature leads to the breaking of the boundary founded in surface of WLSR particles
by increasing the diffusion of H+ ions on their surfaces, which increased the activity of
the molecules, thereby increasing the collision probability between WLSR and H2SO4
molecules [14,20,22]. The further increase in the leaching temperature above 85 ◦C had no
significant effect on the extraction of the different metal ions; therefore, 85 ◦C was selected
to be the best leaching temperature in the subsequent leaching experiments.

The effect of the solid/liquid ratio on the dissolution percentage of Ni, Zn and Fe was
studied using 1/2, 1/5, 1/10, 1/15 and 1/20 S/L ratios, while other leaching parameters
have been fixed. The obtained results presented in Figure 4c show that the solid/liquid
ratio has a considerable effect on the percentage recovery of Ni, Zn and Fe from WLSR.



Minerals 2022, 12, 1084 9 of 25

The dissolution of the metal ions increases with decreasing the pulp density to 1/15 S/L
ratio, which leads to an increase in the recovery to 85% Ni, 80% Zn and 46% Fe. This can be
attributed to a sufficient amount of acid present in the liquid to attack the solid particles.
However, by increasing the S/L ratio to higher values, the Ni, Zn and Fe percentage
recovery decreases [9,20]. This effect could be attributed to the increased solid percentage
in the solution, which decreases the interaction between the ions, thus reducing the proton
ions’ concentration in the solution. Therefore, the best S/L ratio has been selected to
be 1/15.

The effect of leaching time on Ni, Zn and Fe percentage recovery has been investigated
by varying the leaching time from 30 to 300 min with all other leaching parameters fixed.
The obtained results presented in Figure 4d indicate that the dissolution percentage age of
Ni, Zn and Fe increases as the leaching time increases to 240 min, to maximum values of
95.02% Ni, 90.13% Zn and 66.29% Fe. Hence, the leaching time of 240 min was selected as
the best leaching time. Table 2 presents the XRF analysis results of the sulfuric leaching
solid residue (SLSR) under the optimum leaching conditions (8% H2SO4, 85 ◦C, 1/15 S/L,
240 min), which demonstrates that the main elements in the final residue were Fe, Si, Ca
and Mg.

Table 2. Overall chemical analysis of sulfuric acid solid residue (SASR).

Compound
wt.% Fe2O3 NiO SiO2 ZnO V2O5 CaO Na2O Al2O3 TiO2 MnO MgO K2O P2O5 SO3 Pb L.O.I Others

Final Residue
after H2SO4

18.93 0.89 26.57 0.64 0.072 10.2 <0.01 5.81 0.377 0.101 6.83 0.052 <0.01 9.75 3.61 8.13 6.34

The sulfuric acid solid residue (SASR) was characterized by XRD analysis, as shown
in Figure 1a,b. In comparison with the XRD analysis of the WLSR sample, it can be found
that almost no peaks attributed to minerals bore nickel (e.g., Ni2SiO4, NiS2 and NiSO4) or
zinc. This confirms the thermodynamic analysis of the chemical reactions described above
in Section 3.2.

However, after leaching, the intensities of peaks corresponding to CaSO4 and PbSO4
were increased. In addition, the intensity of SiO2 peak increased after leaching, indicating
the complete dissolution of these accompanying elements. For further explanation of the
phase transformation, SASR samples were investigated using scanning electron microscopy
(SEM), and the obtained results are shown in Figure 5. The results indicated that the residue
contained a negligible concentration of heavy metals. However, this solid residue (SASR)
is recommended to be used in the next study as thermally treated adsorbents to remove
undesirable ions from industrial wastewater.
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Figure 5. Backscattered electron image of SASR (a); distribution mapping of the different elements (b)
and EDX element analysis (c).

3.4. Purification and Recovery of Ni and Zn from Leachate
3.4.1. Precipitation Behavior of Fe and Mg from the Leachate

Table 3 shows the complete chemical analysis of leachate using ICP-OES analysis,
which contains Ni (11.417 g/L) and Zn (4.6462 g/L), as well as Fe (13.168 g/L) and Mg
(9.783 g/L), which are the most inevitable dissolved impurities in solution that need to be
removed to obtain a final Ni-Zn product of high purity.

