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Abstract: The magnetotelluric (MT) sounding of a layered Earth model involving a transitional layer
has been widely studied, and MT responses of the model with dipping anisotropic conductivity have
also been treated. However, a model incorporating both a transitional layer and dipping anisotropy
has seldom been considered. The analytical solution of such a geoelectrical model including three
layers was derived in this study. The middle layer was a transitional layer with conductivity
exponentially varying with depth, which was covered by a homogeneous layer and underlaid by
a dipping anisotropic half-space. The electromagnetic (EM) fields in the transitional layer were
explicitly solved with modified Bessel functions. The surface impedance was calculated recursively.
The dependence of the apparent resistivity and impedance phase as well as the EM fields on different
model parameters were investigated in detail. We believe that our analytical solution provides a
useful complement to the theory of the one-dimensional (1D) inversion and interpretation based on
the layered model with fixed conductivity.

Keywords: magnetotelluric fields; analytical expressions; transitional layer; anisotropy; apparent
resistivity; electromagnetic method

1. Introduction

The magnetotelluric (MT) [1–3] method is a passive geophysical exploration technique
for determining the subsurface conductivity structure using natural electromagnetic (EM)
fields. With advances in computer technology and numerical techniques, it is now possible
to calculate the MT responses of various complex models in two dimensions (2D) and three
dimensions (3D) by numerical modelling; thus, many programs have been developed [4–19].
However, although a number of 2D and 3D numerical simulation codes have been developed
and applied in many aspects related to MT research, studies on the analytical responses over a
one-dimensional (1D) Earth model still have a certain degree of importance in the application
of MT techniques, especially in some special circumstances, for example, on the ocean bottom,
where, sometimes, not enough MT data are available to conduct 2D or 3D studies, and
1D inversion and interpretation is a necessary technique [20]. Furthermore, a 1D solution
may be presented as a technical appendix to a publication presenting a 3D solver, since it
is very useful when developing 3D solvers and verifying their accuracy. Additionally, 1D
MT is still applied to probe some simple structures such as basin depth [21] and geothermal
fields [22–24], and it is also used to understand EM wave propagation in the Earth [25].

Most of the publications on the 1D analytical solutions of MT responses appeared in the
1970s–1980s or earlier. The models considered in these publications may be categorized into two
groups: those with sharp boundaries [26–31] and those with transitional boundaries [32–37].
In the former case, the model is composed of several layers with fixed conductivity; while
in the latter case, the model includes at least one layer in which the conductivity varies with
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depth. From the perspective of practical observation, a number of resistivity well-logging
analyses [38–40] have advocated that the boundaries between layers are transitional in nature
rather than sharp. Therefore, studies of MT responses to 1D transitional models are important
and necessary.

Some authors have reported analytical solutions to the MT fields of 1D transitional models.
For instance, Mallick [32] and Kao and Rankin [34] examined the MT responses of an inhomo-
geneous layered Earth of conductivity linearly varying with depth. Berdichevsky et al. [41]
considered the MT responses of models of resistivity exponentially decreasing with depth.
Banerjee et al. [37] reported the apparent resistivity of a multilayered Earth with a layer hav-
ing exponential variation in the conductivity. Kao [35] considered the MT fields of a vertical
inhomogeneous model of resistivity varying linearly with depth. Kao [36] also presented the
MT responses to a 1D model with the conductivity varying exponentially as a function of
depth. Kim and Lee [42] investigated the response of a layered Earth of resistivity exponentially
varying with depth. Pal [43] examined the MT responses over a 1D Earth with a nonmonotonic
resistivity distribution in a transitional layer. Additionally, Berdichevsky and Dmitriev [44]
summarized the analytical solutions of two special cases of gradient models, i.e., the Dmitriev–
Kao model [36,41] and the Kato–Kikuchi model [45], which are characterized by exponentially
varying conductivity with depth. Qin and Yang [46] calculated the MT responses over a layered
model containing two transitional layers.

