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Abstract: The new mineral amgaite was discovered at the Khokhoyskoe gold deposit, 120 km W
of Aldan town, Aldanskiy District, Sakha Republic (Yakutia), Eastern Siberia, Russia. Amgaite
forms fine-grained colloform aggregates up to 0.05 mm across, and is often intimately intergrown
with avicennite, unidentified carbonates and antimonates of Tl. Other associated minerals include
gold, silver, acanthite, arsenopyrite, pyrite, berthierite, chalcocite, weissbergite, chlorargyrite, calcite,
quartz, goethite etc. Amgaite is dark reddish brown to black. It has submetallic luster, black streak,
brittle tenacity and conchoidal fracture. Its density calculated from the empirical formula and
powder XRD data is 8.358 g/cm3. Its Mohs’ hardness is ca. 1.5–2. Optically, amgaite is uniaxial.
In reflected light, it is gray with a bluish shade, very weakly anisotropic with rare brownish red
internal reflections. Reflectance values for the four COM wavelengths [Rmin, Rmax (%)(λ in nm)]
are: 13.5, 14.2 (470); 12.7, 13.2 (546); 12.3, 12.7 (589); and 11.7, 12.3 (650). The Raman spectrum shows
bands of Te–O and Tl–O bonds and confirms the absence in amgaite of H2O, OH–, CO3

2– groups
and B–O bonds. The chemical composition is (electron microprobe, wt.%): MgO 0.43, CaO 1.62,
Fe2O3 0.36, Tl2O3 66.27, Sb2O5 3.48, TeO3 27.31, total 99.47. The empirical formula based on 6 O
apfu is Tl3+

1.74Ca0.17Mg0.06Fe3+
0.03Te6+

0.93Sb5+
0.13O6. Amgaite is trigonal, space group P321; unit-cell

parameters are as follows: a = 9.0600(9), c = 4.9913(11) Å, V = 354.82(8) Å3, Z = 3. The strongest lines
of the powder X-ray diffraction pattern [dobs, Å (I, %) (hkl)] are as follows: 3.352 (100) (111), 3.063 (15)
(201), 2.619 (49) (300), 2.065 (18) (221), 1.804 (28) (302), 1.697 (8) (321), 1.625 (9) (411). The crystal
structure of amgaite is the same as of synthetic Tl3+

2Te6+O6. The new mineral is named after the
Amga River, the basin of which hosts the type locality, Khokhoyskoe occurrence. The type material
is deposited in the collections of the Fersman Mineralogical Museum of the Russian Academy of
Sciences, Moscow, Russia, with the registration number 5773/1.

Keywords: amgaite; new mineral; Khokhoyskoe gold deposit; Amga river; Raman spectroscopy;
chemistry; synthetic Tl3+

2Te6+O6; trivalent thallium

1. Introduction

Thallium and its compounds are consumed in a wide variety of industrial applica-
tions, such as high-temperature superconducting materials, gamma and infrared radiation
detection and transmission equipment, acoustic-optical measuring devices, photoelectric
cells, magnetic resonance imaging, electric power generation and transmission, fabrication
of optical lenses with a high refractive index, cardiovascular scintigraphy and diagnosis
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of malignant tumors in medicine etc. [1,2]. In mineralogy and gemology, Clerici solution
(a mixture of thallium formate and thallium malonate) is used as a liquid to measure the
density of minerals and precious stones and for sink-float separation of minerals [3]. On
the other side, thallium is considered one of the most toxic heavy metals on Earth and the
use of its compounds should be vigorously controlled to prevent harm to humans and the
environment [4].

Although thallium is reasonably abundant in the Earth’s crust at a concentration
estimated to be about 0.7 part per million (ppm), it is mostly disseminated in soils, in
associated potassium minerals in clays and granites, in ferromanganese crusts and nod-
ules that cover the surface of seamounts and seafloors throughout the oceans, and is not
generally considered to be commercially recoverable from those materials [1,5,6]. The
major sources of recoverable thallium are gold and complex sulfide ores. According to [7],
thallium contents in common sulfides might reach up to 3200 ppm. In view of the above,
much attention of geologists and mineralogists is given to the research of gold deposits
that bear Tl-mineralization and the study of new Tl-bearing mineral species and their
structures [8–10].