Table 3. Chemical composition of the leachate (g·L−1).

Components Ni Zn Fe Mg V Al Ca Ti K Na Mn Pb Si SO42−

Content,
(g/L) 11.42 4.65 13.17 9.79 1.17 0.96 0.13 0.31 0.06 1.31 0.46 0.02 0.88 150.25

The Eh–pH graphs were obtained using the software HSC Chemistry 9.3 at 25 ◦C, and
the obtained results are shown in Figure 6. The top and lower dotted lines in each graph
depict the O2/H2O and H2O/H2 stability limitations, respectively. In the water-stable zone,
nickel may stably exist in the stable form of Ni2+ when the solution pH value is less than 6,
as illustrated in the Ni-H2O system in Figure 6a, and when the pH value rises above 8, Ni2+

is transformed to Ni(OH)2. As demonstrated in Figure 6b, zinc can exist in the solution
in the form of Zn2+ at a pH lower than 7; in the stable region of water, as indicated by the
Zn-H2O system, Zn2+ will be transformed to Zn(OH)2 when the pH value rises over 8. The
Fe-H2O system is depicted in Figure 6c. It is shown that, in the water-stable region of the
lower pH solution (<1.4), iron can exist in the form of Fe2+ and Fe3+. The latter (Fe3+) will
be transformed to Fe(OH)3 precipitation when the pH value surpasses 1.4. Mg2+ can stably
exist in acidic solutions, whereas Mg(OH)2 can stably exist in alkaline solutions, as shown
in the Mg-H2O system in Figure 6d.
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Figure 7a illustrates the species distribution of 13.168 g/L Fe in sulfuric acid solution
(156.25 g/L SO4

2−) at various pH levels. It can be observed that Fe3+ ions react with SO4
2−

to create FeHSO4
2+, FeSO4

+, and Fe (SO4)2
− complex ions at pH value below 3. When the

pH rises over 3.5, Fe(OH)3 precipitates progressively, and beyond 4.8, virtually all iron
complex ions are turned into Fe(OH)3.

At different pH settings, the rate of Fe ion precipitation and the rate of Ni and Zn
ion losses were studied. The precipitation time was set at 10 min, the Fe2O3 nucleating
agent was introduced at a concentration of 8 g/L, and the stirring speed was set at 500 rpm.
Figure 7b shows the measured findings, which indicate that the precipitation rate of Fe
ions was more than 89% in the pH range of 3 to 6 but only 25.7 percent when the pH was 2.
With a rise in pH from 2 to 8, the rate of nickel and zinc loss increased dramatically from 7%
and 3% to 65% and 60%, respectively. As a result, a pH of about 4.8 ± 0.2 was confirmed to
be the best value. The loss of nickel and zinc ions can be attributable to two factors. One is
the precipitation of certain nickel and zinc ions due to the solution’s high pH value, which
may be avoided by lowering the pH as much as possible. The other is the adsorption loss
due to iron ion precipitation, which is unavoidable but can be reduced by shortening the
precipitation reaction time. Thus, in the next section, the appropriate precipitation time
was determined.
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The effect of Fe2O3 addition dosage (4, 6, 8, 10, 12 and 15 g/L) as a crystallizing agent
on the removal of Fe and loss of Ni, Zn was examined under the following conditions:
a pH value of nearly 5, for 10 min precipitation time, 500 rpm stirring speed. Figure 7c
presents the Fe precipitation rate as well as the Ni and Zn loss rates. It can be observed
that, as the amount of Fe2O3 addition rises, the Fe precipitation rate increases dramatically.
At the same time, the adsorption loss of Ni and Zn is significantly reduced. As a result, the
dose of 12 g/L Fe2O3 was selected as the best value. This confirms that Fe2O3 is an efficient
crystallizing agent for eliminating Fe from leachate.

