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Abstract

:

Paleoproterozoic tectonic evolution of the northern North China Craton has been a hot research topic. We firstly identified a 1.85 Ga hornblendite from the Gaositai mafic–ultramafic complex, in northern Hebei. Systematic studies of petrology, zircon U-Pb geochronology, and in situ mineral major and trace elements of hornblendite are the key to revealing the petrogenesis of the Paleoproterozoic ultramafic rock and the tectonic evolution of northern North China Craton. LA-ICP-MS zircon U-Pb dating suggests the Gaositai hornblendite formed at 1851 ± 44 Ma. The late Paleoproterozoic ultramafic rocks, together with coeval post-collisional granites, formed a bimodal igneous assemblage. Both hornblende and its equilibrium melt compositions show strongly fractionated HREE patterns, relative enrichments in LREEs and LILEs, and depletions in HREEs and HFSEs. The phlogopite-bearing hornblendite magma could have originated from a hydrous garnet-facies mantle source metasomatized by slab-derived silicate melt. Furthermore, the variations of major and trace elements in hornblende from core to rim also reveal the mineral fractional crystallization and magma recharge. Zircon trace elements, melt composition equilibrium with hornblendes, and the bimodal igneous assemblage suggest that the generation of the Gaositai Paleoproterozoic hornblendite was likely the product of post-collisional extension related to the collision between eastern and western North China blocks.
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1. Introduction


The North China Craton (NCC), one of the oldest and largest Precambrian cratons in China, develops the Archean to Paleoproterozoic crystalline basement, and Meso- to Neoproterozoic and Paleozoic sedimentary cover (Figure 1a). The NCC is a key object for studying the Precambrian tectonic regime transformation, evolution of supercontinents, and continental crust [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17]. However, there is still a significant amount of disagreement regarding the timing of cratonization and the Paleoproterozoic tectonic evolution. For instance, some scholars believe that the North China Craton’s basement was created by numerous blocks colliding at 2.7–2.5 Ga, with rifting taking place throughout the Paleoproterozoic, and the blocks colliding once more at 1.95–1.85 Ga [15,18,19,20]. Another theory holds that the Yinshan and Ordos blocks, and the Longgang and Langrim blocks, amalgamated at 1.95 Ga and 1.90 Ga, respectively, to form the Western and Eastern blocks, and the oceanic crust was long-term subducted beneath the two blocks, but there were different understandings of subduction polarity. The Western and Eastern blocks ultimately collided together along the Trans-North China Orogen (TNCO) in 1.85 Ga, which coincided with the formation time of other major cratons throughout the world, representing the assembly of the Columbia supercontinent [3,4,8,21,22,23,24,25].



Neoarchean–Paleoproterozoic geological records are well-developed in the northern Hebei region of the NCC (Figure 1b); the predecessors focused mainly on the formation and metamorphic ages of the Neoarchean metamorphic complex, and petrogenesis of ~2.5 and 1.8 Ga metavolcanic rocks and granitoids, revealing the Neoarchean subduction and Paleoproterozoic collision to extension processes [9,13,25,26,27,28,29,30]. Traditionally, it has been assumed that there are large areas of Paleoproterozoic mafic-ultramafic rocks in the northern Hebei region, such as the Gaositai mafic–ultramafic complex, Damiao anorthosite, etc. [31]. Numerous studies have concluded that the Damiao anorthosite generated at 1.74 Ga, which was the product of post-collisional extension [24]. While the Gaositai mafic–ultramafic complex was considered to be a 280 Ma Alaskan-type rock association (Figure 1c), associated with an extensional mechanism that has different interpretations of back-arc extension and intracontinental extension [32,33,34], some researchers have also proposed that the formation and mineralization age was 213 Ma [35].
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Figure 1. Tectonic subdivision of the North China Craton, modified from Zhao et al. and Santosh [21,23] (a); simplified geological map of the Gaositai area in Northern Hebei (b); and a detailed geological map of Gaositai mafic-ultramafic rocks, modified from Chen et al. [33] (c). 
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Fortunately, we discovered a 1.85 Ga hornblendite (CD1) from the Gaositai mafic-ultramafic rocks for the first time (Figure 1c). Previous studies have shown that magmatic zircons in hornblendites could record the formation age, zircon trace elements can be used to determine the tectonic setting, and the in situ major and trace element compositions of hornblendes and their equilibrium magma can reveal the nature of the primary magma and magma evolution [32,36,37,38,39,40,41]. Therefore, systematic petrology, zircon U-Pb dating, and in situ major and trace element analyses of hornblendite are the keys to revealing the petrogenesis of the Paleoproterozoic ultramafic rock and the geodynamic mechanism of the northern NCC.




2. Geological Setting and Sampling


The Gaositai area in northern Chengde is situated at the northernmost Trans-North China Orogen (TNCO), in the northern part of NCC (Figure 1a), and has developed a large area of Archean supracrustal rocks, granitic gneisses, Mesoproterozoic mafic rocks, and Late Paleozoic mafic-ultramafic rocks. The supracrustal rocks are represented by the Dantazi Group and the Hongqiyingzi Group. The former group is mainly distributed south of the Chicheng-Damiao-Pingquan fault, and the rock association includes trondhjemite-tonalite-granodiorite (TTG), mafic granulite, amphibolite, garnet-biotite schist, and marble. The latest research has determined that the formation ages of the TTG were Neoarchean to Paleoproterozoic (2.6–2.4 Ga), and most rocks in this group have undergone 2.4, 1.9–1.8 Ga granulite-amphibolite facies metamorphism [25,27,28]. The Paleoproterozoic Hongqiyingzi Group is distributed north of the fault, overlaid on the Dantazi Group in an angular unconformity, and the rock assemblage is gneiss, quartzite, mica schist, and marble. Liu et al. [9] recognized Neoarchean (2546–2532 Ma) quartz dioritic-tonalitic-granodioritic gneisses and Paleoproterozoic (1870–1819 Ma) granodiorite-monzogranite-syenogranite intrusions from the Hongqiyingzi Group, and some Late Paleozoic granites have been also identified from it [26]. Additionally, a small amount of 1894–1878 Ma S-type garnet granites occurred in Lanqi Town, Longhua, which is located north of the research region [29]. The Mesoproterozoic magmatic rocks include the Damiao 1742–1739 Ma anorthosite, mangerite, and minor troctolite [24]. Late Paleozoic mafic-ultramafic rocks also formed in Gaositai, Hongshila, and Boluonuo regions, including the 393–381 Ma pyroxenites, amphibole pyroxenites, hornblendites, and gabbros, as well as the 297–280 Ma gabbros [32,33,34].