In the present paper, we provide a description of a new mineral species with the
formula Tl3+

2Te6+O6, which was discovered at the Khokhoyskoe gold deposit in Eastern
Siberia in the Russian Federation. This new species was named amgaite [pronounced: @m
gay ait; Russian Cyrillic-aмгaит] after the Amga River, the basin of which hosts the type
locality, Khokhoyskoe gold deposit.

The mineral, its name and mineral symbol (Amgt) have been approved by the IMA
Commission on New Minerals, Nomenclature and Classification (CNMNC) with the num-
ber 2021–104 [11]. The holotype material is deposited in the collections of the Fersman
Mineralogical Museum of the Russian Academy of Sciences, Moscow, Russia, with the
registration number 5773/1.

2. Occurrence, Geological Settings and Mineral Association

The new mineral was found in a heavy concentrate obtained by hydroseparation
from friable clayey-sandy material collected in the summer of 2015 by one of the authors
(E.P.S.) at the Khokhoyskoe (Khokhoy) gold deposit located 120 km W of Aldan town,
in the upstream of Khokhoy creek, a right tributary of the Amga River, in the Aldanskiy
region of Sakha Republic (Yakutia), Eastern Siberia, Russia (59◦06′36′′ N, 123◦14′42′′ E)
(Figure 1). The routine SEM/EDS inspection of polished sections with the above heavy
concentrate revealed a number of unidentified antimonates, carbonates and tellurates of
thallium [12,13], including the new mineral described herein.
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Figure 1. Khokhoyskoe gold deposit, summer 2017: (a) exploration trench, (b) the place where
material with amgaite was sampled. Photo: Larisa A. Kondratieva.
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The Khokhoyskoe gold deposit is confined to the Khokhoy gold ore field, located in
the Verkhneamginskaya auriferous zone. The site is located on the northern slope of the
Aldan shield, in the area of subsidence of the basement and increase of the thickness of
the sedimentary cover (Figure 2). The main volume of the sediments is represented by
Lower Cambrian terrigenous-carbonate deposits with stratigraphic unconformity overlain
by Lower Jurassic terrigenous sandstone sediments. Mesozoic magmatism resulted in
little stratified intrusions, monzonite lakkolithes and syenite-porphyries, as well as dikes
of alkaline gabbroids. The ore field is structured by a vast faulted area with the North-
Eastern strike. Mineralization is developed at the nodes of the intersection of feathering
faults at the tectonized point of contact of the Cambrian and Jurassic sediments. The
ores are concentrated in karst cavities that form an extended zone striking more than
10 km long, crossing the ore field from the South to the North. The width of the karst
cavities, exposed by mine workings, ranges from 5 to 50 m, their depth—from 15 to
45 m. Karst cavities are filled with intensely limonitized clayey-sandy brown formations
containing multiple fragments of primary ores and host rocks. The main gangue minerals
of karst cavities are fine-grained quartz and quartz var. chalcedony, opal, potassic feldspar
(adularia), muscovite, illite, calcite and fluorite. Main ore minerals of macroscopic size
include baryte, hollandite and oxidized and hematitized pyrite. All other ore minerals form
microinclusions. These include acanthite, arsenopyrite, avicennite, berthierite, bismoclite,
chalcocite, chlorargyrite, cinnabar, coloradoite, gold, jankovićite, parapierrotite, silver and
weissbergite. According to the mineral composition and geochemical signature (Au, Tl,
Sb, As, Te, Hg), the Khokhoyskoe gold deposit is comparable to the Kuranakh deposit in
Russia and the Carlin-type gold deposits [12–15].
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Figure 2. Geographical location and geological position and structure of Khokhoyskoe gold
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The gold at the Khokhoyskoe deposit has a supergene origin and is represented by
two morphological types. The first type is represented by gold crystals and irregular masses,
with fineness ranging from 835% to 1000%. The second type is represented by mustard
gold with microporous and dendritic internal structure. Its fineness is above 900% [12,14].

