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Abstract: The 20 minerals encompassing the pascoite family of decavanadate isopolyanion-containing
[V10O28]6− minerals include a few minerals, such as rakovanite, that have been described as
containing a protonated decavanadate anion. Rakovanite was originally assigned the formula
Na3[H3V10O28]•15H2O and now is redefined with an ideal formula (NH4)3Na3[V10O28]•12H2O. Nu-
clear magnetic resonance (NMR) and particularly 51V NMR spectroscopy is an informative method
used to describe the protonation state and speciation in both solid and solution states of materials in
the chemical and life sciences. However, 51V NMR spectroscopy has not yet been used experimentally
to distinguish the protonation state of the decavanadate ion of leaching solutions and thus contribut-
ing to the discussion regarding the controversial protonation states of decavanadate ions in gunterite,
rakovanite, and nashite. In contrast, the morphology and crystal structure for apatites, vanadinite,
pyromorphite, and mimetite was related to 207Pb NMR chemical shifts, assisting in describing the
local environments of these minerals. NMR spectroscopy could be a useful method if used in the
future for decavanadate-containing minerals. Currently, partial reduction of two Pascoite minerals
(caseyite and nashite) is proposed and accordingly could now effectively be investigated using a
different magnetic resonance technique, EPR spectroscopy.

Keywords: pascoite minerals; vanadium; decavanadate; NMR spectroscopy; 51V NMR spectroscopy
solid-state; solution; speciation

1. Introduction

Geologists, mineralogists, and chemists have characterized the solid state of over 4600
known minerals for more than a century, each using the language and lines of investigations
of the respective fields [1–4]. A mineral is typically described as a naturally occurring
inorganic element or compound having an orderly internal structure and characteristic
chemical composition, crystal form, and physical properties [5]. With recent advances
in material science and new approaches for the characterization of minerals and related
synthetic compounds, characterization of their microenvironments has been explored [6].
In the case of the pascoite family of minerals, the base structure [7,8], decavanadate,
[V10O28]6− (abbreviated V10), contains a distinct anion containing 10 vanadium in oxidation
state 5+ (V(V)) atoms and 28 oxygen (O) atoms flanking the V atoms, resulting in a compact
structure with the dimensions ~8.3 Å × 7.7 Å × 5.4 Å and 3 different V atoms as shown
in Figure 1a [5,9–17]. The three different V atoms in the distinct V10 anion, VA, VB, and
VC (Figure 1) reflect the different properties of the octahedral non-oxido V and the two
types of V=O atoms and support the stability that this anion has compared to the other
labile, colorless oxidovanadates [18–21]. Minerals containing V10 will, upon dissolution,
result in the intact discrete V10 anions. V10 is known to have biological activities and
is extremely well studied as inhibiting enzymes such as ribonuclease, diphosphokinase,
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and alkaline phosphatase; inhibit cellular growth; and have antioxidant and antidiabetic
properties [9,19,22–27]. When V10 anions hydrolyze, they form different species, and these
systems are also known to have biological activities. Studies of the biological activities and
the speciation of the V10 will briefly be described here [19,22,23,26,28–30] since some of the
pascoite minerals leach upon weathering [18].
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Figure 1. Illustration of the structure of V10 ion V10O28
6− (abbreviated V10): (a) schematic drawing

showing the three different types of octahedral V atoms (black circles), non-oxido VA, and two
different surface active VB and VC atoms; [1]-coordinated O atoms = red circles, [2]-coordinated O
atoms = blue circles, [3]-coordinated O atoms = green circles, [6]-coordinated O atoms = yellow circles,
V–Ovanadyl bonds = thick black line, V–Otrans bonds = thin black line, V–Oequatorial bonds = grey
shaded line; (b) space-filling diagram of a typical V10 anion and (c) three vials from left containing
colorless oxidovanadates, colorless oxidovanadate solution with a drop of acid added forming yellow
V10 and yellow V10 solution. Images used were obtained with permission from (a) Ref. [28] © 2019
by the Minerological Association of Canada, (b) Ref. [29] © 2014 by the World Scientific Publishing,
and (c) Ref. [30] © 2022 by Elsevier.

The structural descriptions of the elemental composition of the Pascoite minerals
have changed over time as improved methods have been developed and employed to
elucidate the true structures [1]. Combining X-ray crystallographic insights with alternative
spectroscopic and analytical methods confirms the nature of the solid state of the minerals
and if they leach out upon weathering. Important chemical tools such as nuclear magnetic
resonance (NMR) spectroscopy are able to characterize both what exists in the solid state
and particularly what forms when these materials dissolve and leach into the environment.
In the following manuscript, we will summarize studies of the Pascoite family of minerals
where X-ray crystallography could be combined with spectroscopic methods to characterize
not only the solid state of the minerals but also what happens when the minerals are
dissolved and leached into the ground.