In this study, we conducted petrological studies on a hornblendite (CD1) from the western part of the Gaositai mafic–ultramafic complex (Figure 1c), which intruded into the Archean–Paleoproterozoic metamorphic and deformed supracrustal rocks. The hornblendite has a massive structure, inequigranular texture, and a mineral composition dominated by amphibole (90%), magnetite (6%), pyrite (2%), and phlogopite (2%) (Figure 2). Hornblende can be divided into two groups. One is coarse-grained with clinopyroxene, with magnetite inclusions in the cores and pyrite inclusions in the rims. The fine-grained hornblende crystals in the other group coexist with magnetites and pyrites (Figure 2c,d). Phlogopite appears between medium- to fine-grained hornblende grains (Figure 2c). According to these petrological characteristics, we infer that clinopyroxene firstly crystallized, then the core of coarse-grained hornblende and magnetite was generated, followed by the formation of the mantle to the rim of coarse-grained hornblende, medium-to fine-grained hornblende, magnetite, pyrite, and phlogopite.




3. Analytical Methods and Results


3.1. Analytical Methods


Zircon U-Pb dating and trace element analysis were determined by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) at Hebei Key Laboratory of Strategic Critical Mineral Resources, Hebei GEO University. The instrument couples a quadrupole ICP-MS (iCAP RQ) and a 193-nm ArF Excimer laser (RESOlution-LR). Laser spot size was set to 29 μm, laser energy density was 3 J/cm2, and the repetition rate was 6 Hz. A zircon 91500 standard was utilized for external age calibration, and a zircon GJ–1 standard was used as a secondary standard to monitor the deviation of age calculation. Calibrations for zircon trace element concentrations were performed using NIST SRM610 as an external standard and Si as the internal standard. Detailed instrumental conditions and data acquisition procedures were described by Wang et al. [42]. Data reduction was done using ICPMSDataCal and Isoplot (v.3.0) tools [43,44]. Isotope ratio and age uncertainties were quoted at the 1 sigma level. Zircon U-Pb dating and trace element results were given in Table 1 and Table 2.



Major and trace element compositions for hornblende were determined by LA-ICP-MS at Hebei Key Laboratory of Strategic Critical Mineral Resources. Laser spot size was set to 61 μm, laser energy was 100 mJ, and the repetition rate was 4 Hz. Data reduction was carried out by the iolite 4 software, using NIST SRM 610 as the external standard and Si as the internal one. NIST SRM612 was analyzed as a secondary standard quality control [45]. Major and trace element compositions of hornblende are reported in Table 3.




3.2. Analytical Results


3.2.1. Zircon U-Pb Dating


Zircon grains in the Gaositai hornblendite exhibit distinct cathodoluminescence (CL) image properties, and the corresponding U-Pb dating results likewise reveal multi-stage ages (Figure 3 and Figure 4a, Table 1). Three zircon grains, which range from subhedral to euhedral, exhibit oscillatory zoning and high Th/U ratios of 0.31–0.55, indicating a magmatic origin. Three analytical spots yield the youngest upper intercept age of 1851 ± 44 Ma (MSWD = 1.4) (Figure 4a; the calculated error correlation value is 0.6), which can represent the Gaositai hornblendite’s formation age. Another group of zircons mostly develops core-rim structures (Figure 3), and their inner cores with Th/U ratios of 0.27–1.4 show oscillatory zoning, which is of magmatic origin. However, their rims are zoneless, which points to a metamorphic origin. Seven spots of magmatic cores give an upper intercept age of 2206 ± 10 Ma (MSWD = 1.01). In addition, there are seven subrounded to rounded zircon grains in the sample, which show weak oscillatory zoning and relatively high Th/U ratios of 0.28–0.49, further indicating that these magmatic zircons underwent later metamorphism. Eight analyses yield one concordant 207Pb/206Pb age (2399 ± 13 Ma, MSWD = 0.17, n = 6) and two older 207Pb/206Pb concordant ages (2584 ± 27 Ma, 2522 ± 17 Ma).



The chondrite-normalized zircon rare earth element (REE) patterns show light rare earth element (LREE) depletion, heavy rare earth element (HREE) enrichment, and positive Ce anomalies and negative Eu anomalies (Figure 4b), consistent with the features of most magmatic zircons. Given the high Th/U ratios of zircons, this indicates that metamorphism has not significantly affected the REE patterns of 2.4–2.6 Ga zircons. In addition, it is noted that 1.85 Ga magmatic zircons contain relatively lower contents of heavy REE than the older captured zircons (Figure 4b).




3.2.2. In Situ Major and Trace Elements of Hornblende


We performed LA-ICP-MS in situ major and trace element analyses for coarse-grained hornblende and two medium-to fine-grained hornblende particles (Figure 2c and Figure 5, Table 3). In the chondrite-normalized REE diagram (Figure 5a), 16 analyses of hornblendes show upward convex REE patterns; LREE and medium rare earth elements (MREEs), particularly Pr, Nd, and Sm, are more enriched than HREEs. These REE patterns resemble those of hornblendes in many cumulates [47]. The primitive mantle-normalized trace element spidergram shows that the large ion lithophile elements (LILEs, such as Rb, Ba, K, Sr) are enriched, while Th, U, and HFSEs (Nb, Ta, Zr, Hf, Ti) are depleted (Figure 5b).



In particular, the trace element composition of the melt in equilibrium with the hornblende from the hornblendite was calculated by applying Am/LD values experimentally determined for basaltic systems [36,37] (Table 4). Equilibrium melts show strong fractionated REE patterns, as well as strong fractionation of MREEs and HREEs, enrichment of LREEs, LILEs, U, Pb, and depletion of HREEs, Nb, Ta, Zr, Hf, and Ti (Figure 5c,d).