The effect of precipitation time on Fe ion precipitation rate and the rate of loss of Ni
and Zn ions was investigated by varying the precipitation time in the range from 5 to
30 min with a 5 min interval. The precipitation was carried out using a dosage of 12 g/L
Fe2O3 as a crystallizing agent, at 5 pH and 500 rpm stirring speed. Figure 7d shows that,
with the addition of a Fe2O3 powder as a crystallizing agent, the iron precipitation rate can
approach 95% after 10 min, while the iron precipitation rate does not exceed 60% without
the addition of a Fe2O3 powder as a crystallizing agent, as shown by the dotted line. On
the other hand, the losing rate of Ni and Zn is noticeably increased after 10 min. As a
result, the precipitation time of 10 min was selected as the best magnitude to precipitate
the maximum available amount of Fe ions and, at the same time, reduce the losing rate of
Ni and Zn ions to the minimum value.

The obtained Fe precipitate was then separated from the leachate, calcined at 600 ◦C for
2 h and characterized using XRD and SEM-EDX. The XRD pattern of the calcined precipitate
is shown in Figure 8, demonstrating that the calcined product was Fe2O3. Figure 9 displays
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a micrograph of the precipitate, with EDX analysis and distribution mapping of Ni, Zn and
Fe elements. The obtained Fe precipitate was composed mainly of iron, with very small
amounts of Ni and Zn ions.
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According to the above-mentioned results, at 5 pH, 12 g/L added Fe2O3 dosage and
10 min precipitation time, the rate of iron precipitation reaches 95.5%, whereas Ni and
Zn ions loss are around 4.2% and 3.8%, respectively. The purification steps of the Ni/Zn-
bearing leachate are listed in Table 4. It was found that the predominant constituent in the
purified solution after Fe precipitation was Ni and Zn ions, which have impurity compo-
nents presented in an undesirable amount (e.g., Mg) and hence need extra purification.

Table 4. Overall composition of the purified leachate before and after Fe and Mg precipitation (g/L).

Components Ni Zn Fe Mg V Al Ca Ti K Na Mn Pb Si SO42−

Before purification 11.417 4.6462 13.168 9.783 0.981 1.016 0.1283 0.3142 0.060 1.3087 0.461 0.0228 0.883
After purification
(Fe precipitation) 10.901 4.397 0.305 9.564 0.875 0.862 0.1323 0.298 0.0596 1.288 0.062 0.0513 0.747

After purification
(Mg precipitation) 10.78 4.355 0.182 0.254 0.564 0.314 0.0216 0.215 0.0544 0.991 0.035 0.0489 0.605 150.25

Composition of
the residual

solution
(Ni–Zn

precipitation)

0.051 0.046 0.082 0.098 0.235 0.076 0.032 0.209 0.0383 0.087 0.062 0.0416 0.327

As previously stated in Section 3.4.1, the magnesium content in the sulfuric acid
solution can be converted to magnesium hydroxide precipitate by elevating the pH over
9.0. This procedure uses a lot of NaOH; in addition, the alkaline solution that results is
harmful to the environment. Magnesium may be converted into magnesium oxalate by
oxalic acid, which is an ecologically beneficial organic acid. Therefore, in our study, oxalic
acid was employed as a precipitant to remove magnesium from the leachate. Figure 10
illustrates the species distribution of 9.564 g/L Mg and 40 g/L C2O4

2− (equal 1.5 molar
ratio (H2C2O4)/(Mg)) in a sulfuric acid solution (150.25 g/L SO4

2−) at various pH levels. It
can be observed that magnesium mostly occurs in the form of a MgSO4 complex or Mg2+

in a highly acid solution (pH < 2). On the other hand, the soluble magnesium ions are
progressively converted into a precipitate of magnesium oxalate as the pH of the solution
rises, and under a pH range of 4 to 10, magnesium oxalate is the most common form of
magnesium. Magnesium oxalate is gradually transformed into magnesium hydroxide
precipitation when the pH of the solution is raised. Anyway, adopting the relevant process
conditions as follows—0.45 mol/L oxalic acid, 6 pH solution, 2 h precipitation time and
25 ◦C precipitation temperature—and according to the findings, nearly all magnesium
(96.97%) existed as MgC2O4 precipitate. Then, the slurry was filtered to separate the
precipitate and then dried in a drying oven at 90 ◦C. The dried Mg containing precipitate
was then characterized using XRD to detect the phases of the precipitate as shown in
Figure 11. The chemical composition of the Zn and Ni containing solution after Mg
precipitation is presented in Table 3, which indicates that the Mg concentration was reduced
to 0.254 g/L.
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3.4.2. Recovery of Nickel and Zinc from Raffinate

