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Abstract: Although studies on starch have developed in polymer chemistry research, their structure-
activity relationship remains indistinct in the flotation depressants field. In this work, the utilization
of five types of causticized starches from different botanical sources as depressants in the flotation of
pentlandite/serpentine pure mineral systems was studied. The branched chain length of the starches
was quantitatively analyzed using a high-performance anion-exchange chromatography system,
and the average branched chain lengths of the causticized starches were obtained. The flotation
results demonstrated that the depression effect of all causticized starches on serpentine had a positive
correlation with the average branched chain length. Zeta potential tests, FTIR experiments, and XPS
analysis confirmed that the causticized starches with a longer branched chain were absorbed more
strongly on the serpentine surface. In the present study, the influence of branched chain length on the
depression effect of causticized starch was investigated, which deepened our understanding of the
depression mechanism of traditional macromolecule depressants and will promote the development
of new macromolecule depressants.

Keywords: causticized starch; depressant; flotation separation; pentlandite; serpentine

1. Introduction

Starch is a class of natural, renewable, and biodegradable polysaccharide polymer [1,2].
Most starches are a mixture of unbranched amylose (content < 30%) and branched amy-
lopectin (content >70%) [3,4]. Amylose consists of linear chains linked by (1→4) bonds,
while amylopectin consists of linear chains linked by (1→4) bonds and branched chains by
(1→6) bonds (Figure 1) [5]. The applications of amylopectin are much broader than those
of amylose because of its solubility (linear chains tend to form insoluble semi-crystalline
aggregates) [6]. For amylopectin, the branched chains have a clear influence the properties
of amylopectin. The main parameter that measures the properties of branched chains is
branched chain length, which is defined by the degree of polymerization of the branched
chains [7]. For instance, J. Jane revealed that branched chain length has a critical impact
on the gelatinization and pasting properties of amylopectin [8]. C. Menzel declared that
the branched chain length of amylopectin has significant implications for the thermal and
mechanical stability of film materials [9].
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Figure 1. Two different molecular structures of starch: unbranched amylose and branched amylopectin.

Starch, starch derivatives, and similar polysaccharides have been frequently used as
depressants in the flotation of sulfide and oxide minerals. For example, they can take effect
in the depression of millerite [10], galena [11], pyrrhotite [12], pyrite [13], chlorite [14],
hematite [15], serpentine [16–20], talc [21–25], forsterite [26], and so forth. At present, the
chemical modification of these polymers to improve their depression effect is a research
hotspot in mineral processing. D.A. Beattie replaced the hydroxyl groups at positions C2
and C6 of starch with hydroxypropyl groups, which improved the depression effect of the
modified product for talc in the flotation of Ni-Cu sulfide ore [21]. F. Tian reported that
carboxylated starch showed a superior depression effect towards forsterite in the flotation
of ilmenite [26]. In addition, carboxymethyl starch, oxidized starch, and amphoteric starch
were shown to facilitate the depression effect of molybdenite [27], graphite [28], and
diaspore [29], respectively.

Although starch and modified starch have been frequently used as depressants in
mineral processing, there is still a lack of understanding of the relationship between the
molecular structure and depression effect. For instance, the influence of branched chain
length on the depression effect of starch depressants is still unclear. In order to address this
issue, this work investigated the utilization of causticized starches with different branched
chain lengths as depressants for serpentine in a pentlandite/serpentine flotation system,
which is a common problem in the flotation of Ni-Cu sulfide ore [17,30–32]. This work
provided a new approach to study the depression mechanism of starch depressants.

2. Materials and Methods
2.1. Samples and Reagents

Pure mineral samples of serpentine and pentlandite for micro-flotation tests and other
experiments were obtained from Jinchuan, Yingkou in China. The pentlandite sample were
crushed, handpicked, and then dry-ground with a porcelain ball mill and dry-sieved to
obtain different size fractions. The magnetic separation method was used to remove the
pyrrhotite, and the final non-magnetic mineral was the desired product (pentlandite). The
samples of pentlandite with particle sizes ranging from −74 to +38 µm were utilized for
the micro-flotation tests. The −38 µm size fractions were used for the other tests. The
serpentine sample was ground using an agate ball mill and the average particle size of
serpentine minerals was about 4.3 µm, as measured by a laser particle size analyzer. The
X-ray diffraction (XRD) analyses confirmed that the purity of serpentine (lizardite) and
pentlandite was very high (Figure 2).
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Figure 2. XRD spectra of serpentine (lizardite) and pentlandite samples.