The geochemistry of vanadium in the environment is complex and has been well-
reviewed by [1,3,4,7,18]. Knowing the properties of vanadium-containing minerals is
relevant to understanding the vanadium cycle [3]. Vanadium is found in nature in a
number of stable oxidation states and coordination geometries (“valences” for both/either
of those terms depending on the discipline) and can easily switch between these given
the microenvironment in which it is found; the main variables include the vanadium
concentration, temperature, acidity (pH), reducing potential (Eh), and oxygen concen-
tration/pressure/fugacity. Chemists and geologists alike recognize the importance of
oxygen’s presence on the oxidation state and, therefore, the coordination number and
composition/speciation. Vanadium is found widely in nature, often in low concentrations
in the crust despite its abundance, so large deposits of vanadium are rare [18]. One area
with a higher area of vanadium concentration is in the Uravan (UraVan) mineral belt in the
USA located in the southwest portion of the state of Colorado and southeast portion of the
state of Utah. The blend of geochemical conditions and the industrial utility for vanadium
(and uranium) of this area has led to many vanadium minerals being discovered here.
In this context, the past decades have resulted in the discovery of many new vanadium
minerals and often co-located minerals, with over 30 being described from this region [31].
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The effects of pH and Eh on the species present can be seen by examining the Pourbaix-
like diagram for vanadium minerals, as shown in Figure 2. Since the first report of vana-
dium minerals in the UraVan mineral belt in the 1950s, scientists have attempted to deter-
mine the reason for the higher concentration of vanadium minerals in this area [32–39].
It is widely thought that the original deposits formed by the deposition of some species
on the sea floor [40] or by the reduction of vanadium by organic carbonaceous materials
and H2S at low pH and elevated (>80 ◦C) temperatures, resulting in deposits that include
the montrosite minerals (V3+OOH) [40,41]. The vanadium(III) can readily substitute for
iron(III) in minerals and is often co-located with iron-containing minerals [3]. These stud-
ies also hinted at the mobility of vanadium minerals due to being highly water soluble,
especially in acidic conditions, which also often leads to oxidation. Such leaching allowed
the movement of vanadium through geologic layers [40,41]. Oxidation of the reduced
V(III) minerals by natural processes (e.g., weathering through oxidation by ground water
or air) or human intervention (e.g., exposure to the atmosphere from mining) can lead
to vanadium mobilization and the formation of so-called secondary minerals. Natural
weathering and subsequent water dissolution leads to “vanadium and molybdenum being
the two most abundant trace elements” in seawater [3]. Many of the V10 materials of inter-
est here have been found in former mines, including all those reported since 2008 [1,42],
where secondary mineralization likely occurred owing to the exposure to near surface
conditions [28] as one might expect from mining activities. Indeed, mining has exposed
both oxidized and more reduced phases and such minerals will often have small crystals.
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NMR spectroscopy is a versatile spectroscopic method that has been used for the
characterization of many materials, often both in the solid state and in solution [6,43]. The
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diamagnetic d0 electronic nature of the vanadium (V) ions that make up the V10, coupled
with largely diamagnetic cations, makes V10 systems more open and desirable for study [6].
The Pascoite mineral contains both V and O, both of which contain NMR active nuclei, with
the V-51 (commonly written 51V) isotope and the O-17 (17O) isotope, respectively, and much
work has been done characterizing systems containing the V10O28 system. Previously, we
reviewed V10 species in the context of Na+-containing vanadium V10 species [44]. Reports
of various materials have been investigated in great detail and it was reported that these
materials are sensitive to protonation-deprotonation in varied environments. 51V NMR
spectroscopy is, therefore, a sensitive method for such investigations. Future applications of
51V NMR spectroscopy in particular in studies of pascoite and other V-containing minerals
could benefit from the chemical literature and characterization of V systems.