4. Discussion


4.1. Formation Age of the Gaositai Proterozoic Hornblendite


Early studies established the Proterozoic as the age of formation for the Gaositai ultramafic rocks in the northern NCC [31]. Recent zircon U-Pb dating studies, however, have proposed the formation ages to be in the Paleozoic and Early Mesozoic. For instance, based on the age of a gabbro dike (280 Ma), Chen et al. [33] hypothesized that the Gaositai mafic-ultramafic rocks were formed in the Early Permian, and Zhang et al. [32] determined the crystallization age of a gabbro in Gaositai to be 392 Ma through SHRIMP zircon dating. In addition, the LA-ICP-MS zircon dating for chromitite and pyroxenite indicates that the formation age was the Late Triassic (213 Ma) [35]. Several Proterozoic igneous rocks have been discovered close to the research area, including the 1894–1878 Ma Lanqi garnet granite, 1870–1819 Ma granodioritic-monzogranites-syenogranites gneisses [9,29], the Damiao anorthosite pluton (1742–1739 Ma) [24], Lanying anorthosite and quartz syenite, and Gubeikou K-feldspar granite (1726 ± 9 Ma, 1739 ± 43 Ma, 1712 ± 15 Ma, and 1692 ± 19 Ma) [49]. However, the question remains whether there are any Proterozoic ultramafic rocks in the Gaositai and in nearby areas.



Therefore, we conducted LA-ICP-MS zircon U-Pb dating for a hornblendite in the Gaositai ultramafic rocks. The youngest zircons in the hornblendite are euhedral to subhedral, and develop magmatic oscillatory zoning (Figure 3) and high Th/U ratios of 0.31 to 0.55, indicating that they are all products of magmatic crystallization. The dating result indicates that the youngest upper intercept age of 1851 ± 44 Ma (Figure 4a) represents the forming age of hornblendite, this age is much older than the 1.7 Ga monzodiorite that intruded into the Gaositai Paleoproterozoic hornblendite and the Dantazi Group [31], our unpublished data. This Paleoproterozoic hornblendite should be separated from the Gaositai mafic–ultramafic complex that has Paleozoic zircon U-Pb ages. Thus, our study provides evidence for the presence of late Paleoproterozoic ultramafic rocks in the Gaositai area of northern Hebei; these rocks, along with the Paleoproterozoic granites, may form a bimodal igneous association. Furthermore, several 1894–1808 Ma mafic intrusive rocks also developed in southern Gaositai and in the nearby Chicheng areas [26,28], confirming the occurrence of coeval mafic magmatism in the eastern part of northern North China Craton.



On the other hand, the hornblendite samples contain three groups of magmatic captured zircons with ages of 2206 ± 10 Ma, 2399 ± 13 Ma, and 2584 ± 27 Ma (Figure 4a). The majority of the captured zircons modified by late metamorphism still exhibit relatively obvious magmatic oscillatory zoning and REE patterns of magmatic zircons (Figure 3 and Figure 4), which give ages that can be used to represent the formation ages of magmatic captured zircons, except for one zircon grain developing a thick zoneless metamorphic rim (2488 Ma). The coeval three stages of magmatic activity outlined above have also been found close to the study region. For instance, Feng et al. [50] reported S-type granites composed of garnet-biotite granite, garnet granite, and gneissic biotite granite in the Longhua area, which were formed at 2180 ± 42 Ma. The mafic dyke swarms in the Shimen area of eastern Hebei formed at 2162 Ma in an intracontinental rift environment [51]. In addition, several 2600–2505 Ma tonalites, trondhjemites, and granodiorites, as well as 2454–2404 Ma monzogranites and migmatites, have also been identified from the Dantazi Group and the Hongqiyingzi Group [25,26,28].




4.2. Magma Source and Evolution


Euhedral to subhedral hornblende crystals with cumulate structure in the Gaositai Paleoproterozoic hornblendite indicate the magmatic cumulate origin. The clinopyroxene and coarse hornblende were the early-crystallizing minerals, because the fine-grained clinopyroxene inclusions formed in the core of the coarse hornblende crystal. The hornblende compositions show no large variations, and no other anhedral silicate minerals crystallized from the interstitial melt. Hence, we attempt to qualitatively estimate the composition of equilibrium magma using the trace element composition of hornblende [36,37,41].



It should be noted that both hornblende and its equilibrium melt compositions show relative enrichment in LREEs and LILEs (e.g., Rb, Ba, K, Pb), and depletion in HREEs and HSFEs (e.g., Nb, Ta, Zr, Hf, Ti), which is geochemically similar to those of the hornblendes and their host basaltic rocks in subduction zones (Figure 5 and Figure 6). These characteristics might have been attributed to an origin of partial melting of a slab-derived fluid/melt metasomatized mantle source (Figure 6) [37,41,52,53,54]. Further partial melting under garnet-facies conditions comes from the observation of strongly fractionated REE and HREE patterns with lower HREE abundances in hornblende and equilibrium melt, as well as the relatively lower HREE contents in primary magmatic zircons (Figure 4 and Figure 5) [55,56]. In addition, the extensive crystallization of hornblende indicates the primary hydrous magma source, and the presence of phlogopite also gives the most direct evidence for mantle metasomatism, which is consistent with the negative correlations of Rb/Sr and Ba/Rb in the equilibrium melt [57]. U/Th and Th/Nb for mafic rocks have generally been used to determine distinct slab-derived components metasomatized by the mantle source, because LILEs and U are easily mobilized in slab-derived fluid, while LREEs and Th are more incompatible in slab-derived melts [53,54,58]. These two values for the equilibrium melt exhibit a notable slab-derived sediment-melt signature (Figure 6) [53]. This, together with the generation of phlogopite, suggests that the mantle source was metasomatized by slab-derived K-rich silicate melts.



Before emplacement, the magma underwent multiple stages of mineral fractional crystallization. The relatively low Cr, Co, Ni contents are consistent with early fractional crystallization of olivine and clinopyroxene. The mentioned mineral inclusions, as well as core-mantle composition changes of coarse-grained hornblende, including an increase of Ti and a decrease of Mg, Al, Ca, V (Figure 7), are evidence that an early fractional crystallization of clinopyroxene + large-grained hornblende (core) occurred under the conditions of relatively high water contents [56]. Then, the dominant mantle-rim of coarse hornblende + fine-grained hornblende + magnetite + pyrite + phlogopite crystallized, which resulted in the dominant decrease of Fe in hornblende from the residual magma [37,41]. In addition, the comparatively elevated and consistent Mg, Al, Ca, V, Sr/Y, La/YbN [48], and Dy/Yb found in late-forming hornblende rims and crystals (Figure 7), could be explained by the addition of mantle-derived magma [37]. Additionally, there is no plagioclase in hornblendite, and no obvious Eu anomaly or change in the hornblende and the equilibrium melt, indicating that there is no obvious plagioclase fractional crystallization, because the high water content of the magma suppressed the nucleation and crystallization of plagioclase [59,60,61].