However, these previously mentioned models did not involve anisotropy. There have
been some studies in which the model involved electrical anisotropy. For example, Negi and
Saraf [47] reported the MT sounding of a layered model with a transitional layer underlaid
by a dipping anisotropic half-space in which the conductivity in the transition layer varied
linearly with depth. Kovacikova and Pek [48] presented generalized Riccati equations for
1D MT impedances of electrical anisotropic structures. Recently, Qin et al. [49] published the
MT responses of a 1D resistivity structure model involving anisotropic transitional layers.

In this study, we extended the work of Negi and Saraf [47] to a case where the
conductivity varied exponentially with depth in the transitional layer. Although this
model is a very specific setting, it is still necessary and important to consider. The first
layer may represent the shallow sediment layer. The transitional layer can describe a
frozen surface layer [50] or the zone of weathered rock [51]. For the bottom layer with
uniaxial anisotropy, the plane of anisotropy makes an angle with the horizontal interface
between the transitional layer and the basement; such an interface may behave as a plane
of unconformity between two sedimentary strata (a typical stratigraphic trap, which is
favourable for the accumulation of oil), therefore, an analysis of the MT responses to such
a model is expected to be beneficial for oil exploration [52]. Moreover, it is well known
that the transitional layer can be approximately equivalent to numbers of thin layers that
have fixed conductivities with depth [46,53], and further numerical approaches can be
adopted to obtain the MT responses. However, as stated by Chlamtac and Abramovici [50],
when the calculation is considered in inverse problems, the number of parameters to be
determined using this three-layer model is largely fewer than that using a stack of thin
layers and thus simplifies the problem.

The rest of this work is arranged as follows: the model and its MT responses are
demonstrated in Section 2. After that, the validation of the algorithm is presented in
Section 3. Next, in Section 4, the variation in the MT responses with the model parameters
is illustrated. Finally, the conclusions are given in Section 5.

2. Model and Formulations
2.1. The Vertical Inhomogeneous and Anisotropic Model

For the problem considered in the following texts, a plane EM wave with the time
factor eiωt (ω and t are the angular frequency and time, respectively; i is the imaginary unit
and i =

√
−1) is assumed. The 1D layered model to be treated is shown in Figure 1. The

model is composed of two different media: the isotropic medium (the first and second
layers) and the anisotropic medium in the base (the third layer). In addition, the second
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layer is a transitional layer with conductivity that varies exponentially with depth. To solve
the induction problem in this work, we set up two different coordinate systems: one is
o-x′y′z′ (a Cartesian coordinate system) for the isotropic media, and the other is o-xyz for
the anisotropic medium in the third layer (a principal axes coordinate system). Just to make
the model clear, the coordinate systems are represented by black axes and the conductivity
parameters are marked by grey axes.
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Figure 1. A 1D layered anisotropic model containing three layers. The black axes are for the coordinate
system. The top layer is an isotropic layer of fixed conductivity σ1. The middle layer is a transitional
layer of conductivity that varies exponentially with depth, represented by σ2(z′). The bottom layer is
a dipping anisotropic bed of conductivities σl3 and σt3 in the longitudinal and transverse directions,
respectively, in the o-xyz coordinate system. The variation in conductivity with depth in the top
and middle layers are represented by the grey line and the curve, respectively, and the anisotropic
conductivities in the bottom layer are marked by grey arrows. The dipping direction of the bottom
bed makes an angle α with the horizontal interface.

For simplicity, the problem is treated in Cartesian coordinates, in which the horizontal
electric field component Ey′ and orthogonal horizontal magnetic field Hx′ are typically to
be solved.

The electrical conductivity in the middle layer is assumed to be written as:

σ2
(
z′
)
= σ1eq(z′−z1) (1)

where z1 indicates the depth of the interface between the top and middle layers, and q in
the exponential power is the rate of the change in conductivity, which may be defined by

q = ln[σl3/(σ1β2)]/(z2 − z1) (2)

where β2 = 1+
(
λ2 − 1

)
sin2 α, λ = (σl3/σt3)

1/2 is the coefficient of anisotropy, the longitu-
dinal conductivity σl3 is parallel to the axis y, the transverse conductivity σt3 is parallel to
the axis z, and z2 is the depth of the lower boundary of the second layer from the surface of
the Earth.