2. Decavanadate (V10)-Containing Minerals

Vanadium-containing minerals have been summarized in the appropriately titled
review by Evans and White “The Colorful Vanadium Minerals” [4]. Since that review
was first published, a number of additional vanadium-containing minerals have been
discovered and described. At the time of this writing, the online database Mindat.org
contained 272 minerals that include vanadium-containing minerals, although many fewer
are reported elsewhere. Only a small subset of these minerals is reported to contain V10.
The first V10 mineral, pascoite, was described as early as 1914 [45], but the structures were
only first reported over 50 years ago (see [33,34,37,39]) and a dramatic increase in reports
has occurred since the early 2000s, as shown in Table 1 [31,32,38,46–67]. Table 1 contains
the current information for 21 V10 minerals arranged alphabetically based on name along
with the chemical formula unit, several other classification systems, and first/best refer-
ences. The International Mineralogical Association (IMA) Commission on New Minerals,
Nomenclature and Classification (CNMNC) maintains a list of minerals, including a recent
addition of a symbol [67] and the IMA Number, which is assigned in the form of the year
described followed by a sequential number. The Strunz-mindat classification refers to the
system originally described by the mineralogist Karl Hugo Strunz [68] and translated into
English by Ernest Nickel and continued by Mindat.org. Despite there being a choice of class
08 for “vanadates” within this classification system, all classified V10 minerals are classified
as oxides (04) and sorovanadates (HC), except for the recent definition of trebiskyite as
04.HG (unclassified oxides) [66]. With 2/3 of the minerals established within the past
decade, and largely from one geographical area, there may well be other V10 minerals.
Two previously mentioned examples include vanalite (NaAl8V10O38·30H2O) and rauvite
(Ca(UO2)2V10O28·16H2O), the latter having been described as early as 1922 but considered
“questionable” as a mineral.

The V10 minerals listed in Table 1 constitute examples of structural V10 anions in geo-
logical microenvironments, which leads to structurally different interstitial hydrated coun-
terions, in the parlance of Hawthorne’s structural and interstitial description model [69,70].
Because each of these minerals contains the V10 structural unit, they are described as the
pascoite family, after the original member. Within the family, there are two groups of min-
erals, the pascoite group (PG) and lasalite group (LG), each containing two isostructural
members [1]. These minerals in each microenvironment contain a V10 anion but because
the counterions differ, the “speciation” varies for each of the minerals. These naturally
occurring microenvironments rarely have the ideal formula and often contain solid solu-
tions of cations. Many of these minerals have all been discovered in the same geographical
region (vide supra). We previously summarized those reported in 2017 [44], including two
protonated species. The arrangement above represents an update to previous catalogs of
V10 minerals, including new additions and revised definitions of the fundamental unit.
Specifically, two V10 were reported to be protonated, but these have since been corrected
upon closer analysis, including some elegant updated bond-valence sums analyses and
additional spectroscopy, to clarify the information obtained from X-ray diffraction stud-
ies [1,28,51]. Therefore, the structural definition and formulas of the fundamental unit have
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changed over time for a couple of minerals. Although the potential speciation under the
conditions the minerals formed indicates the possibility of protonation of these anions, the
deprotonated V10 anions are now the accepted structures for gunterite and rakovinite.

Table 1. Pascoite family of minerals including the pascoite group (PG) and lasalite group (LG).

Mineral Species IMA CNMNC
Symbol IMA # Ideal Formula Strunz-Mindat

Classification
First and Best
Structure Ref

Ammoniolasalite
(LG) Alas 2017-094 (NH4)2Mg2[V10O28]•20H2O 4.HC [46]

Bluestreakite Blu 2014-047 K4Mg2[(V4+
2V5+

8)O28]•14H2O 4.HC.20 [47]
Burroite Burr 2016-079 (NH4)2Ca2[V10O28]•15H2O 4.HC.25 [48]

Caseyite * Csy 2019-002 [(V5+O2)Al7.5(OH)15(H2O)13]2
[H2V4+V5+

9O28][V5+
10O28]2•90H2O

4.HC.30 [49]

Gunterite Gun 2011-001 Na4Ca[V10O28](H2O)16•20H2O 4.HC.35 [50,51]

Huemulite Hml 1965-012 Na4Mg[V10O28]•24H2O 4.HG.10 [38]
[52]

Hughesite Hug 2009-035a Na3Al[V10O28]•22H2O 4.HC.05 [53]
Hummerite Hum <1959 K2Mg2[V10O28]•16H2O 4.HC.10 [54,55]

Hydropascoite Hpas 2016-032 Ca3[V10O28]•24H2O 4.HC.05 [56]
Kokinosite Kkn 2013-099 Na2Ca2[V10O28]•24H2O 4.HC.40 [57]

Lasalite (LG) Las 2007-005 Na2Mg2[V10O28]•20H2O 4.HC.05 [58]
Magnesiopascoite

(PG) Mpas 2007-025 Ca2Mg[V10O28]•16H2O 4.HC.05 [59]

Nashite Nsh 2011-105 Na3Ca2[(V4+V5+
9)O28]•24H2O 4.HC.45 [60]

Okeite Oki 2018-080 Mg3[V10O28]•28H2O 4.HC.50 [31]
Pascoite (PG) Pas <1959 Ca3[V10O28]•17H2O 4.HC.05 [32,55,61]

