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Abstract: In this study, molecular dynamics simulation was used to study the effect of SiO2/Al2O3

mass ratio on the structural properties and viscosity of molten fused red mud. The stability of various
T–O bonds in the melt was elucidated by analyzing the bond angle and coordination number; the
degree of polymerization, and the stability of the melt were explored by analyzing the number
of T–O–T bridging oxygen (BO) and the distribution of Qn

Si and Qn
Al of [SiO4]4− as well as that

of Qn
Si and Qn

Al of [AlO4]5−; the self-diffusion coefficient of each atom was determined by mean
square displacement (MSD) analysis; and the trend of the melt viscosity was analyzed according to
the relationship between diffusion and viscosity. The results show that as the ratio of SiO2/Al2O3

increases, the viscosity of molten fused red mud first increases, then decreases, and finally increases.
This is because Ti4 and Fe3+ combine with O2− to form [TiO6]8− octahedron and [FeO4]5− tetrahedra,
which increase the degree of depolymerization of the melt.

Keywords: fused red mud; molecular dynamics; bridging oxygen; viscosity; SiO2/Al2O3 mass ratio

1. Introduction

Fused red mud is the slag formed after iron extraction from red mud (a solid waste
formed in the production of alumina) by a rotary hearth furnace. The production of each
ton of alumina generates 0.7 to 2.0 tons of red mud [1,2]. It was estimated that the annual
red mud emission in 2018 was over 160 tons worldwide with about 105 million tons
disposed in China [3]. Fused red mud contains large amounts of inorganic substances and
heavy metals, such as CaO, Na2O, As, Cr, Cd, etc. The mass storage of fused red mud
is potentially a severe safety hazard and may result in pollution, environmental damage,
and a very large waste of resources. Over the past few decades, many methods have been
adopted to dispose of red mud. For example, red mud can be used to improve thermal
stability and mechanical properties of cement-based grouting materials as well as shorten
the setting time and enhance the strength of these materials [4–7]. Additionally, red mud
can be added to asphalt mixtures to improve the asphalt performance, bulk density, and
rutting resistance [8]. Moreover, red mud can be used as a filler to improve the properties
of polyvinyl chloride (PVC) [9] and sisal/polyester composites [10]. Finally, continuous
glass fiber can be produced from gold tailings, waste limestone, red mud, and ferronickel
slag [11].

Fused red mud is categorized as a silicate and mainly consists of SiO2, Al2O3, MgO,
and CaO. The use of red mud to prepare high-quality asbestos fibers is an effective method
for recovering red mud. Studies on slag have made great progress. For example, Guo
et al. studied the effect of MgO/Al2O3 ratio (from 0.2 to 0.54) and CaO/SiO2 ratio (from
1.05 to 1.35) on the CaO–SiO2–Al2O3–MgO–TiO2 slag system. It was found that increasing
the MgO/Al2O3 ratio reduced the liquidus temperature, deformation temperature, flow
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temperature, and breakpoint temperature, while the CaO/SiO2 ratio had little effect [12].
Ma et al. added TiO2 to the CMASTF slag system and found that the viscosity first decreased
and then increased as the content of TiO2 increased [13]. Liu et al. systematically studied the
effects of BaO, MnO, and CaO on the CaO–SiO2–MgO–Al2O3–BaO–MnO slag system. They
found that the viscosity of the slag system first increased and then decreased with increasing
BaO content; the viscosity decreased with the addition of MnO and CaO [14,15]. As the
MgO content in the MgO–Al2O3–TiO2–CaO–SiO2 slag system increased, the viscosity of
the slag system decreased, and the fluidity increased [16]. B2O3 can increase the degree
of polymerization of the CaO–SiO2–Al2O3–MgO (CSAM) system, while Na2O, K2O, and
MnO have the opposite effect [17]. CaF2 can facilitate the depolymerization of the silicate
network and reduce the melting temperature, viscosity, and viscosity activation energy of
the glass [18].