Due to the different characteristics of the conductivity in the three layers, Maxwell’s
equations must be solved in the three layers to calculate the EM fields.
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2.2. The EM Fields in the Top Layer

The displacement current is usually ignored for MT soundings; thus, the Helmholtz
equation to be satisfied in the isotropic layer may be written as [47,54,55]:

d2Ey′1

dz′2
− k2

1Ey′1 = 0 (3)

where k1 =
√

iωµσ1 defines the propagation constant of the EM wave, µ is the magnetic
permeability and Ey′1 is the horizontal electric field in the top layer.

The general solution to Equation (3) is given by the following formula [56]:

Ey′1 = Ae−k1z′ + Bek1z′ (4)

where A and B are undetermined coefficients to be found by applying the boundary conditions.
Once the electric field has been obtained, the horizontal magnetic field component can

be easily obtained using the following formula from Maxwell’s equations:

Hx′1 =
1

iωµ

∂Ey′1

∂z′
(5)

By combining Equations (4) and (5), the horizontal magnetic field component is
given by:

Hx′1 =
k1

iωµ

(
−Ae−k1z′ + Bek1z′

)
(6)

2.3. The EM Fields in the Middle Layer

The Helmholtz’s equation governing EM induction in the middle layer is expressed as:

d2Ey′2

dz′2
− k2

2Ey′2 = 0 (7)

where k2 =
√

iωµσ2(z′) is the propagation constant (varying with the depth) in the region
of 2 and Ey′2 represents the corresponding horizontal electric field component.

Substitution of Equation (1) into (7) yields:

d2Ey′2

dz′2
− iωµσ1eq(z′−z1)Ey′2 = 0 (8)

Now, we introduce a new variable γ, which is defined as:

γ = 2
√

iωµσ1eq(z′−z1)/q (9)

Thus, the first-order derivative of γ is obtained from Equation (9):

dγ

dz′
=
√

iωµσ1eq(z′−z1) (10)

Subsequently, combining Equations (8)–(10) yields a second-order differential equation
of Ey′2 for the variable γ:

d2Ey′2

dγ2 +
1
γ

dEy′2

dγ
− Ey′2 = 0 (11)

Clearly, Equation (11) is a modified Bessel equation of zero order, and its general
solution has the following form [57]:

Ey′2 = CI0(γ) + DK0(γ) (12)
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where I0(γ) and K0(γ) are the modified Bessel functions of the first and second type of
order zero, respectively, and C and D are undetermined coefficients to be evaluated by
applying the boundary conditions.

Next, the horizontal magnetic field component Hx′2 is examined by Equation (12) with
the help of I′0(γ) = I1(γ) and K′0(γ) = −K1(γ), and the derivative of Ey′2 with respect to
z′ can be written as a function of γ thanks to Equation (10):

Hx′2 = 1
iωµ

∂Ey′2
∂z′ = 1

iωµ

dEy′2
dγ

√
iωµσ1eq(z′−z1)

=

√
iωµσ1eq(z′−z1)

iωµ [CI1(γ)− DK1(γ)]
(13)

2.4. The EM Fields in the Bottom Layer

The EM fields in a dipping anisotropic medium have been previously investigated [52,58];
these results were used in this study. Thus, the horizontal magnetic field component Hx′3 in
the bottom layer is given by the following expression:

Hx3 = Hx′3 = Fe−k3z′ = Fe−k3(z cos α+y sin α) (14)

where k3 =
√

iωµσl3/β2 is the propagation constant in the bottom layer, and F is an
undetermined coefficient to be estimated by applying boundary conditions.