Potassium butyl xanthate (PBX) was used as the sulfide collector [33]. The causticized
starches described in Section 2.2 were utilized as depressants for serpentine and methyl
isobutyl carbinol (MIBC) acted as the frother [32,34]. Hydrochloric acid (HCl) and sodium
hydroxide (NaOH) were used as the pH regulators in micro-flotation and the other tests.
Milli-Q water with a resistivity of 18.2 mΩ cm was utilized in all the experiments. All the
reagents described above were of analytical grade.

2.2. Causticization of Starch

Due to the poor water solubility of starch, it is generally causticized before use in
flotation. Causticized starch was prepared as follows [35,36]: (1) 0.1 g starch and 0.025 g
sodium hydroxide were added to 50 mL deionized water in a 100 mL round bottom
flask; (2) the mixture was incubated and reacted at 85–90 ◦C in a sand bath for 40 min;
(3) it was then cooled to room temperature to obtain a relatively transparent causticized
starch solution.

The difference between original and causticized starch was assessed through scanning
electronic microscope images (Figure 3). As can be seen from Figure 3A, the initial starch
had a smooth granule surface. However, it can be seen from Figure 3B that the causticized
starch had a completely different surface morphology from that of the untreated starch, i.e.,
the causticized starch had a rough and irregular granule surface.

2.3. Determination of Branched Chain Length of Amylopectin

A total of 5 mg oligosaccharide standard of DP4-DP7 (Oligosaccharides Kit, from
sigma company) was dissolved in 5 mL of water in a boiling water bath for 60 min; 50 µL
of sodium acetate (0.6 mol/L), 10 µL NaN3 (2% w/v), and 10 µL isoamylase (1400 U) were
added and the mixture was incubated at 37 ◦C for 24 h [37,38]. Thereafter, 0.5% (w/v)
sodium borohydride solution was added to the mixture and it was left to stand for 20 h.
Then, 600 µL of the sample solution was transferred into a centrifuge tube and dried with
nitrogen at room temperature. The samples were dissolved in 30 µL NaOH (1 mol/L) for
60 min, diluted with 570 µL water, and centrifuged at 12,000 r/min for 5 min, to complete
the process. Starch samples were treated with the same method as above.

The sample extracts were analyzed by high-performance anion-exchange chromatog-
raphy (HPAEC) on a CarboPac PA-100 anion-exchange column (4.0 mm× 250 mm; Dionex)
using a pulsed amperometric detector (PAD; Dionex ICS 5000 system) [39,40]. The flow rate
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was 0.4 mL/min, the injection volume was 5 µL, the solvent system (flow phase) was 0.2 M
NaOH or 0.2 M NaOH/0.2 M NaAc, and the gradient program was as follows: 90:10 V/V
at 0 min, 90:10 V/V at 10 min, 40:60 V/V at 30 min, 40:60 V/V at 50 min, 90:10 V/V at
50.1 min, and 90:10 V/V at 60 min.

1 
 

 

Figure 3. SEM photographs: initial starch (magnification 2000 (A) and 5000 (B)); causticized starch
(magnification 2000 (C) and 10,000 (D)).

Data were acquired on ICS5000 (Thermo Scientific, Waltham, MA, USA), and processed
using chromeleon 7.2 CDS (Thermo Scientific) [40]. Quantified data were output into
excel format.