Gold of both types occurs in association with amgaite.

3. General Appearance, Physical, Chemical and Optical Properties

Amgaite occurs as very fine-grained colloform aggregates up to 0.05 mm across; some
grains have a botryoidal shape (Figure 3a,b). Amgaite is often intimately intergrown with
avicennite and unidentified carbonates and antimonates of Tl. Rarely, it is observed along
cracks in gold grains and particles. The new mineral is opaque and has a very dark reddish
brown to black color. Its streak is black and its lustre is sub-metallic. It is brittle with a
conchoidal fracture. Neither cleavage nor parting are observed. Amgaite is non-fluorescent
under ultraviolet light. It is very soft with a hardness estimated at 1.5–2 on Mohs’ scale. The
density was not measured due to small grain size and intimate intergrowth with avicennite
and other phases. However, its density calculated from the empirical formula and unit–cell
volume obtained from PXRD data is 8.358 g/cm3. The new mineral is insoluble in water
but dissolves in hot nitric acid.

Minerals 2022, 12, x FOR PEER REVIEW 5 of 12 
 

 

to a Leica microscope (100× objective) using a WTiC (Zeiss no. 370) standard, with a square 

sample measurement field of ca. 7 × 7 μm. The results from the 400–700 nm range are 

given in Table 1 and plotted in Figure 4. 

Table 1. Reflectance values (%) for amgaite. 

Rmax Rmin λ (nm) Rmax Rmin λ (nm) 

16.2 15.3 400 13.1 12.6 560 

15.7 14.7 420 12.8 12.4 580 

15.1 14.2 440 12.7 12.3 589 

14.4 13.7 460 12.7 12.2 600 

14.2 13.5 470 12.5 12.0 620 

14.1 13.4 480 12.4 11.8 640 

13.8 13.3 500 12.3 11.7 650 

13.5 13.0 520 12.2 11.7 660 

13.3 12.8 540 12.2 11.6 680 

13.2 12.7 546 12.1 11.6 700 

The reference wavelengths required by the commission on Ore Mineralogy (COM) 

are given in bold. 

  

(a) (b) 

Figure 3. Aggregates of amgaite. Polished section. SEM (BSE) images. (a) botryoidal aggregate (b) 

fragments of colloform aggregates. 
Figure 3. Aggregates of amgaite. Polished section. SEM (BSE) images. (a) botryoidal aggregate
(b) fragments of colloform aggregates.

Optically, amgaite is uniaxial. However, its refractive indices could not be measured
correctly because of a cryptocrystalline character, the very high birefringence of the grains
and their extremely inhomogeneous nature due to numerous inclusions of avicennite and
other phases. The Gladstone-Dale relationship predicts an average index of refraction of
1.78. Amgaite’s optical properties were studied using the methods common for metallic
minerals. In reflected light, amgaite is gray with a bluish shade. No bireflectance or
pleochroism are observed. Under crossed polars, it is very weakly anisotropic. Internal
reflections are rare, and brownish red in color. Reflectance spectra were collected at the
Department of Mineralogy and Petrology, National Museum of Prague, Czech Republic.
Reflectance values were measured in air with a TIDAS MSP400 spectrophotometer attached
to a Leica microscope (100× objective) using a WTiC (Zeiss no. 370) standard, with a square
sample measurement field of ca. 7 × 7 µm. The results from the 400–700 nm range are
given in Table 1 and plotted in Figure 4.
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Table 1. Reflectance values (%) for amgaite.