Postite Pos 2011-060 MgAl2(OH)2[V10O28]•27H2O 4.HC.55 [62]
Protocaseyite Pcy 2020-090 [Al4(OH)6(H2O)12][V10O28]2•8H2O 4.HC [63]
Rakovanite Rkv 2010-052 (NH4)3Na3[V10O28]•12H2O 4.HC.05 [64]
Schindlerite Shi 2012-063 (NH4)4Na2[V10O28]•10H2O 4.HC.60 [57,65]
Trebiskyite Tbk 2019-131 Na3Mg2[(Ti4+V9)O28]•22H2O 4.HG [66]

Wernerbaurite Wbr 2012-064 (NH4)2Ca2[V10O28]•16H2O 4.HC.25 [56,57]

* Indicates a mineral with two formulas; # Indicate the classification IMA date.

3. X-ray Crystallography

Minerals were a key part of the early understanding of the structure prior to X-ray
crystallography. Goniometry provided structural information well before X-ray diffraction
was reported by the Braggs. The habits of crystals were known and aligned with their
structure and symmetry. These early mineralogical studies were later confirmed by X-ray
crystallography. The atomic arrangement of atoms in the structure lead to the macroscopic
properties exhibited by the mineral species, and mineralogists performed elegant studies
to determine the compositions of mineral species. X-ray diffraction relies on a repeating
structure and relies on models to predict regions of electron density. The technique nec-
essarily relies on long-range order and periodic arrangements of atoms. As such, early
studies were often conducted on highly symmetric, simple structures, including minerals.
The compositions were (and still are!) assumed to be idealized formula units. Techniques,
X-ray flux, and sensitivity have all advanced tremendously in the past decade, but X-ray
diffraction still remains a poor technique for elemental analyses. The location of hydrogen
atoms in materials with and near highly electron-rich atoms remains a challenge, even
with modern instrumentation. Techniques to examine the data such as bond valence sums
(BVSs) remain a critical technique to deduce the correct structural models in many cases,
especially those involving vanadium, oxygen, and hydrogen [69,71–77].

With the advent of improved X-ray diffraction techniques, increasingly more scientists
are able to examine ever more complex structures and describe them more accurately.
Weaker diffraction spots can be detected to determine longer-range order that was previ-
ously unobtainable. Scientists have been attempting to categorize the increasing complexity
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of known structures [7,8], including minerals [78]. Within natural mineral systems, chem-
ical substitution is the norm. Many examples of pure synthetic species exist, but small
substitutions in solid solution produce beautiful results, e.g., corundum/sapphire/ruby.
As Phillips stated in a recent review, “Minerals can only very rarely be considered pure
substances, reflecting the chemical heterogeneity of natural systems, so that the crystal
structure averaged over the coherent scattering length for X-rays represents an incomplete
picture of the arrangement of atoms in a mineral [79]. Complete analysis of a typical major
mineral in a rock will reveal a dozen or more chemical constituents present at minor-to-trace
concentrations. Furthermore, most rock-forming minerals exhibit extensive formations of
solid solutions, reflecting the ability of crystalline solids to accommodate ions of similar
size and charge and also to compensate charge locally via coupled substitution. This chem-
ical variability is often essential to geochemical studies that aim to deduce the formation
conditions and/or subsequent pressure/temperature history of a rock [79].” Computer
programs designed to help with predictions of formulae because of large uncertainties
in the chemical physical analyses even exist. Despite this chemical complexity, mineral
formulae are often reported in idealized forms, including those in Table 1 [31,32,38,46–67].

The V10s of the pascoite family and pascoite itself offer a useful example of just such
an insight into the strengths and limitations of X-ray crystallography. Pascoite was first
described in 1914 as Ca2V6O17·11H2O from the Pasco region in Peru [45]. The atomic
structure was not known at that time, but using standard mineralogical techniques such as
hardness, streak, specific gravity, and birefringence, the material was gradually character-
ized. Furthermore, the hydration was determined through drying and gravimetric analysis,
and chemical analysis was used to determine the mole ratios. The very tiny crystals were
examined using goniometry and a unit cell was proposed. Later, density studies by Evans
along with some crystallographic studies in 1955 led to the determination of the unit cell
on artificially produced versions. It was not until 1966 that Evans published the structure
of the V10 [34], which was subsequently corrected later that year by Swallow et al. to
determine the correct waters of hydration [32]. Since that time, over 200 solid-state X-ray
structures containing the discrete V10 anions, such as that shown in Figure 1, have been
reported. Most of the diffraction studies carried out to determine the structure have been
conducted on pure synthetic materials, which generally are more homogeneous and have
ideal compositions compared to minerals that often contain variable microenvironments
and a range of compositions [5,9–17,80]. The reported structures include V10 structures as-
sociated with a range of different cations [19,44] and both with and without direct bonding
to other V10 anions as previously categorized in [75].