2.4. Micro-Flotation Experiments

The micro-flotation tests were carried out in an XFG-1600 flotation machine with a
40 mL Plexiglass cell at a rotating speed of 1800 r/min [41]. The single mineral suspensions
were prepared by adding 2.0 g of pentlandite or serpentine to 40 mL of water. The mixed
mineral suspensions were prepared by adding 1.0 g of pentlandite and 1.0 g serpentine to a
micro-flotation cell with 40 mL water. NaOH or HCl solutions acted as the pH regulator to
adjust the pH to the desired value, and the depressant (causticized starch), collector (PBX),
and frother (MIBC) were added to the suspension in sequence, with 2 min of agitation after
each addition. Hereafter, the flotation was conducted for a period of 3 min. The floated and
unfloated minerals were collected, filtered, and dried to calculate flotation recovery and
determine the ore grade.

2.5. Zeta Potential Measurements

Zeta potential measurement was carried out using a Malvern Zetasizer nano ZS zeta
potential meter (Bruker Instruments Ltd., Karlsruhe, Germany). The ionic strength of the
sample solution was maintained with 1 × 10−3 mol/L potassium nitrate (KNO3). The
mineral suspension was prepared by adding a 30 mg sample to 10 mL of KNO3 electrolyte
solution in the absence and presence of depressants for each test. The desired pH value
above the solution was adjusted by adding hydrochloric acid (HCl) or sodium hydroxide
(NaOH) stock solutions. The supernatant was then measured using the zeta potential
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analyzer after stirring for 10 min and standing for 5 min. Each zeta potential was tested
three times, and the average value was calculated and recorded.

2.6. FT-IR Experiments

The Fourier transform infrared spectra (FTIR) of mineral samples obtained from micro-
flotation was recorded using a Nicolet iS20 (Thermo Fisher Scientific, Waltham, MA, USA).
After obtaining the flotation concentrate samples in the presence or absence of depressants,
the mineral samples were washed repeatedly with deionized water, then put into a vacuum
oven, and dried at 35 ◦C for testing. The dried flotation concentrate samples were mixed
with KBr in an identical proportion (1:100) to prepare the powder mixtures needed for the
FT-IR spectrometer, and therefore the absorbance in their infrared spectra was proportional
to the concentration of the species present in these samples.

2.7. XPS Analysis

X-ray photoelectron spectroscopy (XPS) measurements were performed using the
Thermo Scientific K-Alpha (Thermo Scientific Co., Waltham, MA, USA) spectrometer. For
each test, 1 g of serpentine was mixed with a 20 mg/L depressant solution. The solution
was filtered and washed three times using milli-Q water. The filtered solids were dried in
a vacuum drying oven at 35 °C and then analyzed using XPS. All binding energies were
referenced to the neutral C1s peak at 284.80 eV to compensate for the surface charge effect.

3. Results
3.1. Branched Chain Length of Amylopectin

Branched chain plays a major role in the application of causticized starch, and as
a result, the branched chain length of amylopectin has a decisive influence on the de-
pression effect of causticized starch. Chromatograms analysis was used to determine the
branched chain length distributions of amylopectin isolated from different causticized
starches (Figure 4), and the computed results are summarized in Table 1.
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Table 1. Branched chain length distributions of amylopectin.

Species Average
CL

% Distribution

DP 6–12 DP 13–24 DP 25–36 DP ≥ 37

Corn starch 21.21 26.69 46.62 13.71 12.98
Wheat starch 19.97 28.62 47.89 14.01 9.48

Cassava starch 22.27 19.23 51.76 14.98 14.03
Rice starch 19.48 29.62 49.12 11.15 10.11