Rmax Rmin λ (nm) Rmax Rmin λ (nm)

16.2 15.3 400 13.1 12.6 560
15.7 14.7 420 12.8 12.4 580
15.1 14.2 440 12.7 12.3 589
14.4 13.7 460 12.7 12.2 600
14.2 13.5 470 12.5 12.0 620
14.1 13.4 480 12.4 11.8 640
13.8 13.3 500 12.3 11.7 650
13.5 13.0 520 12.2 11.7 660
13.3 12.8 540 12.2 11.6 680
13.2 12.7 546 12.1 11.6 700
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The reference wavelengths required by the commission on Ore Mineralogy (COM) are
given in bold.

4. Raman Spectroscopy

The Raman spectra of amgaite (Figure 5) were collected at the Department of Mineral-
ogy and Petrology, National Museum of Prague, Czech Republic, in the range 4000–140 cm−1

using a DXR dispersive Raman Spectrometer (Thermo-Scientific, Waltham, MA, USA)
mounted on a confocal Olympus microscope. The Raman signal was excited by an unpo-
larised 633 nm He-Ne gas laser and detected by a CCD detector (size 1650 × 200 pixels,
Peltier-cooled to −60 ◦C, quantum efficiency 50% and dynamic range 360–1100 nm). The
experimental parameters were as follows: 100× objective, 10 s exposure time, accumulation
of 100 exposures, 50 µm pinhole spectrograph aperture and 2.5 mW laser power level. The
spectra were repeatedly acquired from different grains in order to obtain a representative
spectrum with the best signal-to-noise ratio. The possible thermal damage of the mea-
sured point was excluded and assessed by visual inspection of the exposed surface after
measurement, observation of possible decay of spectral features at the start of excitation
and checking for thermal downshift of Raman lines. The instrument was set up by a
software-controlled calibration procedure using multiple neon emission lines (wavelength
calibration), multiple polystyrene Raman bands (laser-frequency calibration) and standard-
ized white-light sources (intensity calibration). Spectral manipulations were performed
using the Omnic 9 software (Thermo-Scientific). Gaussian/Lorentzian (pseudo-Voigt) pro-
file functions of the band-shape were used to obtain decomposed band components of
the spectra. The decomposition was based on the minimization of the difference in the
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observed and calculated profiles until the squared correlation coefficient (r2) was greater
than 0.995.
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An absence of Raman bands in the region above 1000 cm−1 confirms the absence of
molecular water, (OH)− and (CO3)2− groups and B–O bonds in amgaite. The main band
in the spectrum consists of two components at 715 and 646 cm−1 and exhibits distinct
shoulders at 516 and 423 cm−1. The bands in this area are possibly assigned to ν1, ν2 and
ν5 vibrations of Te–O bonds in the TeO6 octahedra [16–18]. The bands at 295 and 214 cm−1

may be connected to vibrations of Tl–O bonds; bands with maxima approximately 310 and
230 cm–1 are possible to observe at the spectrum of avicennite Tl2O3 (RRUFF R070262.2) [19].

5. Chemical Composition

Chemical analyses (7) were carried out at the Department of Geological Sciences,
Faculty of Science of Masaryk University in Brno, Czech Republic with a Cameca SX-100
electron microprobe (WDS mode, 15 kV, 10 nA, 2 µm beam diameter). Analytical data
for amgaite are given in Table 2. Contents of other elements with atomic numbers higher
than that of beryllium are below detection limits. Raw intensities were processed by X-PHI
matrix correction algorithm.

Table 2. Chemical data for amgaite.

Constituent Wt.% Range Standard Deviation Reference Material

MgO 0.43 0.31–0.53 0.10 pyrope

CaO 1.62 1.50–1.69 0.09 fluorapatite

Mn2O3 0.25 0.18–0.35 0.07 rhodonite

Fe2O3 0.16 0.13–0.19 0.02 hematite

Tl2O3 66.27 64.68–67.12 0.98 Tl(Br, I)

Sb2O5 3.48 2.11–5.74 1.51 Sb

TeO3 27.31 26.10–28.87 0.97 HgTe

Total 99.52
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The empirical formula calculated on the basis of 6 O apfu being Tl3+
1.74Ca0.17Mg0.06Mn3+

0.02
Fe3+

0.01Te6+
0.93Sb5+

0.13O6. Due to extremely oxidative conditions at the Khokhoyskoe
occurrence, Mn and Fe are assumed to be trivalent, while Sb is considered to have 5+
valence state.