Because of the high temperature of molten slag, its atomic motion state is difficult to
observe with conventional methods. Studies have shown that molecular dynamics can
be useful for studying molten slag, silicate, glass, etc. Zhang et al. [19] used molecular
dynamics to study the relationship between the structure and viscosity of the CaO–SiO2–
Al2O3–MgO–TiO2 slag system. They found that the degree of SiO2 polymerization is
the main factor affecting the viscosity. Mongalo et al. [20] simulated the structure and
conductivity of CaO−MgO−Al2O3−SiO2 and found that the conductivity can be predicted
well under conditions of low basicity. Zhao et al. [21] studied the effect of CaO/Al2O3 ratio
on ladle furnace refining slag. They found that the addition of CaO could introduce charge
compensators to promote the polymerization of the slag system, thereby increasing the
viscosity of the system. Jiang et al. [22] studied the effects of CaO and MgO on the structure
and properties of blast furnace ash and reported that CaO improved the viscosity of blast
furnace ash significantly more than MgO. Gao et al. [23] studied the effect of CaO/Na2O
ratio on the diffusivity and melting behavior of slag in the SiO2–Al2O3–CaO–Na2O system
by a new method, ring statistics. Dai et al. [24] studied the effect of CaO on the fusion
properties of coal ash and found that CaO could reduce the melting point of coal ash
and increase its molten fluidity. Atila et al. [25,26] studied the effects of Al2O3 on the
thermodynamics, elastic properties, and structure of silicate glasses. They found that
increasing the Al2O3 content could increase the population of bridging oxygen (BO) and
oxygen triclusters, glass transition temperature, and elastic modulus. Jabraoui et al. [27]
found that increasing the SiO2 content in silica calcium aluminosilicate glasses reduced the
corresponding elastic constants. Fe ions reduced the degree of polymerization of the CaO–
SiO2–FetO system. Na2O–Al2O3–SiO2 alkali aluminosilicate glass had the best network
connectivity when the Al/Na ratio was 1.2 [28,29].

At present, there are few molecular dynamics studies on fused red mud in the molten
state. On the other hand, the microstructural properties and viscosity of molten red mud
critically influence the quality of the prepared asbestos fibers. Therefore, in this study, the
effect of SiO2/Al2O3 ratio on the structural properties and viscosity of molten red mud
was simulated by molecular dynamics. This work provides theoretical guidance for the
preparation of asbestos fibers from fused red mud.

2. Simulation Method

The key to the success of the molecular dynamics simulation of fused red mud is to
select the appropriate potential form and parameters. The Garofalini potential function
was used in this study. The Garofalini potential function is composed of a modified Born–
Mayer–Huggins (BMH) potential function and a three-body potential function [30]. The
modified BMH potential contains a short-range repulsive term and a modified Coulomb
term. The resulting BMH potential function is:

Vij =
qiqj

4πε0rij
+ Aij exp

(
−Bijrij

)
−

Cij

r6
ij
−

Dij

r8 (1)
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The first term in the formula represents the Coulomb potential. The molecular dynam-
ics calculation takes into account the interactions not only between any two atoms with
residual charges within the cell but also between two atoms with residual charges across
cells. The second term in the formula is the short-range repulsive term. The influence of
repulsion cannot be ignored in the potential function. Repulsion here mainly refers to the
overlap between electron clouds and the electrostatic interaction between nuclei; both can
increase the potential energy of the system. The last two terms in the formula represent
the attractive potential. The polarization term in the potential function can be neglected.
Aij is the charge of atoms i and j. Bij, Cij, and Dij are potential parameters. The potential
parameters used in this study are listed in Table 1 [26,31,32].