4.3. Tectonic Setting and Implications


The tectonic setting of the generation of the Gaositai hornblendite is still not clear, as a result of the paucity of research on the formation of the 1.85 Ga mafic to ultramafic magmatic rocks in the study area. Thus, we use zircon trace elements and melt composition equilibrium with hornblendes to reveal the geodynamic mechanism.



Firstly, the high U/Yb and low Y concentrations of the magmatic and captured zircons in hornblendite set them apart from zircons from the oceanic crust (Figure 8a) [39]. Moreover, the presence of a large number of 2.2, 2.4, and 2.6 Ga magmatic captured zircons provides further evidence that the formation of the magmatic zircons was associated with the continental crust evolution. In addition, magmatic zircon trace elements can be used to determine the tectonic setting where magma was generated. For instance, in the U/Yb vs.Nb/Yb diagram, the magmatic zircons from MORB and OIB dominantly fall into the mantle array, and the magmatic zircons from the continental arc and post-collision rocks have relatively larger U/Yb ratios (Figure 8b) [40]. The 1851 Ma magmatic zircons from the hornblendite plot into the overlapping zone of continental arc and post-collisional origin zircons (Figure 8b) [40].



Furthermore, hornblende and equilibrium melt compositions have shown that the hornblendite magma originated from a hydrous garnet-facies mantle source metasomatized by silicate melt. Low Lu/Hf and high Th/Yb ratios of the equilibrium melt compositions indicate the addition of continental margin sediments (Figure 8c) [53]. At the same time, they show high Zr/Y, Th/Yb, Nb/Yb, and low Zr, which are similar to the characteristics of continental arc magma (Figure 6a and Figure 8d) [52,62]. These pieces of evidence point to the melt metasomatism in the mantle source region related to the partial melting of subducted continental sediments in a continental arc environment [53,54,58]. While the aforementioned geochemical characteristics could occur in both arc mafic rocks and post-collisional mafic to ultramafic rocks, the amphibole-rich rocks were mostly produced at convergent plate margins or distributed along orogenic belts, which could have formed in the oceanic ridge subduction or post-collisional extension settings [63,64,65,66]. In general, ridge subduction produced voluminous magmatic rocks, including rock assemblages of adakite, OIB, and Nb-rich basalt [67], which are absent in the study area. On the other hand, the notably slab-derived melt metasomatism in the mantle source at least implies that the slab subduction happened before the collision to post-collisional extension. Therefore, we consider that the generation of the Gaositai Paleoproterozoic hornblendite was likely the product of the post-collisional extension mechanism, and dominantly inherited the pre-subduction mantle source.



The North China Craton was formed by the collision of eastern and western North China blocks at 1.85 Ga [4,21,22,23,24,68]. Prior to the collision process, the Paleoproterozoic subduction probably occurred along TNCO, as indicated by the presence of Paleoproterozoic Chicheng SSZ ophiolite and the Paleoproterozoic cold-subduction related eclogite facies metamorphism [13,30,69]. To the north of the study area, 1894–1878 Ma S-type garnet-bearing granites [29], the post-collisional 1853–1827 Ma granodiorite- monzogranite-syenogranite intrusions, and 1742–1739 Ma Damiao anorthosite-norite-mangerite-troctolite have been recognized [9,24]. The 1853–1808 Ma gabbroic diorites and granites in the Chicheng region to the west formed in a post-collisional setting [70]. Additionally, the granulite facies metamorphism occurred in the Khondalite Belt and TNCO during 1.9–1.8 Ga [4,22,68,71]. These magmatic and metamorphic events documented the continent–continent collision between the eastern North China Block and the western North China Block, and the related post-collisional extension [4,9,22,23,24,29,70]. The extension process led to the asthenosphere upwelling, which triggered the partial melting of the garnet facies mantle rocks metasomatized by the slab-derived melt in the early stage. The predominant fractional crystallization and accumulation of hornblende in the underplating mafic magma beneath the lower crust resulted in the generation of late Paleoproterozoic hornblendite.





5. Conclusions


	(1)

	
The Gaositai hornblendite formed at 1851 ± 44 Ma, together with coeval post-collisional granites, formed a bimodal igneous assemblage.




	(2)

	
The magma of the Paleoproterozoic phlogopite-bearing hornblendite could originate from a hydrous garnet-facies mantle source metasomatized by slab-derived silicate melt, and has undergone mineral fractional crystallization and magma recharge.




	(3)

	
The Gaositai Paleoproterozoic hornblendite formed in the post-collisional extension setting related to the collision between the eastern and western North China blocks.
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Figure 2. Photomicrographs of the Gaositai hornblendite. (a) Massive hornblendite, plane polarized light, (b) clinopyroxene and magnetite inclusions in hornblende, cross polarized light, (c) coarse- and fine-grained hornblendes, locations of in situ major and trace elements analyses, cross polarized light, (d) Magnetite and pyrite in hornblendite, reflected light. Cpx—clinopyroxene, Hb—Hornblende, Mag—magnetite, Phl—phlogopite, Py—pyrite. 
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Figure 3. Zircon CL images of the Paleoproterozoic Gaositai hornblendite. Numbers in circles are analysis numbers. 
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Figure 4. Ziron concordia diagram (a) and REE patterns [46] (b) of the Paleoproterozoic Gaositai hornblendite. 
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Figure 5. Chondrite-normalized REE patterns (a,c) [46] and primitive mantle-normalized trace element spidergrams (b,d) [48] of hornblendes from the hornblendite and their equilibrium melt. 
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Figure 6. Th/Yb vs. Nb/Yb (a) [52] and U/Th vs. Th/Nb (b) [53] of equilibrium melt of hornblendes from the Paleoproterozoic Gaositai hornblendite. 
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Figure 7. Variations of major and trace elements and ratios from core to rim (a–j) of three hornblende grains (three colors) from the Gaositai Paleoproterozoic hornblendite. 
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Figure 8. U/Yb vs. Y [39] (a), U/Yb vs. Nb/Yb [40] (b) for zircons, Lu/Hf vs. Th/Yb [53] (c), and Zr/Y vs. Zr [62] (d) for equilibrium melt of hornblendes from the Paleoproterozoic Gaositai hornblendite. 
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Table 1. LA-ICP-MS zircon U-Pb dating results for the Gaositai hornblendite.
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Spot No.