The ideal formula of amgaite is Tl3+
2Te6+O6, which requires Tl2O3 72.24, TeO3 27.76, a

total of 100 wt.%.

6. X-ray Diffraction

The single-crystal X-ray diffraction studies could not be carried out because of the
absence of single crystals: aggregates of amgaite are cryptocrystalline and inhomogeneous.
However, we collected powder micro-X-ray diffraction data (Table 3, Figure 6) using a
Rigaku Oxford Diffraction Supernova diffractometer working in micro-powder diffraction
transmission mode installed at the Department of Geosciences, University of Padova, Italy.
The diffractometer was equipped with a MoKα X-ray micro-source (conditions: 50 kV,
0.12 mA) and a Pilatus 200K Dectris detector with a detector-to-sample distance equal to
68 mm. The data were collected over 40◦ around the phi axis with an exposure time of
120 s/◦. Due to the low intensity of diffraction data, we were able to detect reflections only
between about 3.50 and 1.50 Å.

Table 3. Powder X-ray data (d in Å) for amgaite compared with that of the synthetic Tl3+
2Te6+O6 [20].

Amgaite
Iobs. [%] hkl

Synthetic Tl3+
2Te6+O6

Icalc. [%]
dobs dcalc dobs dcalc

3.352 3.354 100 1 1 1 3.36 3.354 100

3.063 3.084 15 2 0 1 3.09 3.085 34

2.619 2.615 49 3 0 0 2.62 2.618 36

2.541 2.550 7 2 1 1 2.55 2.551 12

2.313 2.317 4 3 0 1 2.32 2.318 2

2.189 2.186 2 1 1 2 2.19 2.179 6

2.065 2.063 18 2 2 1 2.06 2.064 13

1.911 1.909 4 2 1 2 1.910 1.909 10

1.804 1.806 28 3 0 2 1.806 1.805 32

1.697 1.693 8 3 2 1 1.695 1.695 17

1.625 1.620 9 4 1 1 1.621 1.621 7

1.506 1.510 7 3 3 0 1.512 1.512 5

The unit–cell parameters were calculated from the observed d spacings reported in
Table 3 using UNITCELL software [21]. Amgaite is trigonal, from space group P321(#150),
a = 9.0600(9), c = 4.9913(11) Å, V = 354.82(8) Å3; Z = 3. These data are in very good
agreement with the synthetic Tl3+

2Te6+O6 described by [20]. For comparison, the unit–cell
data of the synthetic analogue are: a = 9.070, c = 4.984 Å, V = 355.1 Å3.
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7. Description of Crystal Structure

The crystal structure of amgaite is identical to that of synthetic Tl3+
2Te6+O6 [20], as

clearly demonstrated by the close match between the PXRD of amgaite and the synthetic
phase. Some of the important details of the structure are provided in Table 4.

Table 4. Atomic coordinates and interatomic distances for synthetic Tl3+
2Te6+O6 [20].