Potato starch 20.75 23.47 51.83 13.74 10.96

In general, five kinds of causticized starches had a first peak at DP 12–13 at short
chain lengths and a second peak at DP 41–46 at long chain lengths (Figure 4). Corn starch
(Figure 4A) exhibited a gradual increase in chains of the polymerization degree (DP) 6–12,
and formed two peaks at DP 12 and 43. Wheat starch (Figure 4B) also had a gradual
increase in chains of the polymerization degree (DP) 6–12, and formed two peaks at DP 12
and 44. Moreover, it exhibited a low proportion of very long chains (DP ≥ 37) and this
starch displayed a shoulder at DP 18–24. These results are in agreement with those reported
by Jane et al. [8]. Cassava starch (Figure 4C) had a distribution similar to that of wheat
starch, but the relative intensity of the shoulder was lower, which is in agreement with
the report of Santacruz et al. [42]. A low proportion of very short chains (DP 6–12) and a
high proportion of very long chains (DP ≥ 37) in branched chain length distributions were
observed for the amylopectin isolated from cassava starch (Table 1). Rice starch (Figure 4D)
did not show a shoulder on its distribution; in addition, it exhibited the lowest proportion
of very short chains (DP 6–12) (Table 1). Potato starch (Figure 4E) displayed a trough at DP
6–10 and did not show a shoulder on its distribution. A similar distribution was found by
Yoo et al. [43] in potato starch.

The distribution results of wheat starch suggested that DP 18–21 represented the full
length of the crystalline region, and the ratio of the intensities of peak 1 and the shoulder
indicated the proportion of short chains in the crystallites that result in defects [44], which
could affect the flotation performance.

The large proportion of short chains and the small proportion of chains of DP 13–36
in rice starch may form a weak crystalline structure, which is unable to hold the clusters
together or maintain the integrity of starch granules, as observed by Jane et al. in the case of
sugary-2 maize starch [45]. This phenomenon may also influence the flotation performance.

In Table 1, the difference in the branched chain length distribution of the five starches is
more obvious. It is not difficult to see that the average branched chain length of cassava and
corn starch is the largest, followed by potato and wheat starch, with rice starch exhibiting
the smallest length. At present, the starch depressants used in flotation are mostly from
cassava and corn [46–51].

3.2. Flotation Experiments Results

Single mineral micro-flotation experiments were carried out to evaluate the depression
effect of five kinds of causticized starches on serpentine and pentlandite in different flotation
conditions (depressant dosage and pH value).

First, the single mineral flotation of serpentine (Figure 5A) and pentlandite (Figure 5B)
was studied with different depressant dosages. The results indicated that causticized
starches could effectively depress the floatation of serpentine particles, and the depres-
sion effects of five kinds of causticized starches were obviously different, especially
in the depressant dosage range between 10–18 mg/L. It is worth noting that the de-
pression effects of five causticized starches were positively correlated with the average
branched chain length of these starches, i.e., the depression effects were as follows: cas-
sava starch > corn starch > potato starch > wheat starch > rice starch. The recovery of pent-
landite could maintain high values in the depressant dosage range tested (72–95%), espe-
cially in the depressant dosage range between 0–10 mg/L (>88%). In addition, the recovery
of pentlandite using five causticized starches was almost indistinguishable, which was
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most likely due to the difference in the interaction of causticized starch with serpentine
and pentlandite. According to the results of the dosage experiments, the optimal reagent
dosage of causticized starches used as a depressant was 10 mg/L for the subsequent tests.
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Next, under the optimal depressant dosage, the single mineral flotation of serpentine
(Figure 5C) and pentlandite (Figure 5D) was studied at different pH values. The results of
flotation tests indicated that, in the range of pH 6–10, the recovery of serpentine decreased
gradually with the increase in pH value; in the range of pH 10–12, the recovery of serpentine
increased with the increase in pH value. On the contrary, the recovery of pentlandite
increased with increasing pH value in the pH range of 2–8, but in the range of pH 8–12, the
recovery of pentlandite decreased with increasing pH value. This could be for two reasons:
when the pulp pH value was more than 8, the xanthate may gradually decompose into
thiocarbonatesm, which have no collecting ability [52], resulting in a lower collection
efficiency; in the range of pH 8–12, some changes occurred on the surface of pentlandite
(e.g., the formation of Ni hydroxide or Fe hydroxide [53]), resulting in reduced floatability
of sulfide mineral. Dihydrocarbyl thiophosphates can be used as a sulfide collector in
future research as their properties are more stable than those of butyl xanthate. As can be
seen in the trend in Figure 5C,D, pH 9 was employed in follow-up flotation experiments.