In addition to the many applications of X-ray crystallography for the characterization
of minerals, more recently, NMR spectroscopy has been used for the characterization of
several minerals after its development in the 1940s. We refer interested readers to [81].
These two methods, X-ray crystallography and NMR spectroscopy, give complementary
data because X-ray diffraction studies rely on long-range order, whereas NMR spectroscopy
can be much more useful for short-range order [6] as described below.

4. NMR Spectroscopy

NMR spectroscopy is a versatile method that has been used for the characterization
of many materials both in the solid state [81–89] and in solution [9,30,44,81,87,90–93],
including minerals [2]. Materials that contain NMR-active nuclei, which occur when an
element contains an isotope, which has a nonzero nuclear spin, that is an odd number
of protons and/or neutrons are able to be probed with NMR spectroscopy. The most
common nuclei investigated using NMR spectroscopy are hydrogen (1H), carbon (13C), and
phosphorus (31P) [93]. These nuclei have spin 1

2 . The pascoite minerals contain V and O,
and both have NMR active nuclei, with the 51V isotope and the 17O isotope. However, the
nuclear spin, the natural abundance of the isotope, and the frequency for the 51V nucleus
and the 17O nucleus are important for determining whether the nucleus is convenient to
monitor [84,89,91–93].
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51V and 17O have spins > 1
2 , with the former being 7/2 and the latter 5/2, making both

these nuclei quadrupolar with shortened relaxation times and broader signal widths [93].
The convenience of the application of these nuclei is dependent on the nuclear parameters
such as the quadrupolar moment. In the case of the 51V nucleus, the quadrupole moment is
0.3 × 10−28 m2, placing it in the medium quadrupolar category (0.1 ≤ Q < 1.0), where signal
widths are sensitive to electric field gradients but excessive linewidths are not problematic.
The 51V has a favorable gyromagnetic ratio and the frequency of observation for 51V is
26.294 MHz near 13C (25.145 MHz) at a field of 2.35 T and it is a very convenient nuclei to
observe [93]. In contrast, the calculated receptibility of the 17O nucleus is 10−5 of that of the
1H, it has a quadrupolar moment of −2.6 × 10−2 barn, it has a low gyromagnetic ratio, and
the frequency for 17O is 13.557 MHz, which makes this nucleus a much greater challenge
spectroscopically. These facts, combined with 51V being 99.76% abundant and 17O being
0.0037% abundant, mean that 51V is much easier to observe. The abundance of the isotope
is important for the size of the signal and can be counteracted by using enriched samples;
however, such spectral characterization is more complicated if, for example, enriched water
(H2

17O) is used because of the many exchange reactions that can occur. Regardless, studies
have been carried out demonstrating that such challenges can be overcome [93].

In the following, we will show some NMR spectroscopic applications of the 51V
nucleus and since some of these minerals are water soluble, we will discuss both solution
and solid-state applications of 51V NMR spectroscopy. Specifically, we will show the
solution spectra of V10. Since there are no solid-state 51V NMR studies of pascoite minerals,
we will show the spectra of vesignieite, BaCu3V2O8(O)2 where some spectra have been
recorded. However, we advocate for applications of 51V in the future for studies of pascoite
minerals and the mineral leaching solutions.

5. Speciation

IUPAC recommend that the term “speciation” is used to indicate the distribution of
species in a sample and used to describe the “species distribution” [94]. The importance of
determining what forms of compounds are present has become increasingly important since
it is generally recognized that different forms of a material can cause different responses
and reactivities in many different fields [22,23,26,90,94–100]. Methods have been and
continue to be developed to characterize different species [101]. The term speciation is
often used by solution chemists to describe the species that form in aqueous solution
with defined stoichiometry (p.q) as shown in Equation (1) [20,21,99,102,103]. Equation (2)
shows H+ and vanadate (more properly dihydrogenorthovanadate, H2VO4

−) forming V10,
a complex with the stoichiometry defined by p = 4 and q = 10 in an equilibrium reaction.
Speciation studies will result in a series of constants that represent the system and allow
for the prediction of the species distribution in aqueous solution under these equilibrium
conditions [18,20,21,99,100,103,104]:

pH+ + q(H2VO4
−) 
 (H+)p(H2VO4

−)q (1)

4H+ + 10(H2VO4
−) 
 V10O28

6− + 12H2O (2)