Once Fe and Mg have been removed from the solution, Ni and Zn can then be pre-
cipitated by raising the solution’s pH to approximately 8.0 by adding NaOH. Figure 12a,b
illustrates the species distribution of 10.78 g/L Ni and 4.335 g/L Zn in sulfuric acid solution
(150.25 g/L SO4

2−) at various pH levels. It can be observed that nickel mostly occurs in
the form of Ni (SO4)2

2− complex in a weak acid solution (pH < 5). When the pH rises over
6.0, Ni(OH)2 precipitates progressively, and beyond 8.0, almost all nickel complex ions are
turned into Ni(OH)2, as shown in Figure 12a.
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On the other hand, Figure 12b demonstrates that zinc ion mainly exists in the formed
in ZnSO4 at the pH value of solution less than 7, and as the pH value increases above 8.0,
the soluble Zn ions are progressively converted into ZnOH+ and Zn(OH)2 precipitate. With
the further increase in the pH value to above 10, the Zn (OH)2 precipitate is re-dissolved as
Zn(OH)3

− and Zn(OH)4
2−. In any case, the recovery of Ni and Zn from purified solution

was conducted by a direct precipitation method at pH 9, allowing it to stand for 1 h at 25 ◦C,
and the precipitation efficiency was over 92.25% and 85.51% for Ni and Zn, respectively.
The precipitates were then calcined at 450 ◦C for 2 h before being characterized using
chemical analysis and SEM-EDX. The XRD pattern of the calcined precipitated is shown in
Figure 13, demonstrating that the calcined product consisting mainly of mixed Ni-Zn oxide.
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According to the chemical analysis presented in Table 5 and EDX of Ni/Zn hydrox-
ide precipitate shown in Figure 14, the product composed mainly of Ni (37%) and Zn
(23%) would require additional processing steps (i.e., re-leaching and/or solvent extrac-
tion/electrowinning) to recover the containing metals’ values. While this is a saleable
product and easily integrated into any existing Ni and Zn extraction flowsheets, it would
command a considerably lower price than the pure metal, and thus, this would affect the
economics of any plant using this process.
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Table 5. Overall composition of the Ni/Zn product (wt.%).

Elements NiO ZnO Fe Al Mn Ca Mg K pb Na Si V Ti

(wt.%) 57.75 36.86 0.85 0.195 0.068 1.883 0.132 0.016 0.043 0.985 1.138 0.016 0.062
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Figure 14. Scanning electron micrographs for Ni-Zn precipitation powder (a), distribution mapping
of the different elements analysis (b) and EDX element analysis of the red rectangle area (c).

According to the obtained results of the current study mentioned above, the proposed
and recommended flowsheet for the extraction of Ni, Zn, Fe and Mg from water leaching
solid residue is shown in Figure 15.
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3.5. Kinetics Analysis
3.5.1. Leaching Kinetics of Nickel

Heterogeneous fluid–solid reaction may be used in leaching processes. The reaction
progress can be controlled by the following steps: (1) the mass transfer of reactants and
products between the fluid molecules and the external surface of the solid particle, (2) the
diffusion of reactants and products within the pores of the solid, (3) chemical reaction
between the reactants in the fluid and in the solid [60,61]. One or more of these factors might
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control the rate of the reaction according to the slowest link step. The un-reacted shrinking
core model (SCM) is the most used mathematical model to describe the heterogeneous
reactions in leaching mineralogical ores. In discussing the following kinetic properties, the
controlling steps in the SCM were checked for the whole reaction time.

1 − (1 − x )2/3 = K1t (15)

1 − (1 − x )1/3 = Kct (16)

1 − 3 × (1 − x )2/3 + 2 × (1 − x) = Kdt (17)

where x is the conversion fraction of Ni or Zn particles, K1 is the apparent rate constant
(min−1) for the fluid film diffusion, t is the reaction time, Kc is the rate constant for the
chemical reaction, and Kd is the rate constant for diffusion through product layer.