Table 1. Potential parameters in this study.

i j Aij (eV) Bij (1/Å) Cij (eV·Å6)

O O 1.18 × 105 7.31 0
Si Si 8.32 × 105 8.77 2.75 × 101

Ca Ca 2.55 × 105 4.68 0
Fe Fe 8.49 × 105 6.89 0
Mg Mg 4.16 × 105 6.75 6.91 × 101

O Si 1.98 × 105 5.77 0
O Ca 1.52 × 105 4.93 0
O Fe 2.74 × 105 6.08 0
O Mg 1.06 × 105 4.95 0
Si Ca 2.43 × 105 5.52 7.65 × 100

Si Fe 5.79 × 105 6.64 6.56 × 101

Si Mg 5.86 × 105 7.64 4.65 × 101

Ca Fe 4.19 × 105 5.68 0
Ca Mg 1.82 × 105 5.08 0
Fe Mg 2.52 × 105 5.59 0
Al Al 2.44 × 103 3.65 0
Ti Ti 3.52 × 104 6.25 0
Na Na 1.35 × 103 6.25 0
Al O 1.95 × 103 3.55 0
Ti O 2.40 × 105 6.06 0
Na O 1.99 × 103 6.25 0
Na Si 1.25 × 103 6.25 0

In the simulation, the number of atoms of different elements was set according to
the mass percentage of various components (Table 2). To ensure that the samples have
similar initial conditions, the total numbers of atoms should be as similar as possible. Cubic
simulation boxes with a side dimension of 32.5 Å (see Figure 1) were constructed consisting
of no less than 2260 and no more than 2280 atoms. The numbers of each atom in the system
are listed in Table 3, and the density was set to 2.90 g/cm3.

Table 2. Composition of red mud and number of atoms.

Sample No.
Weight Percentage SiO2

Al2O3SiO2 Al2O3 CaO MgO Na2O Fe2O3 TiO2

1# 25 35 12 10 6 8 4 0.71
2# 30 30 12 10 6 8 4 1
3# 35 25 12 10 6 8 4 1.4
4# 40 20 12 10 6 8 4 2
5# 45 15 12 10 6 8 4 3
6# 50 10 12 10 6 8 4 5
7# 55 5 12 10 6 8 4 11
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Figure 1. Cubic box of a molten red mud system.

Table 3. Number of atoms in molecular dynamics.

Sample
No.

Number of Atoms

Ca Si Al Ti Mg Fe Na O Total

1# 107 208 344 25 125 38 96 1319 2262
2# 107 250 294 25 125 38 96 1328 2263
3# 107 292 246 25 125 38 96 1340 2269
4# 107 338 196 25 125 38 96 1347 2272
5# 107 375 148 25 125 38 96 1359 2273
6# 107 417 98 25 125 38 96 1368 2274
7# 107 458 50 25 125 38 96 1378 2277

All simulations were performed in an NVT ensemble with a Nose–Hoover thermostat
to ensure that the number of atoms, the volume, and the temperature remained constant
throughout the simulation. The initial temperature was set to 5000 K, followed by 30 ps of
relaxation to obtain a system with uniform particles. Then, the system was cooled to 2000 K
in 30 ps at a cooling rate of 1 × 1014 K/s, followed by 30 ps of relaxation at 2000 K. Finally,
the system was further cooled to 1800 K in 20 ps at a cooling rate of 1 × 1013 K/s, followed
by 30 ps of relaxation at 1800 K (see Figure 2). This ensured that the atoms in the system
were evenly mixed and the system was kept in the molten state.

Minerals 2022, 12, x FOR PEER REVIEW 4 of 13 
 

 

 
Figure 1. cubic box of a molten red mud system. 

0 20 40 60 80 100 120 140
1000

2000

3000

4000

5000

Te
m

pe
ra

tio
n 

(K
)

Time (ps)

－100K/ps

－10K/ps

 
Figure 2. Computing process of simulation. 

Table 2. Composition of red mud and number of atoms. 