In the case of V10, the formation is favored in acidic solution as shown in Equation (2).
The formation of the orange V10 from colorless oxidovanadate solutions is a signature
reaction documenting the conversion from the colorless monomeric white crystalline
orthovanadate, a simple phosphate analog, to the compact orange V10 structure, as shown
in Figure 1 [19,23]. The color of the compact anionic structure can change as the counter
ion changes, but for most minerals, it is responsible for the orange color, as shown in
Figure 1c. However, as the pH of the solution increases, the stability of V10 generally
decreases. At neutral pH, the half-life of V10 ranges from 10 to about 72 h depending on
the other solution components and temperature, whereas in basic solution, the lifetime
is reduced to a few hours or less [19]. At pH values around 5–6, as obtained in aqueous
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solutions saturated with CO2/H2CO3, the V10 anion is stable, which is likely to be the case
for solutions obtained when water is leaching through soils.

6. 51V NMR Spectroscopy of V10 in Aqueous Solution and pH Variation in the
Chemical Shift

51V NMR spectroscopy is a convenient method for determining the speciation of
the V(V) in aqueous solution. Depending on the pH range, these studies can be non-
trivial because speciation studies require that the reactions are at equilibrium. Some V(V)
species, such as the smaller colorless oxidovanadates in their various protonation states of
VO4

3− (V1), V2O7
4− (V2), V4O12

4− (V4), and V5O15
5− (V5), rapidly equilibrate, whereas

the orange V10 species equilibrates slowly at neutral and basic pH values. However, the
early work characterizing the V10 structurally by Evans via X-ray crystallography [34] was
complemented by the speciation studies of the Petterson group defining the species present
in solution under various conditions [20,21]. The V10 anion has three different V atoms:
VA, VB, and VC (Figure 1a), that have different 51V NMR signals in a ratio of 1:2:2. The two
octahedral internal non-oxo vanadium atoms shown as VA in Figure 1a are observed as
a broad signal furthest downfield at −425 ppm. One octahedral V-oxo signal is observed
at −498 ppm for the V atoms on the short side of the V10 structure (VB) and the other at
−525 ppm for the V atoms on the long side of the V10 structure (VC), demonstrating the
effects of the oxido-group and the specific geometry on the chemical shift of the V signal.
In Figure 3, a speciation diagram of the V(V) species in solution is shown for a system at
50 mM NaVO3 and 50 mM V atoms (and 5 mM V10) [30]. The best experimental data for
the calculation of the formation constants are obtained using more than one experimental
method, including 51V NMR spectroscopy, as was pioneered by the Petterson and Howard
groups [20,21,92]. Once formation constants are available, calculations can been carried out
using programs such as HYSS as described in [26].
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Figure 3. Distribution diagram in a solution of 50 mM NaVO3 and 50 mM V atoms (5 mM V10) in
0.15 M NaCl as a function of pH. The species are indicated by their formulas, including showing
different protonation states. The figure is adapted with permission Ref. [90]. © 2012 by the American
Chemical Society.

NMR chemical shifts are known to vary with the protonation states and can be used
for titration of the protonation/deprotonation of the V10 and to determine the respective
pKa values [20,21,92]. To illustrate the sensitivity of the 51V NMR chemical shift to pH,
we recorded the 51V NMR spectra of 5 mM V10 (50 mM metavanadate) from pH 2.96 to
7, which covered the pH range of the final pKa values for V10 [30]. The 51V NMR spectra
are shown in Figure 4a. The 51V chemical shift of the VB and VC signals varied, showing a
distinct pH dependence consistent with deprotonation as the pH increased. In contrast,
the VA signals changed much less consistently, with the VA atom being located internally
in the V10 anion and thus being much less sensitive to the change in the protonation state.
These data show that the protonation state affects the chemical shift and in Figure 4b, the
chemical shifts for VA, VB, and VC are plotted as a function of pH. The pH titration curves
are readily observed, giving rise to data allowing the calculation of the pKa values for the
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protonation of the V10 anion. Each of the V atoms give rise to a pKa value, and they were
4.8 for both VB and VC, showing a slight difference depending on the location of the V
atom in the V10 anion. These values are similar to those reported previously of 5.5 to 6.0
for the deprotonation of monoprotonated V10 (HV10O28

5−) [30]. These data illustrate that
the protonation state of the V10 anion can clearly be observed using the chemical shifts of
the V10 anion. This concept has already been used to characterize the protonation state of
the V10 species that is observed in reverse micelles [105]. Figure 4a also demonstrates the
importance of pH in the stability of V10, as rising basicity impacts the equilibrium shown
in Equation (2), leading to other polyoxidovanadates.