	
Th

	
U

	
Th/U

	
Isotopic Ratios

	
Age(Ma)




	
ppm

	
ppm

	
207Pb/206Pb

	
1σ

	
207Pb/235U

	
1σ

	
206Pb/238U

	
1σ

	
207Pb/206Pb

	
1σ

	
207Pb/235U

	
1σ

	
206Pb/238U

	
1σ






	
CD1—1

	
173

	
403

	
0.4

	
0.1506

	
0.0014

	
9.6495

	
0.1201

	
0.4636

	
0.0046

	
2354

	
16

	
2402

	
12

	
2455

	
20




	
CD1—2

	
26

	
48

	
0.6

	
0.1143

	
0.0017

	
5.3101

	
0.1053

	
0.3361

	
0.0052

	
1869

	
28

	
1870

	
17

	
1868

	
25




	
CD1—3

	
86

	
165

	
0.5

	
0.1458

	
0.0016

	
7.4541

	
0.0998

	
0.3701

	
0.0047

	
2298

	
19

	
2167

	
12

	
2030

	
22




	
CD1—4

	
64

	
93

	
0.7

	
0.1334

	
0.0019

	
3.7232

	
0.1000

	
0.2019

	
0.0048

	
2144

	
24

	
1576

	
22

	
1186

	
26




	
CD1—5

	
69

	
159

	
0.4

	
0.1631

	
0.0011

	
9.4580

	
0.1478

	
0.4197

	
0.0062

	
2488

	
12

	
2383

	
14

	
2259

	
28




	
CD1—6

	
30

	
79

	
0.4

	
0.1550

	
0.0014

	
9.7285

	
0.2088

	
0.4523

	
0.0076

	
2402

	
15

	
2409

	
20

	
2406

	
34




	
CD1—7

	
13

	
31

	
0.4

	
0.1727

	
0.0028

	
11.8622

	
0.2651

	
0.4971

	
0.0081

	
2584

	
27

	
2594

	
21

	
2601

	
35




	
CD1—8

	
6

	
21

	
0.3

	
0.1553

	
0.0028

	
9.6571

	
0.2031

	
0.4519

	
0.0067

	
2405

	
30

	
2403

	
19

	
2404

	
30




	
CD1—9

	
92

	
304

	
0.3

	
0.1123

	
0.0010

	
3.9049

	
0.0520

	
0.2516

	
0.0028

	
1839

	
16

	
1615

	
11

	
1447

	
14




	
CD1—10

	
19

	
42

	
0.4

	
0.1664

	
0.0018

	
11.2507

	
0.2653

	
0.4895

	
0.0107

	
2522

	
17

	
2544

	
22

	
2568

	
46




	
CD1—11

	
13

	
36

	
0.4

	
0.1582

	
0.0022

	
9.6098

	
0.2085

	
0.4392

	
0.0070

	
2437

	
24

	
2398

	
20

	
2347

	
31




	
CD1—12

	
363

	
259

	
1.4

	
0.1393

	
0.0015

	
7.9324

	
0.1086

	
0.4120

	
0.0042

	
2218

	
19

	
2223

	
12

	
2224

	
19




	
CD1—13

	
14

	
30

	
0.5

	
0.1539

	
0.0028

	
9.5192

	
0.2111

	
0.4481

	
0.0092

	
2391

	
31

	
2389

	
20

	
2387

	
41




	
CD1—14

	
16

	
59

	
0.3

	
0.1420

	
0.0019

	
7.7669

	
0.1202

	
0.3958

	
0.0070

	
2254

	
24

	
2204

	
14

	
2150

	
32




	
CD1—15

	
207

	
213

	
1.0

	
0.1457

	
0.0013

	
7.6907

	
0.1215

	
0.3817

	
0.0047

	
2295

	
15

	
2196

	
14

	
2084

	
22




	
CD1—17

	
42

	
69

	
0.6

	
0.1379

	
0.0015

	
7.8090

	
0.0991

	
0.4109

	
0.0049

	
2211

	
19

	
2209

	
12

	
2219

	
22




	
CD1—18

	
25

	
67

	
0.4

	
0.1102

	
0.0020

	
5.4703

	
0.1637

	
0.3579

	
0.0070

	
1803

	
34

	
1896

	
26

	
1972

	
33




	
CD1—19

	
68

	
144

	
0.5

	
0.1327

	
0.0013

	
7.9135

	
0.1067

	
0.4319

	
0.0037

	
2200

	
17

	
2221

	
12

	
2314

	
17




	
CD1—20

	
83

	
156

	
0.5

	
0.1327

	
0.0013

	
7.7905

	
0.1002

	
0.4255

	
0.0041

	
2200

	
17

	
2207

	
12

	
2285

	
18
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Table 2. LA-ICP-MS zircon trace element results (ppm) for the Gaositai hornblendite.
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	Spot No.
	Y
	Nb
	La
	Ce
	Pr
	Nd
	Sm
	Eu
	Gd
	Tb
	Dy
	Ho
	Er
	Tm
	Yb
	Lu
	Th
	U