Sample No. 
Weight Percentage 

32

2

OAl
SiO  

SiO2 Al2O3 CaO MgO Na2O Fe2O3 TiO2 
1# 25 35 12 10 6 8 4 0.71 
2# 30 30 12 10 6 8 4 1 
3# 35 25 12 10 6 8 4 1.4 
4# 40 20 12 10 6 8 4 2 
5# 45 15 12 10 6 8 4 3 
6# 50 10 12 10 6 8 4 5 
7# 55 5 12 10 6 8 4 11 

Table 3. Number of atoms in molecular dynamics. 

Sample No. 
Number of Atoms 

Ca Si Al Ti Mg Fe Na O Total 
1# 107 208 344 25 125 38 96 1319 2262 
2# 107 250 294 25 125 38 96 1328 2263 
3# 107 292 246 25 125 38 96 1340 2269 
4# 107 338 196 25 125 38 96 1347 2272 
5# 107 375 148 25 125 38 96 1359 2273 
6# 107 417 98 25 125 38 96 1368 2274 
7# 107 458 50 25 125 38 96 1378 2277 

Figure 2. Computing process of simulation.



Minerals 2022, 12, 925 5 of 13

3. Results and Discussion
3.1. Partial Radial Distribution Function (PDF) and Coordination Number (CN)

The PDF, gij(r) is generally used to assess the short-range order in the metallurgical
slags at high temperature which belongs to an amorphous system. The PDF can be calcu-
lated by Equation (2), where Ni and Nj are the total numbers of ions i and j, respectively, V
is the volume of the system, and n(r) denotes the average number of the ions j surrounding
the ion i in a spherical shell within r ± ∆r/2. The average coordination number (CN),
given by Equation (3), can be evaluated by integrating the gij(r) curve to its first valley.

gij(r) =
V

Ni Nj
∑

j

〈
nij(r− ∆r/2, r + ∆r/2)

〉
4πr2∆r

(2)

Nij = 4π
Nj

V

∫ r

0
gij(r)r2dr (3)

Figure 3a shows the PDF curves of Si–O, Al–O, Ca–O, Mg–O, Na–O, Ti–O, and Fe–O of
the fused red mud sample #1. The first peak of the curve indicates the average bond length
between the two atoms. The bond lengths for different pairs are 1.59 Å, 1.79 Å, 2.31 Å,
2.29 Å, 2.33 Å, 2.45 Å, and 2.51 Å, respectively. The calculated results are consistent with
those previously determined by molecular dynamics simulations and experiments [33–36].
The bond lengths of Si–O and Al–O are similar and much smaller than those of Ca–O and
Mg–O. Compared with other T–O (T = Al, Ca, Mg, Na, Ti, and Fe) bonds, the Si–O bond
shows the strongest first peak, indicating that the Si–O bond is the most stable.
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Figure 3. (a) PDF and (b) CN of sample #1 in the fused red mud system.

Figure 3b shows the CNs of different atom pairs in the sample. The value correspond-
ing to the CN platform is the average coordination number. The CN of Si–O remains
basically unchanged at approximately 4. The CN platform of Al–O is not as flat as that
of Si–O, suggesting that the Al–O bond is slightly less stable than the Si–O bond. Except
for Si–O and Al–O, the other T–O bonds do not form platforms, indicating that these T–O
bonds do not form a stable network structure.