Atom x y z Biso

Te1 0.33330 0.66660 0.49875 0.1750

Te2 0.00000 0.00000 0.00000 0.1290

Tl1 0.28558 0.00000 0.50000 0.3580

Tl2 0.62306 0.00000 0.00000 0.3380

O1 0.08770 0.88050 0.77310 1.2400

O2 0.46060 0.59500 0.74170 2.3640

O3 0.21940 0.75750 0.27890 1.1530

Interatomic distances

Te1–O1 1.99(3) × 6 Tl1–O1 2.35(3) × 2

Tl1–O3 2.23(3) × 2

Te2–O2 1.99(4) × 3 Tl1–O2 2.16(5) × 2

Te2–O3 1.95(3) × 3

Tl2–O2 2.33(5) × 2

Tl2–O3 2.26(3) × 2

Tl2–O1 2.07(3) × 2

The O2− anions constitute a compact, slightly deformed hexagonal stack of which the
third and the sixth of the octahedral gaps are occupied by the Tl3+ and Te6+, respectively.
Figure 7 visualizes the sequence of the occupied octahedra. The two types of octahedra
TeO6 (see Table 4) are regular and almost identical, with six Te–O bonds equal to 1.99 Å for
the octahedron Te1O6, three bonds Te–O equal to 1.99 Å and three bonds equal to 1.95 Å
for the octahedron Te2O6. On the other side, the TlO6 octahedra are less regular with
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two long, two medium and two short Tl–O distances (see Table 4) and with the mean value
in each octahedron Tl1–Omean = 2.24 Å and Tl2–Omean = 2.22 Å. Synthetic Tl3+

2Te6+O6 is
isostructural to malladrite, Na2SiF6 [22]. Each metallic ion is octahedrally coordinated to a
slightly distorted anionic hexagonal close-packed array.
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Figure 7. The crystal structure of amgaite along the c axis. In blue, the Te sites are shown, while Tl
sites are indicated in green (the red spheres correspond to oxygens). The structure data for drawing
are from [20]. Tl1 and Tl2 sites are labeled in the figure, as well as the Te1 site. The Te2 site is not
visible over such structure orientation, but it runs along the c axis. The dashed black lines outline the
unit cells.

8. Discussion: Remarks on the Origin and Implications

The friable rocks of the Khokhoyskoe gold deposit where amgaite was found have an
obvious supergene origin. They resulted from the oxidation, disintegration, and redepo-
sition in the karst cavities of primary ores such as pyrite-adularia-quartz metasomatites
formed during silicic-potassic metasomatism of carbonate rocks. The enrichment of ores
by Tl occurred during potassic metasomatism in the fault zones. Very strong oxidative
conditions resulted in both Tl and Te reaching their highest valence states in amgaite: +3
and +6, accordingly.

The most updated New IMA List of Minerals includes 85 minerals with species-
defining thallium [23]. The overwhelming majority of them contain thallium in its monova-
lent state, while minerals with trivalent thallium are extremely rare. Amgaite is only the
fourth mineral containing Tl3+ as a species-defining element after avicennite Tl2O3 [24],
found at the Khokhoyskoe gold deposit as well [13], and two endemic minerals from
the fumaroles of Tolbachik volcano, also known for its extremely oxidative conditions:
chrysothallite K6Cu6Tl3+Cl17(OH)4 · H2O [25] and kalithallite K3Tl3+Cl6 · 2H2O [26]. Tellu-
rates, i.e., minerals with species-defining Te6+, are not that rare (to date, 51 mineral species
approved by the IMA CNMNC are known [23]); however, its compounds with Tl were
previously unknown in nature. The only other mineral with both Tl and Te, honeaite
Au3TlTe2 [27,28], is a telluride, i.e., contains Te in anionic form.

The discovery of amgaite along with other Tl minerals such as avicennite, jankovićite,
parapierrotite, weissbergite and several as yet unnamed Tl phases [13,15] in the ores of
the Khokhoyskoe ore field has an important implication for the industrial gold mining in
the region. The unique association of gold with Tl minerals should be considered when
choosing a correct technology of gold extraction in view of the high toxicity of thallium, on
the one hand, but also its increasing economic value and number of industrial applications
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on the other. Since the beginning of the 21st century, thallium has shown a steady upward
trend in value–from approximately 1290 USD per kg in 2000 [29] to 8400 USD per kg in
2021 [1]. It is very likely that this trend will remain in the upcoming period as analysts
predict the thallium industry to grow at a significant compound annual growth rate and
its applications will rise substantially around the globe [30,31]. In this regard, the possible
associated extraction of thallium during gold mining gets particular importance.
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