	CD1—1
	251
	2.51
	0.03
	21.6
	0.13
	0.45
	0.88
	0.17
	4.89
	1.45
	18.1
	7.79
	36.7
	9.73
	105
	21.3
	173
	403



	CD1—2
	162
	2.48
	0.03
	14.6
	0.02
	0.70
	1.26
	0.56
	3.83
	1.18
	15.0
	5.55
	25.9
	6.39
	66.2
	14.7
	26.3
	47.5



	CD1—3
	286
	1.25
	0.00
	14.9
	0.07
	0.74
	1.18
	0.18
	5.67
	1.95
	25.9
	8.95
	42.2
	11.1
	112
	21.6
	86.3
	165



	CD1—4
	327
	1.43
	0.25
	14.4
	0.65
	2.28
	1.81
	0.26
	6.71
	2.39
	29.4
	10.7
	49.0
	11.7
	118
	21.6
	63.9
	92.8



	CD1—5
	225
	1.24
	0.00
	13.0
	0.07
	0.39
	0.79
	0.15
	3.68
	1.44
	18.5
	7.14
	34.5
	9.14
	98.6
	18.8
	68.7
	159



	CD1—6
	244
	0.70
	0.00
	10.8
	0.04
	0.24
	0.86
	0.20
	4.35
	1.49
	19.9
	7.91
	37.6
	9.91
	104
	20.1
	29.8
	78.5



	CD1—7
	303
	1.77
	0.00
	15.4
	0.15
	0.67
	1.33
	0.14
	6.36
	2.18
	24.9
	9.84
	46.3
	11.4
	117
	21.4
	12.8
	31.5



	CD1—8
	246
	1.25
	0.01
	12.0
	0.09
	0.59
	1.14
	0.16
	5.32
	1.66
	20.9
	7.83
	35.1
	8.88
	92.5
	16.5
	5.71
	20.7



	CD1—9
	148
	1.89
	0.09
	18.7
	0.16
	0.84
	1.22
	0.32
	4.41
	1.18
	13.6
	4.51
	20.9
	5.17
	52.8
	10.2
	91.7
	304



	CD1—10
	298
	1.61
	0.01
	14.6
	0.06
	0.65
	1.28
	0.18
	6.01
	1.88
	24.6
	9.42
	42.8
	11.4
	116
	21.3
	18.5
	42.0



	CD1—11
	268
	2.00
	0.00
	15.6
	0.05
	0.64
	1.27
	0.16
	5.47
	1.85
	21.8
	8.65
	39.6
	10.0
	104
	18.5
	12.8
	36.3



	CD1—12
	1278
	2.70
	0.06
	35.0
	0.25
	2.62
	6.21
	0.78
	34.3
	9.93
	120
	43.3
	179
	40.7
	358
	65.1
	363
	259



	CD1—13
	259
	1.28
	0.00
	13.0
	0.07
	0.48
	1.38
	0.18
	5.22
	1.81
	22.7
	8.39
	37.2
	9.71
	100
	18.3
	14.4
	29.7



	CD1—14
	316
	0.96
	0.02
	13.3
	0.06
	0.48
	1.12
	0.16
	5.10
	1.94
	23.5
	9.68
	46.1
	13.0
	144
	25.9
	15.9
	59.0



	CD1—15
	970
	1.77
	0.04
	24.9
	0.50
	4.71
	8.33
	0.56
	29.3
	8.31
	98.7
	32.9
	136
	31.8
	287
	48.3
	207
	213



	CD1—17
	1908
	6.19
	0.00
	16.5
	0.08
	0.76
	1.84
	0.24
	8.66
	3.15
	38.2
	14.7
	68.4
	17.0
	170
	31.8
	42.2
	68.6



	CD1—18
	476
	1.79
	0.01
	16.7
	0.09
	0.59
	1.20
	0.26
	3.50
	0.97
	10.3
	3.59
	16.2
	4.03
	41.5
	8.17
	25.2
	67.3



	CD1—19
	113
	0.69
	0.00
	12.8
	0.07
	0.62
	1.04
	0.10
	4.13
	1.54
	19.9
	7.81
	36.7
	9.24
	93.3
	18.8
	68.5
	144



	CD1—20
	247
	1.32
	0.00
	14.5
	0.06
	0.81
	1.43
	0.13
	6.88
	2.45
	30.2
	11.8
	52.8
	13.6
	137
	25.2
	83.4
	156
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Table 3. Compositions (ppm) of amphiboles in the Paleoproterozoic Gaositai hornblendite.
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	Spot No.
	HB-1
	HB-2
	HB-3
	HB-4
	HB-5
	HB-6
	HB-7
	HB-8
	HB-9
	HB-10
	HB-11
	HB-12
	HB-13
	HB-14
	HB-15
	HB-16





	Li
	0.55
	0.73
	0.48
	0.45
	0.54
	0.57
	0.58
	1.16
	0.60
	0.57
	0.62
	1.93
	0.66
	0.67
	2.05
	0.60



	Na
	15,962
	16,635
	16,083
	16,075
	16,317
	16,444
	16,620
	17,714
	16,556
	16,423
	16,138
	16,643
	15,921
	15,940
	17,521
	16,338



	Mg
	67,686
	67,899
	67,035
	67,534
	66,956
	67,414
	67,957
	68,057
	67,456
	67,129
	67,351
	65,937
	68,305
	67,943
	66,843
	67,998



	Al
	61,155
	61,864
	60,765
	58,585
	59,016
	58,836
	61,151
	61,176
	59,786
	61,681
	61,392
	62,843
	61,095
	61,319
	62,041
	63,535



	P
	64.03
	65.48
	70.24
	70.24
	76.57
	79.39
	71.05
	77.39
	100.45
	102.11
	123.94
	57.33
	66.87
	62.57
	65.48
	76.74



	K
	9777
	9706
	9549
	8835
	8721
	8873
	9249
	8686
	8571
	9414
	9882
	10,931
	10,090
	10,078
	9123
	10,281



	Ca
	79,879
	79,432
	78,830
	78,627
	77,780
	78,570
	79,532
	78,084
	77,487
	79,117
	78,874
	78,012
	79,046
	79,188
	79,713
	80,572



	Sc
	101
	100
	99.2
	98.8
	97.5
	99.2
	96.7
	91.5
	88.9
	95.9
	104
	110
	100
	100
	117
	102



	Ti
	6046
	6084
	6237
	6007
	6095
	6005
	5942
	5937
	6077
	6198
	6149
	6225
	6053
	6061
	5708
	6180



	V
	468
	502
	469
	442
	440
	438
	452
	495
	440
	454
	458
	492
	474
	468
	530
	495



	Cr
	31.8
	31.7
	23.0
	8.0
	25.3
	11.7
	28.6
	18.9
	10.7
	17.9
	21.3
	26.8
	39.0
	38.7
	29.7
	31.0



	Mn
	863
	856
	891
	899
	901
	902
	853
	882
	917
	906
	901
	876
	894
	917
	883
	890



	Fe
	79,230
	79,121
	82,846
	81,720
	83,607
	83,693
	77,009
	89,890
	84,960
	85,249
	84,358
	84,052
	81,608
	82,702
	83,269
	83,315