The relationships of nickel extraction versus leaching time at different temperatures are
plotted in Figure 16a, which presents that the dissolution of nickel increases gradually by
increasing time and temperature. However, to understand the type of leaching mechanism
prevalent of nickel leaching in sulfuric acid process, the leaching experiment during the
whole reaction time was investigated to find which kinetic Equations (15)–(17) model can
fit the reaction isotherms. Amongst the three controlling mechanisms, the liquid–film
diffusion resistance is eliminated or minimized by effective stirring.
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The obtained results are presented in Table 5 and Figure 17a,b. The left sides of
Equations (15)–(17) were plotted as a function of time at different leaching temperatures
and according to the obtained data from the optimal operating conditions. The values
of the reaction rate constants (K) were determined from the slope of the straight line of
the relation between kinetic model and time. It was found that the correlation coefficient
value for internal diffusion (kd) was 0.9990, while for chemical reaction (kc), it was 0.9763
and 0.9363 for liquid film diffusion. Based on the R2 values, it can be inferred that the
predominant dissolution mechanism of nickel from WLSR is diffusion-controlled only.
This due to production of a solid layer that appears to be a hindrance to the progression
of the reactions and cannot be dissolved quickly [9]. Hence, the mass transfer efficiency
in the generated layer was lower, which made the diffusion of reactants through it the
control step.
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The apparent activation energy can be calculated by the Arrhenius Equation (18):

Lnk = LnA− Ea

RT
(18)

where A is the frequency factor, Ea is the apparent activation energy of the reaction, R is
the universal gas constant, and T is the reaction temperature in kelvin.

The logarithmic values of the reaction rate constants (K) of WLSR in sulfuric acid
leaching were plotted against the reciprocal of the absolute reduction temperature (T),
with obtained the Kd value in Table 6, and the result is displayed in Figure 18. Using
the Arrhenius Equation (18), apparent activation energy (Ea) in the whole Ni leaching
process was calculated from the slope of straight line to be 20.26 KJ/mol (R2 = 0.9917);
this value is lower than the apparent activation energy compared to other studies [14,36].
The diffusion-controlled process has an activation energy of around <12 kJ/mol, while
chemical reaction-controlled process often has an activation energy of >40 kJ/mol; when
activation energy is between 12 and 40 kJ/mol, the process is controlled by both diffusion
and chemical reaction [62].

Table 6. Nickel leaching kinetics parameters of different models during the reaction time.

Temperature

Liquid Film Diffusion
Control

Surface Chemical Reaction
Control

Solid Product Diffusion
Control

1 − (1 − x)2/3 = k1t 1 − (1 − x)1/3 = kct 1 − 3(1 − x)2/3 + 2(1 − x) = kdt

k1 R2 Kc R2 Kd R2

35 ◦C 0.0022 0.9201 0.0013 0.9493 0.001 0.9870
55 ◦C 0.0033 0.9282 0.0020 0.9603 0.0016 0.9836
65 ◦C 0.0036 0.9336 0.0023 0.9684 0.0020 0.9889
75 ◦C 0.0040 0.9369 0.0026 0.9759 0.0025 0.9944
85 ◦C 0.0044 0.9363 0.0030 0.9763 0.0030 0.9990
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The current study shows that the apparent activation energy was between those of a
typical diffusion-controlled process and a chemical reaction-controlled process, providing
more evidence to prove that the sulfuric acid leaching process was controlled by both
internal diffusion and interface chemical reactions. This can be attributed to the fact that
the sulfuric acid concentration decreased as the leaching process proceeds, and thus the
chemical reaction rate decreased, resulting in the chemical reaction becoming part of the
rate-controlling step. Since the calculated value of 20.26 KJ/mol is near to the value of
12 kJ/mol significantly, the diffusion of the solid product layer contributed more than the
chemical reaction to control the rate of leaching process [36]. Hence, the leaching rate
improved with the increase in the leaching temperature and H2SO4 concentration and
decreased the particle size of WLSR.