These studies demonstrate how the 51V NMR spectra of V10 solutions characterize the
species that leach from the mineral deposits. Although the amount of vanadium in such
leaching solution will be very low, 51V NMR spectroscopy is very sensitive due to the high
natural abundance of V and the quadrupolar nucleus, which allows for rapid accumulation
of scans, resulting in spectra with high signal to noise. However, solution studies require
the dissolution of the minerals, and, hence, it is of interest to attempt non-destructive
solid-state NMR spectroscopy of these systems as well.
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7. Solid-State NMR Spectroscopy

The application of 51V NMR to study solid vanadium-containing complexes of funda-
mental, technological, and biological relevance has grown rapidly in recent years [106] due
to the ability to acquire high-quality magic angle spinning spectra of both the central and
satellite NMR transitions of the 51V nucleus (I = 7/2). Studies have demonstrated that the
quadrupolar coupling, the chemical shift anisotropy (CSA), and the electric field gradient
(EFG) tensors can be determined from the solid-state NMR spectra. Since these parameters
are sensitive to the local vanadium environment, they can be used to understand changes
in the local molecular orbital structure and ground state charge distribution of the vana-
dium [82,107]. Solid-state 51V NMR has been useful for the study of the electronic properties
of 51V-containing inorganic compounds [82,83,85,87,88,108–114] and vanadium-containing
protein complexes [86,115]. An important link between the parameters measured using
solid-state 51V NMR and the molecular structure of the vanadium atom is obtained using
DFT calculations [86,87,115–120].

Solid-state NMR spectroscopy has been used to investigate the local environment
of the Al and Si distribution in aluminosilicate minerals, where the major component is
crystalline oxides and silicates [6]. Minerals containing crystalline silicides and oxides
are among the three most common elements in Earth’s crust, and together account for
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over 90% of its volume [6,81]. NMR spectroscopic studies measured chemical shifts and
quadrupolar coupling parameters, and identified interactions between adjacent cations and
anions, bond lengths, bond angles, and the symmetry of the systems [6,81]. In this manner,
NMR spectroscopy was able to shed light on many long-standing problems in the structure
and composition of unsolved mineral systems. Specifically, XRD methods were found to
result in weak or similar scattering factors, imperfect (impure) sample concentrations that
were too low to affect cell parameters, short-range order effects, and disorder effects at
distances shorter than expected for coherent X-ray scattering.

Materials containing little or negligible amounts of paramagnetic ions with unpaired
electron spins are the most studied because they minimize any potential effects of electron–
nuclear spin couplings [6,121]. In solution, paramagnetic effects are relatively well known
and, in fact, shift reagents (also referred to as contrast agents) containing unpaired electron
spins are routinely used to increase the frequency range or increase spin relaxation in
the solution-state NMR and magnetic resonance imaging (abbreviated MRI) [113,122,123].
Less information is available about the paramagnetic effects by solid-state NMR and NMR
line-broadening effects can be very large. However, since the ranges in the chemical shifts
for paramagnetic peaks are generally much larger than normal chemical shifts, there could
be an enhanced sensitivity to small structural variations, and it has been suggested that
pseudocontact shift and the Fermi contact shift may be detectable when the sample is
subjected to an MAS experiment [123].

Some studies have been reported with vanadium-substituted minerals. Vanadium
has a diverse coordination chemistry and can be routinely found in environments with
coordination numbers ranging from three to eight, giving rise to many complexes that
have useful chemical and biochemical properties [89,104]. In contrast to the pascoite
family of minerals that contain V10 as a discrete anion, in all of which vanadium is in a
six-coordinate octahedral coordination environment for every member of the family, in
vanadium-substituted minerals, there is greater variety in the coordination geometries.
V3+-substituted tourmalines were investigated; however, no NMR spectroscopy techniques
were used to characterize the materials [124–126]. In flux-grown Y1−xMxPO4, M=V, with a
random cation distribution with a variable oxidation state of the V. The authors were able
to use 31P chemical shifts to characterize the environments of both the P and V atoms [43].
51V NMR was successfully used to study V oxides on SiO2 [127]. Solid-state MAS 51V NMR
spectroscopy was used to investigate the supported V2O5/SiO2 catalysts to investigate the
coordination of the vanadium oxide as a function of the environmental conditions [128].
The spectra indicate a signal for a single dehydrated surface vanadium oxide species at
−675 ppm and two signals for vanadium oxide species at −566 and −610 ppm [128].
Studies of PbxCa10−x(VO4)y(PO4)6-y(OH)2 using lead and vanadium replacement of the
hydroxyapatite mineral were monitored by 31P, 43Ca, 207Pb, 51V, and 1H NMR spectroscopy.
The impact of lead insertion in this material was visible using both solid-state 51V and
207Pb NMR spectroscopy [129]. Accordingly, the morphology and crystal structure for
apatites, vanadinite, pyromorphite, and mimetite can be related to 207Pb and the 51V NMR
chemical shifts and assist in describing the local environments of the Pb cation in these
substituted minerals. In addition, the use of 1H NMR spectroscopy to examine vanadium
silicates (including the minerals cavansite, pentagonite, and haradaite) to determine the
mineral hydration level was introduced [130]. To the best of our knowledge, there is only
one mineral that has been studied by solid-state 51V NMR, the kagome antiferromagnet
vesigniieite, BaCu3V2O8(OH)2 [131,132]. Quilliam et al. [131] and Yoshida et al. [132] both
examined NMR line shifts to examine the magnetic susceptibility (Figure 5) with varying
field strength, frequency, and temperature.
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None of these studies observed V10 using solid-state 51V NMR spectroscopy for mem-
bers of the Pascoite family. The presence of hydrated V10 clusters in vanadia gels and
deprotonated species was anticipated but not observed [87]. However, a study follow-
ing the polymerization of the V2O5 gels led to the observation of V10 protonation and
hydrolysis [133].