	Co
	55.8
	53.9
	57.1
	57.3
	57.9
	58.4
	54.0
	57.4
	58.8
	58.1
	59.7
	56.7
	56.6
	56.1
	56.9
	57.7



	Ni
	24.1
	23.6
	23.2
	21.8
	22.3
	20.9
	23.8
	61.9
	24.1
	24.0
	25.8
	26.5
	25.0
	24.8
	32.1
	26.6



	Cu
	0.55
	0.85
	0.51
	0.47
	1.22
	0.61
	0.82
	758.41
	0.65
	0.76
	2.50
	2.81
	0.69
	0.52
	0.68
	0.53



	Zn
	54.3
	55.9
	55.4
	57.7
	55.8
	58.5
	56.9
	65.0
	58.0
	58.3
	59.1
	64.0
	57.0
	55.4
	77.5
	56.8



	Ga
	14.4
	14.6
	13.7
	13.5
	14.0
	13.7
	14.1
	15.7
	14.0
	14.2
	13.9
	15.3
	14.2
	14.4
	16.0
	14.7



	Rb
	3.73
	4.03
	3.67
	3.03
	2.98
	2.90
	3.39
	3.96
	3.10
	3.68
	4.04
	6.67
	4.11
	3.87
	4.55
	4.08



	Sr
	387
	386
	377
	348
	353
	349
	389
	374
	360
	386
	386
	396
	377
	378
	374
	402



	Y
	15.5
	15.1
	15.2
	15.3
	16.1
	15.2
	15.3
	17.3
	18.1
	17.4
	16.0
	14.8
	14.3
	14.5
	14.4
	15.4



	Zr
	14.8
	14.6
	14.8
	13.3
	14.0
	14.3
	15.9
	18.3
	18.5
	17.9
	16.1
	15.5
	15.0
	15.8
	16.5
	16.0



	Nb
	1.97
	1.92
	1.90
	1.68
	1.76
	1.75
	1.87
	2.10
	1.86
	1.99
	1.98
	1.91
	1.98
	2.01
	1.99
	2.04



	Sn
	0.82
	0.93
	0.86
	0.83
	0.77
	0.79
	0.90
	1.06
	1.02
	1.04
	0.97
	0.88
	0.88
	0.95
	1.15
	1.04



	Ba
	175
	180
	188
	176
	171
	170
	182
	191
	165
	186
	194
	201
	198
	189
	215
	199



	La
	4.27
	4.07
	4.01
	3.66
	3.87
	3.86
	4.20
	4.21
	4.19
	4.37
	4.38
	4.49
	4.22
	4.13
	4.10
	4.37



	Ce
	14.5
	14.4
	14.1
	13.6
	14.4
	14.2
	14.5
	15.4
	16.2
	16.2
	15.7
	15.7
	14.5
	14.4
	14.4
	15.2



	Pr
	2.77
	2.77
	2.72
	2.68
	2.90
	2.75
	2.88
	3.05
	3.15
	3.05
	2.95
	2.90
	2.71
	2.73
	2.75
	2.83



	Nd
	16.0
	15.5
	14.7
	15.6
	16.2
	15.7
	16.1
	17.2
	18.2
	17.3
	16.5
	15.8
	15.3
	15.4
	15.5
	15.8



	Sm
	4.73
	4.57
	4.67
	4.72
	4.93
	4.71
	4.76
	5.40
	5.26
	5.21
	4.96
	4.91
	4.28
	4.37
	4.56
	4.85



	Eu
	1.48
	1.44
	1.46
	1.56
	1.58
	1.50
	1.47
	1.59
	1.70
	1.68
	1.57
	1.53
	1.40
	1.35
	1.38
	1.46



	Gd
	4.65
	4.51
	4.40
	4.65
	5.08
	4.79
	4.69
	5.15
	5.26
	5.24
	4.97
	4.56
	4.39
	4.38
	4.55
	4.58



	Tb
	0.62
	0.64
	0.61
	0.61
	0.64
	0.63
	0.63
	0.70
	0.72
	0.68
	0.64
	0.62
	0.57
	0.61
	0.58
	0.64



	Dy
	3.46
	3.52
	3.52
	3.48
	3.69
	3.51
	3.56
	3.87
	4.15
	3.91
	3.70
	3.45
	3.27
	3.31
	3.19
	3.57



	Ho
	0.66
	0.61
	0.64
	0.65
	0.67
	0.65
	0.64
	0.72
	0.78
	0.70
	0.66
	0.63
	0.57
	0.60
	0.59
	0.64



	Er
	1.64
	1.70
	1.66
	1.62
	1.64
	1.61
	1.59
	1.85
	1.99
	1.74
	1.68
	1.58
	1.60
	1.44
	1.38
	1.63



	Tm
	0.20
	0.18
	0.19
	0.19
	0.20
	0.20
	0.20
	0.21
	0.23
	0.23
	0.21
	0.20
	0.18
	0.18
	0.18
	0.18



	Yb
	1.09
	1.04
	1.10
	1.11
	1.30
	1.21
	1.14
	1.42
	1.49
	1.31
	1.07
	1.09
	0.99
	1.02
	1.01
	1.08



	Lu
	0.15
	0.15
	0.13
	0.15
	0.16
	0.15
	0.15
	0.18
	0.18
	0.17
	0.17
	0.16
	0.14
	0.13
	0.13
	0.14



	Hf
	1.12
	1.07
	1.09
	1.03
	1.10
	1.04
	1.26
	1.39
	1.44
	1.39
	1.23
	1.15
	1.10
	1.12
	1.19
	1.09



	Ta
	0.08
	0.08
	0.07
	0.06
	0.07
	0.06
	0.08
	0.08
	0.06
	0.07
	0.08
	0.08
	0.08
	0.09
	0.08
	0.09



	Pb
	0.72
	0.80
	0.76
	0.72
	0.77
	0.76
	0.77
	1.56
	0.74
	0.81
	0.81
	0.87
	0.73
	0.76
	0.75
	0.85



	Th
	0.06
	0.06
	0.06
	0.05
	0.05
	0.05
	0.05
	0.05
	0.05
	0.06
	0.06
	0.07
	0.07
	0.06
	0.07
	0.06



	U
	0.01
	0.01
	0.02
	0.01
	0.02
	0.02
	0.01
	0.02
	0.01
	0.01
	0.01
	0.03
	0.02
	0.02
	0.02
	0.02










[image: Table] 