3.2. Distribution of Bond Angles

There are two types of bond angles in the fused red mud. One is the O–T–O (T = Si, Al)
bond angle in the tetrahedron, and the other is the T–O–T bond angle by which the
tetrahedra are connected to each other in the network. The shape characteristic of the
tetrahedral structure can be determined by the distribution of O–T–O bond angles. The
T–O–T bond angle represents the direction in which the tetrahedra are connected in the
glass network structure. The flexibility of the T–O–T bond angle determines the degree of
disorder of the melt, and it varies in a wide range (approximately 120~180◦). The change in
the distribution of the T–O–T bond angle indicates whether the structure has become more
ordered or disordered.
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Figure 4a shows that with increasing SiO2/Al2O3 ratio, the peak value of the O–Si–O
bond angle distribution increases, and the peak width decreases. The bond angle is
approximately 110.2◦, and the theoretical bond angle of tetrahedral O–Si–O is 109.5◦ [36,37].
The result suggests that the structure of [SiO4]4− becomes more stable with increasing
SiO2/Al2O3 ratio. Figure 4b shows the distribution of the O–Al–O bond angle in the
aluminum oxide tetrahedron. The bond angle is approximately 106.5◦, and the peak is
wider than that of O–Si–O, indicating that [AlO4]5− has a more regular shape but slightly
lower stability than [SiO4]4−. Figure 4c shows the Si–O–Si bond angle distribution. The
bond angle is approximately 144.5◦. The width of the peak gradually decreases as the
SiO2/Al2O3 ratio increases, indicating that more [SiO4]4− tetrahedra are connected with
each other and that the degree of order increases. Figure 4d shows the distribution of
the Al–O–Si bond angle. The bond angle is approximately 138.9◦. As the SiO2/Al2O3
ratio increases, the peak intensity gradually decreases, but the peak width becomes larger,
indicating that the connection between [SiO4]4− tetrahedron and [AlO4]5—tetrahedron
decreases and that the structure becomes less ordered [38].
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3.3. Distribution of Oxygen and Qn

The tetrahedral structures of the network are not connected by edges or faces, only
by corners. The oxygen at the shared corner is the BO, which connects two tetrahedral
structures. The oxygen in a tetrahedral structure but not connected to other tetrahedral
structures is a nonbridging oxygen (NBO) [21,26,37]. The network structure of fused
red mud consists of different tetrahedral structures. Si4+, Al3+, Ti4+, and Fe3+ ions can
form [SiO4]4− and [AlO4]5− tetrahedral, [TiO6]8− octahedron, and [FeO4]5− tetrahedral
structures with oxygen [36], respectively. Si and Al are network formers, and their ionic
groups [SiO4]4− and [AlO4]5− are the main components of the network.
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Figure 5 shows the distribution of BO and NBO of molten red mud with different
SiO2/Al2O3 mass ratios. Figure 5a shows that when the ratio of SiO2/Al2O3 is small,
the concentration of BO follows the order Si–O–Al>Al–O–Al>Si–O–Si. As the ratio of
SiO2/Al2O3increases, the concentration of Si–O–Si BO increases correspondingly, and the
concentration of Al–O–Al BO decreases rapidly, whereas the concentration of Si–O–Al BO
first increases and then decreases. Figure 5b shows that with increasing SiO2/Al2O3 ratio,
the concentrations of Si–O–Ca NBO, Si–O–Mg NBO, and Al–O–Na NBO increase slightly,
and the concentrations of the rest NBOs are almost unchanged.
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Figure 5. Distribution of BO and NBO in molten red mud: (a) BO and (b) NBO.

This phenomenon conforms to the Al avoidance principle [38]; i.e., Si–O–Al has the
lowest bond energy, followed by Si–O–Si, and Al–O–Al has the highest bond energy. When
the ratio of SiO2/Al2O3 is small, the content of Si2+ in the molten red mud is low, and the
content of Al3+ is high. As the Si2+ content increases, more Si–O–Al bonds are formed in
the melt according to the Al avoidance principle. With increasing Si2+ and decreasing Al3+,
there is insufficient Al3+ in the melt to form Si–O–Al bonds. As a result, the content of
Si–O–Al begins to decrease, thereby accelerating the formation of the Si–O–Si bonds.