8. Vanadium V(IV) in V10 Systems

Although V10 generally contains V(V), reports have been made showing that when
subjected to the right treatment, some portion of the V atoms in the molecule can have their
oxidation state reduced, presumably to V(IV). Although some of these V10 derivatives have
been stabilized by supporting ligands, it has recently been reported that anionic V10 could
be reduced [134]. In V10 systems, such reduction is often visibly noticeable by the presence
of a blue or green species in lieu of the typical orange color, e.g., in bluestreakite [47].
These multivalence polyoxidometalates can be a challenge, and can also be characterized
using additional spectroscopic methods such as electron paramagnetic resonance (EPR). In
the case of VVVIV multivalence polyoxidometalates, the presence of the V(IV) atoms and
unpaired electrons complicates the use of 51V NMR spectroscopy because to record NMR
spectra, the unpaired electrons must be paired, and that may not be possible in such rigid
structures [135].

Should NMR alone prove impossible or impractical owing to the paramagnetic V(IV),
then, these compounds are, therefore, investigated using a combination of EPR and NMR
spectroscopy to characterize the solutions. With this combination of methods, the V10
protonation and reduction can be monitored, for example, as has been seen with solutions of
sodium metavanadate [133]. For example, the characterization of Vox from V2O5 deposited
on TiO2 was investigated by 51V MAS NMR spectroscopy and EPR spectroscopy. The
spectra show that the reaction kinetics and the consumption of V(V)O2

+ obtained from V10
will form vanadate polymeric species in solution with an environment similar to that of
the dioxidovanadium cation [133]. Indeed, as described above, a solid-state NMR study
following the polymerization of the V2O5 gels led to the observation of V10 protonation
and hydrolysis [128].
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9. Conclusions and Future Applications

NMR spectroscopy is an informative method used to describe the protonation state
and speciation in both solid and solution states of materials in the chemical and life sciences.
51V NMR spectroscopy would be particularly useful for the characterization of many
vanadium-containing minerals, especially those including the pascoite family of minerals
containing V10. Although dissolution may cause some change in speciation, so far, the solid-
state 51V NMR spectra of V10 materials have not been used to investigate these materials
although some reports of substituted minerals have been investigated by solid-state 51V
NMR spectroscopy. One reason these studies have not yet been done is because these
vanadium minerals are rare and often found in small quantities, and the 30–50 mg of pure
mineral needed may not be accessible (although the required quantities are decreasing
as techniques and rotors improve). In addition, many of these minerals are soluble and
interference from the paramagnetic cations present in a complex natural mineral solution
is possible.

EPR could also be beneficial for the investigation of V10 species because partial reduc-
tion of some of the vanadium atoms in oxidation state +5 reduce to oxidation state +4 within
the mineral has recently been shown to take place for at least two of the known minerals
shown in Table 1. Because EPR is more sensitive than NMR, smaller quantities of materials
are needed, and solid-state EPR (low temperature measurments) would make the technique
non-destructive. EPR spectroscopy will also bolster the mixed V(IV)/V(V) assignment in
these minerals. Importantly, however, the 51V NMR (and/or 1H NMR) spectra of V10 are
sensitive to the protonation state, so the 51V NMR spectra could add additional proof to
reassignment of the protonation state of the V10 anion. NMR spectroscopy is a valuable
future technique, and we encourage spectroscopists to study these complex minerals and
mineralogists to venture and work with this new technique.
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