3.5.2. Leaching Kinetics of Zinc

The leaching kinetics of zinc were studied by investigating the leaching experiments
at 35 ◦C, 55 ◦C, 65 ◦C, 75 ◦C and 100 ◦C; the obtained results were plotted in Figure 16b,
applying the left sides of Equations (15)–(17) vs. time at different leaching temperatures
and based on data acquired from optimization studies of each condition. Table 7 and
Figure 19 summarize the results. It was found that Equation (17) presented a better fit of the
leaching experimental result, and the correlation coefficient value for (internal diffusion)
kd was 0.9566. This proved that the predominant dissolution kinetic mechanism of zinc
from WLSR was controlled by the diffusion of reactants through a solid generated layer [9].
This might be because leaching occurs on the thin layer around the surface rather than on
the surface itself, as the SCM suggests.
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Table 7. Zinc leaching kinetics parameters of different models during the reaction time.

Temperature/◦C

Liquid Film Diffusion
Control

Surface Chemical Reaction
Control

Solid Product Diffusion
Control

1 − (1 − x)2/3 = k1t 1 − (1 − x)1/3 = kc t 1 − 3(1 − x)2/3 + 2(1 − x) = kdt

k1 R2 Kc R2 Kd R2

35 ◦C 0.0022 0.9010 0.0012 0.9564 0.0011 0.9970
55 ◦C 0.0030 0.9382 0.0018 0.9613 0.0014 09986
65 ◦C 0.0033 0.9214 0.0020 0.9766 0.0016 0.9965
75 ◦C 0.0036 0.9352 0.0023 0.9677 0.0018 0.9921
85 ◦C 0.0039 0.9344 0.0025 0.9688 0.0021 0.9872
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2. The precipitation approach using Fe2O3 as a nucleating agent was effective in re-
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The Arrhenius Equation (18) was plotted as Lnk vs. 1/T for different temperatures,
as shown in Figure 18. Arrhenius Equation is used to calculate the apparent activation
energy (Ea) of the zinc acid leaching process from the slope of the straight line, which is
11.67 kJ/mol (R2 = 0.9927). Both nickel and zinc have a lower apparent activation energy,
implying that they are easy to leach, which agrees with the thermodynamic results in
Section 3.2.

4. Conclusions

In the current study, the hydrometallurgical processing of the water leaching solid
residue obtained from salt-roasting of the Egyptian boiler ash for high purity and cost-
effective extraction of valuable metals including Ni, Zn, Fe and Mg has been investigated.
The obtained results can be concluded as follows:

1. The maximum extraction of Ni, Zn, Fe and Mg from water leaching solid residue
after vanadium extraction from salt-roasting of the Egyptian boiler ash was 95.02%,
90.13%, 66.29%, and 75.73%, respectively, under the optimum leaching conditions of
8% (vol%) H2SO4 concentration, 85 ◦C leaching temperature and 1/15 S/L ratio for
240 min leaching time.

2. The precipitation approach using Fe2O3 as a nucleating agent was effective in remov-
ing the iron ions from the pregnant solution. The removal rate of iron ions increases to
its maximum value of 95% by modifying the pH of the solution and the precipitation
duration, with a minimal loss rate of Ni (4.2%) and Zn (3.8%).

3. An effective Mg precipitation efficiency of 96.9% was obtained after Fe removal, using
0.45 mol/L oxalic acid dose, 6 pH and 2 h precipitation time at ambient temperature.
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Then, nickel and zinc in the purified solution was precipitated at pH of 9 as Ni-Zn
hydroxide, which was subsequently transformed into Ni(OH)2, Zn(OH)2, and NiO-
ZnO by its calcining at (450 ◦C). The precipitation efficiency of Ni and Zn was 92.25%
and 85.51%, respectively, and the final calcined product was composed mainly of 37%
Ni and 23% Zn.

4. A kinetics analysis revealed that the nickel leaching process is controlled by both
diffusion through solid product layer and chemical reaction, where diffusion through
solid product layer contributes more, with an activation energy of 20.26 kJ mol−1. The
kinetics of zinc dissolution are controlled by diffusion through solid product layer
with an activation energy of 11.67 kJ mol−1.

5. The chemical and physical composition and properties of the obtained sulfuric acid
solid residue (SASR) enhance and recommend its utilization as adsorbent to eliminate
undesirable ions from industrial effluent.
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