Figure 6 shows the distribution of Qn
m in [SiO4] and [AlO4] tetrahedra, where m

(m = Si, Al) represents the atoms connected to BO in the [SiO4]4−/[AlO4]5− tetrahedra and
n represents the number of Bos in each [SiO4]4−/[AlO4]5− tetrahedron. Figure 6a shows
that, as the SiO2/Al2O3 ratio increases, the concentrations of Q0

Si and Q1
Si in the [SiO4]4−

tetrahedra gradually decrease, the concentration of Q2
Si first increases and then decreases,

and the concentrations of Q3
Si and Q4

Si gradually increase. In addition, Q4
Si is produced

only in a small amount when the ratio of SiO2/Al2O3 is 1.4.
Figure 6b shows that as the SiO2/Al2O3 ratio increases, the Q0

Al concentration in the
[SiO4] tetrahedra first changes slowly and then increases rapidly; the concentration of Q1

Al
first increases and then decreases; and the concentrations of Q2

Al and Q3
Al first change slowly

and then decrease rapidly. The amount of Q4
Al is very small. Moreover, Q4

Al disappears
when the ratio of SiO2/Al2O3 is greater than 3.

As shown in Figure 6c, with increasing SiO2/Al2O3 ratio, the Q0
Al concentration in

the [AlO4]5− tetrahedra increases rapidly from the initial 17.44% to 76%. However, the
concentrations of Q1

Al and Q2
Al increase first and then decrease; the amount of Q4

Al remains
very small and disappears when the SiO2/Al2O3 ratio is greater than 3.

As shown in Figure 6d, Q0
Si and Q1

Si are the main species in the [AlO4]5− tetrahedra.
With increasing SiO2/Al2O3 ratio, the concentration of Q0

Si decreases from 83.1% to 68%,
while the concentration of Q1

Si increases from 15.1% to 30%. The amounts of Q2
Si, Q3

Si, and
Q4

Si remain very small and are minimally affected by the ratio of SiO2/Al2O3.
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3.4. Self-Diffusion Coefficient and Viscosity

The atoms in the molten red mud are always moving, and the movement of each atom
directly affects the viscosity of the melt. Viscosity is a critical parameter for the preparation
of fibers using fused red mud and can directly affect the quality of the fibers. The mean
square displacement (MSD) of the particles was calculated by analyzing the trajectories of
the particles using the molecular dynamics method, and the self-diffusion coefficient of
each atom was obtained by combining with the Einstein diffusion equation [39], as shown
in Equations (4) and (5):

MSD = 〈∆r(t)2〉 = 1
N
〈

N

∑
i=1

∣∣∣ri(t) − ri(0)

∣∣∣2〉 (4)

where ri(0) is the position vector of atom i at time 0; ri(t) is the position vector of atom i at
time t;

D = lim
t→∞

1
6

d
[
∆r(t)2]

dt
= lim

t→∞

1
6

d[MSD]

dt
(5)