Table 4. Melt compositions (ppm) in equilibrium with the amphiboles in the Paleoproterozoic Gaositai hornblendite.
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	Spot No.
	HB-1
	HB-2
	HB-3
	HB-4
	HB-5
	HB-6
	HB-7
	HB-8
	HB-9
	HB-10
	HB-11
	HB-12
	HB-13
	HB-14
	HB-15
	HB-16





	Ti
	1652
	1663
	1705
	1642
	1666
	1641
	1624
	1623
	1661
	1694
	1681
	1701
	1654
	1656
	1560
	1689



	K
	36,278
	37,806
	36,552
	36,535
	37,083
	37,373
	37,773
	40,258
	37,627
	37,324
	36,676
	37,824
	36,185
	36,226
	39,821
	37,132



	Rb
	41.7
	45.0
	41.0
	33.9
	33.3
	32.3
	37.9
	44.2
	34.6
	41.1
	45.1
	74.5
	45.8
	43.2
	50.8
	45.5



	Sr
	622
	621
	608
	560
	568
	561
	627
	602
	579
	622
	622
	637
	607
	608
	602
	647



	Y
	11.1
	10.8
	10.9
	11.0
	11.5
	10.9
	11.0
	12.4
	13.0
	12.5
	11.5
	10.6
	10.3
	10.4
	10.3
	11.1



	Zr
	32.9
	32.3
	32.8
	29.4
	31.0
	31.7
	35.2
	40.5
	41.1
	39.6
	35.7
	34.3
	33.3
	35.0
	36.7
	35.4



	Nb
	5.72
	5.59
	5.53
	4.88
	5.11
	5.08
	5.44
	6.10
	5.41
	5.77
	5.75
	5.56
	5.76
	5.85
	5.78
	5.92



	Ba
	475
	489
	512
	480
	465
	461
	495
	520
	449
	506
	527
	547
	537
	515
	586
	540



	La
	23.7
	22.6
	22.3
	20.3
	21.5
	21.5
	23.3
	23.4
	23.3
	24.3
	24.4
	25.0
	23.5
	23.0
	22.8
	24.3



	Ce
	48.7
	48.3
	47.4
	45.6
	48.1
	47.5
	48.6
	51.7
	54.1
	54.4
	52.7
	52.5
	48.5
	48.4
	48.4
	51.1



	Pr
	6.02
	6.02
	5.91
	5.83
	6.31
	5.97
	6.25
	6.63
	6.85
	6.62
	6.42
	6.31
	5.89
	5.92
	5.98
	6.16



	Nd
	24.9
	24.0
	22.8
	24.2
	25.1
	24.4
	25.0
	26.7
	28.3
	26.8
	25.7
	24.6
	23.7
	23.9
	24.0
	24.5



	Sm
	4.48
	4.33
	4.43
	4.48
	4.67
	4.46
	4.51
	5.11
	4.98
	4.94
	4.70
	4.65
	4.05
	4.14
	4.32
	4.60



	Eu
	1.54
	1.50
	1.52
	1.62
	1.64
	1.56
	1.53
	1.65
	1.77
	1.75
	1.63
	1.59
	1.46
	1.40
	1.43
	1.51



	Gd
	3.53
	3.42
	3.34
	3.53
	3.86
	3.64
	3.56
	3.91
	3.99
	3.98
	3.77
	3.46
	3.33
	3.32
	3.46
	3.48



	Tb
	0.45
	0.46
	0.44
	0.44
	0.46
	0.45
	0.45
	0.50
	0.52
	0.49
	0.46
	0.44
	0.41
	0.44
	0.42
	0.46



	Dy
	2.43
	2.48
	2.47
	2.44
	2.59
	2.47
	2.50
	2.72
	2.91
	2.75
	2.60
	2.42
	2.30
	2.32
	2.24
	2.51



	Ho
	0.46
	0.43
	0.45
	0.46
	0.47
	0.46
	0.45
	0.51
	0.55
	0.50
	0.47
	0.44
	0.40
	0.42
	0.41
	0.45



	Er
	1.23
	1.27
	1.24
	1.21
	1.22
	1.20
	1.19
	1.38
	1.48
	1.30
	1.25
	1.18
	1.20
	1.07
	1.03
	1.22



	Yb
	0.93
	0.89
	0.94
	0.95
	1.11
	1.03
	0.98
	1.22
	1.28
	1.13
	0.92
	0.94
	0.85
	0.88
	0.87
	0.92



	Lu
	0.13
	0.13
	0.11
	0.13
	0.14
	0.13
	0.13
	0.16
	0.15
	0.14
	0.15
	0.14
	0.12
	0.11
	0.11
	0.12



	Hf
	1.48
	1.41
	1.44
	1.36
	1.45
	1.38
	1.66
	1.84
	1.90
	1.83
	1.62
	1.51
	1.45
	1.47
	1.57
	1.44



	Ta
	0.27
	0.25
	0.23
	0.20
	0.21
	0.19
	0.27
	0.26
	0.20
	0.22
	0.26
	0.27
	0.26
	0.27
	0.25
	0.29



	Pb
	6.01
	6.73
	6.39
	6.05
	6.42
	6.41
	6.42
	13.10
	6.18
	6.75
	6.76
	7.28
	6.14
	6.40
	6.25
	7.11



	Th
	1.72
	1.84
	1.87
	1.46
	1.48
	1.64
	1.47
	1.48
	1.42
	1.90
	1.87
	2.26
	2.00
	1.86
	2.03
	1.76



	U
	0.35
	0.48
	0.62
	0.51
	0.63
	0.54
	0.43
	0.55
	0.52
	0.44
	0.47
	1.03
	0.65
	0.63
	0.63
	0.64







Note: Am/LD values experimentally determined for basaltic systems are Ti 3.66, K 0.44, Rb 0.09, Sr 0.62, Y 1.39, Zr 0.45, Nb 0.34, Ba 0.37, La 0.18, Ce 0.30, Nd 0.64, Sm 1.06, Eu 0.96, Gd 1.32, Dy 1.42, Er 1.34, Yb 1.16, Lu 1.15, Hf 0.76, Ta 0.32, Pb 0.12, Th 0.03, U 0.03 [36,37], Pr 0.46, Tb 1.39, and Ho 1.42 (conjectured values of data fitting in this paper). Calculation formula is LC = AmC/ Am/LD.
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