After establishing the optimal flotation conditions (the dosage of depressant and the
pH value of the pulp), the depression effect of different causticized starches on serpen-
tine in the flotation of artificial mixed ore (pentlandite/serpentine system) was further
investigated, and the results are shown in Figure 6 and Table 2. It was apparent that
the depression effect of cassava starch and corn starch on serpentine was similar and the
most effective, followed by potato starch and wheat starch, while rice starch exhibited the
worst performance, i.e., close to the flotation effect without a depressant. Obviously, both
single-mineral flotation experiments and mixed-mineral flotation experiments reached the
same conclusion, i.e., the depression effect of causticized starches on serpentine exhibited a
positive correlation with the average branched chain length. This may be due to the fact
that starch with a longer branched chain could adsorb more serpentine particles.
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Table 2. Flotation separation of mixed mineral with different causticized starch depressants.

Depressant MgO
Grade (%)

MgO
Recovery (%)

Ni
Grade (%)

Ni
Recovery (%)

No depressant 11.69 46.35 5.53 96.92
Wheat starch 11.67 44.85 5.34 93.68

Cassava starch 10.66 39.32 5.94 93.86
Rice starch 11.13 45.18 5.53 94.47
Corn starch 10.24 41.38 5.75 94.52

Potato starch 11.08 42.03 5.62 94.34

3.3. Zeta Potential Measurements Results

One of the key factors that effects causticized starches’ ability to depress the floatation
of serpentine is its electro-kinetic behavior [32]. Therefore, in order to further explore the
reasons for and mechanism of the difference in flotation effect of causticized starches, zeta
potential measurements were performed. The test results are shown in Figure 7.
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As shown in Figure 7A, the addition of causticized starches caused the zeta potential
of serpentine to exhibit negative shifts. This change in zeta potential may be attributed to
the interaction between the oxygenated hydrocarbon chains on the polymer (starch) and
the hydroxylated metal ions on the serpentine surface, a mechanism that has also been
studied before [54]. Moreover, the five kinds of causticized starches decreased the zeta
potential of serpentine to different degrees. The decreasing degree was in the following
order: cassava starch > corn starch > potato starch > wheat starch > rice starch. However,
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the addition of causticized starches did not seem to have a significant effect on the zeta
potential of pentlandite, which indicated that the adsorption of causticized starch on the
surface of pentlandite was very weak.

In addition, the zeta potential measurement further elaborated the reasons for the
difference in the depression effect of the five causticized starches on serpentine in the
flotation of the pentlandite/serpentine system. When no depressant was added (with a
natural pH value of 9), the zeta potentials of serpentine and pentlandite were positive and
negative, respectively, which led to the phenomenon of electrostatic attraction between
the two minerals and deteriorated their flotation separation ability [17]. When adding five
kinds of causticized starches, the zeta potential of serpentine exhibited different degrees
of reduction, which also reduced the effect that electrostatic attraction had on flotation to
varying degrees. Therefore, the zeta potential measurement illustrated that the difference in
the depression effect of five causticized starches on serpentine was caused by their different
abilities to decrease serpentine’s potential.

3.4. FT-IR Experiments Results

To further investigate the depression effect of different causticized starches on serpen-
tine, flotation concentrates with different depressants were collected for FTIR analysis. The
results are shown in Figure 8. In Figure 8, the sharp peak at 3677 cm−1 was due to the
stretching vibration of -OH, which is a characteristic and unique peak of serpentine [55].
The FTIR test results verified the adsorption of the serpentine “slime coating” on the surface
of the pentlandite (serpentine is a hydrophilic mineral and therefore it should not reach
the concentrate except by entrainment or if it is attached to pentlandite [17,56]). Due to the
test sample preparation, the absorbance in their infrared spectra was proportional to the
concentration of the species present in these test samples. Therefore, the FTIR test results
could further prove that the depression effect of different causticized starches on serpentine
was different, which was consistent with the results of the flotation experiment and zeta
potential measurements. In conjunction with Section 3.1, it can be seen that causticized
starches with longer branched chains could better disperse the serpentine particles from
pentlandite and thus allow reduce the amount of serpentine adhering to the pentlandite.
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3.5. XPS Analysis Results