Figure 7 shows the typical MSD curves as a function of time. Figure 6 shows the effect
of SiO2/Al2O3 mass ratios on the diffusion coefficient of each atom in the fused red mud
system. Figure 8 shows that the ratio of SiO2/Al2O3 has different effects on the diffusion
of different atoms. The DMg value of Mg is much larger than those of other atoms and
decreases with increasing SiO2/Al2O3 ratio. As the SiO2/Al2O3 ratio increases, DTi first
decreases, then increases, and finally decreases again; whereas DFe remains unchanged
at first, then rapidly decreases, and finally stabilizes. The diffusion coefficients of the
remaining atoms decrease slowly with increasing SiO2/Al2O3 ratio and follow the order
DNa>DCa>DAl>DO>DSi. Mg is mainly present in the gaps of the network structure formed
by silicon and aluminum. It is a network modifier and does not participate in the formation
of the network. Thus, Mg can move in a large area, facilitating its diffusion. As for Ti,
part of the Ti4+ can combine with O2− to form [TiO6]8− octahedron and participate in the
formation of network structure. When the content of Al2O3 in the system is relatively
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high, Ti4+ is mainly present in the gaps of the network structure and has high diffusivity.
When the content of Al2O3 decreases and the content of SiO2 is low, part of Ti4+ combines
with O2− to form [TiO6]8− octahedron and participates in network formation, resulting
in decreased DTi value. However, as the amount of SiO2 increases, the binding between
Si4+ and O2− is stronger than that between Ti4+ and O2−, so Ti4+ is squeezed out of the
network structure, leading to an increase in its MSD. With the further addition of SiO2
and decrease in Al2O3, the viscosity of the system increases, resulting in difficulty in the
migration of Ti4+ and thereby a decrease in MSD. Similarly, the Fe3+ in the gaps of the
network structure also has strong diffusivity. Moreover, some Fe3+ participates in the
formation of the silicate network to form [FeO4], reducing the movement range of Fe3+. As
the ratio of SiO2/Al2O3 increases, the content of Si2+ in the system increases. The binding
between Si4+ and O2− is stronger than that between Fe3+ and O2−, so Fe3+ is squeezed out
of the network structure, resulting in an increase in its D value. However, as the ratio of
SiO2/Al2O3 further increases, more [SiO4] tetrahedra are formed, and the network becomes
more complete. The viscosity of the system increases accordingly, the migration of Fe3+ is
restricted, and its D value decreases. Si4+ and Al3+ combine with O2− to form [SiO4]4− and
[AlO4]5− tetrahedral structures. They are network formers and do not easily diffuse.
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Equations relating viscosity to diffusivity have been widely used in the study of
silicate melts [26,31,40], and the two most popular equations are the Eyring equation and
the Stokes–Einstein equation. They were derived in different ways but relate diffusivity
and viscosity through the same formula, as shown in Equation (6).

η =
KBT
Dλ

(6)

where η is the viscosity coefficient, J·m−1·s; KB is the Boltzmann constant; T is the Tend,
K; and λ = 2R, where R is the average diffusion distance of ions, Å. Based on this, the
viscosity of the molten red mud is calculated by the total diffusion coefficient of the ions
in the system. Figure 9 shows the effect of SiO2/Al2O3 ratio on the viscosity and the total
diffusion coefficient of molten red mud, the orange red histogram and blue curve in the
figure represent the change of viscosity η and total diffusion coefficient DTotal, respectively,
as can be seen from the figure, with the increasing SiO2, the viscosity first increase, then
decrease slightly, and finally increase again. Conversely, the change of total diffusion
coefficient is opposite. As discussed above, the bonding between Si4+ and O2− is stronger
than that between Ti4+ and O2− or Fe3+ and O2+. Whin the content of SiO2 is low, part
of Ti4+and Fe3+ combines with O2− to form [TiO6] octahedron and [FeO4] tetrahedra,
respectively, and participate in network formation resulting in decreased the values of
DTotal. However, with the gradual increase of Si4+, Ti4+ and Fe3+ are squeezed out of the
network structure, at this time, Ti4+ and Fe3+ have strong diffusivity, leading to an increase
in its DTotal and decrease in its viscosity, as show in Figure 9. When the SiO2/Al2O3 ratio
increases from 1.4 (3# sample) to 2 (4# sample), DTotal value increase from 4.5 × 10−10

m2s−1 to 5.3 × 10−10 m2s−1, correspondingly, the viscosity η value drops from 1.27 Pa·s
to 1.06 Pa·s. However, as the amount of Si2+ in the melt further increases, more [SiO4]
tetrahedra are formed, the degree of polymerization of the network is higher, the diffusion
of Ti4+ and Fe3+ is limited again, and the DTotal becomes smaller, from 5.3 × 10−10 m2s−1