Even though some indication of the interaction between depressant molecules and
mineral surfaces were provided in the IR spectroscopy, some significant chemical bonds on
the mineral surface and the imperceptible changes of certain atoms on the mineral surface
could not be characterized in this manner. XPS analysis can be used precisely determine the
chemical state and elemental composition of a mineral surface and is utilized to study the
interaction between depressants and serpentine [54,57–59]. Therefore, in order to further
explore the interaction of the five causticized starches on the serpentine surface and what
changes occurred to the serpentine surface, XPS analysis was performed. The results are
shown in Figure 9 and Table 3.
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with rice starch (B), potato starch (C), cassava starch (D), corn starch (E), and wheat starch (F).

Table 3. Quantification of Mg 1s species in serpentine and depressant-treated serpentine samples.

Sample Mg 1s
Binding Energy (eV)

Species
Distribution (%)

Serpentine — 0.00
1304.16 100.00

Serpentine + Rice starch — 0.00
1304.22 100.00

Serpentine + Potato starch 1302.80 25.71
1304.13 74.29

Serpentine + Cassava starch 1302.87 31.76
1304.08 68.24

Serpentine + Corn starch 1302.88 30.26
1304.15 69.74

Serpentine + Wheat starch 1302.74 13.33
1304.23 86.67

In the Mg1s spectrum shown in Figure 9A, the Mg1s peak of bare serpentine appears
at approximately 1304.16 eV in Mg-OH, as in previous studies [58,59]. In Figure 9B, it
can be seen that no new peaks appeared on the surface of the serpentine treated with rice
starch, which indicated that there was almost no chemical adsorption between rice starch
and the serpentine surface. Figure 9C–F showed the Mg1s spectrum obtained after adding
other causticized starches, where the new Mg1s peaks at 1302.80 eV, 1302.87 eV, 1302.88 eV
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and 1302.74 eV are assigned to Mg-OR (R refers to hydrocarbon chain) on the serpentine
surface [60,61], evidencing chemisorption between the causticized starches and the Mg sites
of the serpentine surface. It can be seen that the interaction between the causticized starch
and serpentine was mainly through the oxygen atoms of the branched chains combining
with the Mg atoms on the serpentine surface.

Moreover, the element atomic content analysis in Table 3 showed the proportion of
Mg atoms in different states. The results in Table 3 proved that the proportion of Mg atoms
adsorbed by the five kinds of causticized starches was different, and the proportions were
arranged in the following order: cassava starch > corn starch > potato starch > wheat
starch > rice starch.

By combining the results of the branched chain length distribution with those of the
XPS analysis, it can be concluded that the causticized starches with longer branched chains
were adsorbed more strongly on serpentine surface, and thus had a better depression effect.
Based on this idea, Figure 10 shows the influence mechanism of the branched chain length
on the depression effect on serpentine. It can be seen from Figure 10 that the branched
chain length is a crucial factor in the depression effect of causticized starch on serpentine in
the flotation of the pentlandite/serpentine system.
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4. Conclusions

In this study, a method of examining the influence of different types of starches is
presented through flotation experiments and mechanism studies. The following significant
conclusions were drawn:

1. The results of the flotation experiments fully illustrated that the depression effect
of causticized starches on serpentine were ranked as follows: cassava starch > corn
starch > potato starch > wheat starch > rice starch.

2. The average branched chain length was arranged in the following order: cassava
starch > corn starch > potato starch > wheat starch > rice starch, and the depression
effect of causticized starches on serpentine exhibited a positive correlation with the
average branched chain length.

3. Starch depressants depress the serpentine in the flotation system by combining the
oxygen atoms on the oxygen-containing hydrocarbon chain with the Mg atoms on
serpentine surface. Moreover, causticized starches with longer branched chains were
adsorbed more strongly on serpentine surface, and thus had a better depression effect.
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