(4# sample) to 2.4 × 10−10 m2s−1 (7# sample), correspondingly, the η increases again, from
1.06 Pa·s to 2.37 Pa·s.
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ticipate in network formation resulting in decreased the values of DTotal. However, with 
the gradual increase of Si4+, Ti4+ and Fe3+ are squeezed out of the network structure, at this 
time, Ti4+ and Fe3+ have strong diffusivity, leading to an increase in its DTotal and decrease 
in its viscosity, as show in Figure 9. When the SiO2/Al2O3 ratio increases from 1.4 (3# sam-
ple) to 2 (4# sample), DTotal value increase from 4.5 × 10−10m2s−1 to 5.3 × 10−10m2s−1, corre-
spondingly, the viscosity η value drops from 1.27 Pa∙s to 1.06 Pa∙s. However, as the 
amount of Si2+ in the melt further increases, more [SiO4] tetrahedra are formed, the degree 
of polymerization of the network is higher, the diffusion of Ti4+ and Fe3+ is limited again, 
and the DTotal becomes smaller, from 5.3 × 10−10m2s−1 (4# sample) to 2.4 × 10−10m2s−1 (7# sam-
ple), correspondingly, the η increases again, from 1.06 Pa∙s to 2.37 Pa∙s. 
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4. Conclusions

The effect of SiO2/Al2O3 mass ratio on the structural properties and viscosity of the
molten fused red mud were systematically analyzed by the molecular dynamics method.
The conclusions are as follows:
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1. The average bond lengths of Si–O, Al–O, Ca–O, Mg–O, Na–O, Ti–O, and Fe–O are
1.59 Å, 1.79 Å, 2.31 Å, 2.29 Å, 2.33 Å, 2.45 Å, and 2.51 Å, respectively. The network
formers of the fused red mud are [SiO4] and [AlO4] tetrahedra.

2. With increasing SiO2/Al2O3 ratio, the concentration of Si–O–Si BO in the molten red
mud increases, the concentration of Al–O–Al BO decreases, and the concentration of
Si–O–Al BO first increases and then decreases; the concentrations of Si–O–Ca NBO,
Si–O–Mg NBO, and Si–O–Na NBO increase, and the remaining NBOs do not change
significantly.

3. The average bond angles of O–Si–O, O–Al–O, Si–O–Si, and Al–O–Si in the fused red
mud are 110.2◦, 106.5◦, 144.5◦, and 138.9◦, respectively. With increasing SiO2/Al2O3
ratio, the peaks of O–Si–O and Si–O–Si bond angle distributions become narrower,
while the peaks of O–Al–O and Al–O–Si become wider. The results indicate that the
degree of polymerization of [SiO4] tetrahedral network increases and that the degree
of polymerization of [AlO4] tetrahedra decreases, leading to a more compact melt
structure.

4. With increasing SiO2/Al2O3 ratio, (1) in the distribution of Qn
Si of [SiO4], Q0

Si and Q1
Si

decrease, and Q2
Si first increases and then decreases; (2) in the distribution of Qn

Al of
[SiO4], Q0

Al increases, Q1
Al first increases and then decreases, Q2

Al and Q3
Al first change

slowly and then decrease, and the content of Q4
Al is very small and goes to zero when

the ratio of SiO2/Al2O3 is greater than 3; (3) the concentration of Q0
Al in the [AlO4]

tetrahedra increases rapidly from the initial 17.44% to 76%, Q1
Al and Q2

Al first increase
and then decrease, the content of Q4

Al remains very small and goes to zero when the
ratio of SiO2/Al2O3 is greater than 3; and (4) the concentration of Q0

Si in the [AlO4]
tetrahedra decreases from 83.1% to 68%, while the concentration of Q1

Si increases from
15.1% to 30%, and the concentrations of Q2

Si, Q3
Si, and Q4

Si remain very small and are
minimally influenced by the SiO2/Al2O3 ratio.

5. With increasing SiO2/Al2O3 ratio, the viscosity of the fused red mud first increases,
then decreases, and finally increases because Ti4 and Fe3+ combine with O2− to form
[TiO4] octahedron and [FeO4] tetrahedra, which increase the degree of polymerization
of the melt.
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