From Maxwell’s equation, the horizontal electric field can be related to the horizontal
magnetic component in the dipping anisotropic medium via the following expressions [52,58]{

∂Hx3
∂z = σl3Ey3

∂Hx3
∂y = −σt3Ez3

(15)

Substitution of Equation (14) into (15) gives the horizontal and vertical electric compo-
nents in the bottom layer: {

Ey3 = − k3 cos α
σl3

Fe−k3(z cos α+y sin α)

Ez3 = k3 sin α
σt3

Fe−k3(z cos α+y sin α)
(16)

Finally, the horizontal electric component Ey′3 needs to be determined in the Cartesian
coordinate system; therefore, a relationship should be established between the Cartesian
coordinate system and the principal axes coordinate system. This relationship may be easily
seen in Figure 1; that is, z′ = z cos α + y sin α. Hence, the horizontal electric component Ey′2
may be written as:

Ey′3 = Ey3 cos α− Ez3 sin α

=
−k3β2

σl3
Fe−k3(z cos α+y sin α)

=
−k3β2

σl3
Fe−k3z′

(17)

2.5. Evaluation of Undetermined Coefficients

The electric and magnetic fields in the three layers of the model in Figure 1 have been
explicitly examined with several undetermined coefficients (i.e., A, B, C, and D), which
were evaluated using the boundary conditions at z′ = z1 and z′ = z2. The equivalence of
the electric and magnetic fields at the two interfaces may be written as follows:

Ey′1 = Ey′2
Hx′1 = Hx′2
Ey′2 = Ey′3
Hx′2 = Hx′3

(18)
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Substitution of Equations (4), (6), (12)–(14) and (17) into Equation (18) yields:
Ae−k1z1 + Bek1z1 = CI0(γ1) + DK0(γ1)
−Ae−k1z1 + Bek1z1 = CI1(γ1)− DK1(γ1)
CI0(γ2) + DK0(γ2) = NFe−k3z2

U[CI1(γ2)− DK1(γ2)] = Fe−k3z2

(19)

where γ1 = γ|z=z1
= 2

√
iωµσ1/q, γ2 = γ|z=z2

= 2
√

iωµσ1ep(z2−z1)/q, N = − k3β2

σl3
and

U =

√
σ1eq(z2−z1)

iωµ .

The relationships of different unknown coefficients may be obtained from Equation (19)
(see the details in Appendix A).

2.6. Apparent Resistivity and Impedance Phase

Once the relationship of the EM fields at the surface of the model has been obtained,
the surface impedance can be immediately deduced from the following expression:

Z|
z′=0

=
Ey′1

Hx′1

∣∣∣∣
z′=0

=
iωµ

k1

1 + A/B
1− A/B

(20)

where A/B is recursively solved from Equation (19) (see Appendix A for details).
Furthermore, the apparent resistivity ρa and the impedance phase ϕ can be examined

using the following expressions:{
ρa = |Z|2/ωµ

ϕ = tan−1(ZIm/ZRe)
(21)

where ZIm and ZRe represent the imaginary and real parts of the surface impedance, respectively.

3. Validation of the Method

The algorithm presented in the previous section was validated by comparing the
apparent resistivity and impedance phase calculated by the method in this work for the
1D model shown in Figure 1 (called the exponential model hereinafter) and results were
obtained using the program code Z1ANIS.FOR provided by Pek and Santos [59] (referred to
as Pek1DAniCode in the following text; see Appendix B for details) for homogeneous mul-
tilayer approximation models (hereafter called the stair-step model). The model parameters
of the exponential model are as follows: σ1 = 0.01 S/m, σl3 = 0.02 S/m, σt3 = 0.06 S/m,
z1 = 200 m, z2 = 2200 m, and α= 30◦. To evaluate the validity of the analytical solution
in this study, three stair-step models with steps of 200, 100 and 20 m were designed to
approximate the transitional layer in the exponential model. The first and second layers are
shown in Figure 2, where the black solid curve represents the exponential model considered
in this study, and the magenta, blue and green lines represent the stair-step models with a
step of 200, 100 and 20 m, respectively. For the stair-step models, the conductivities of thin
layers within the depth of the middle layer in the exponential model were calculated using
Equation (1).

For the given model, the apparent resistivity and impedance phase were computed by
the method described in Section 2 and by Pek1DAniCode, respectively. The corresponding
results are shown in Figure 3. The apparent resistivity of the exponential model is shown
by the black solid curve in Figure 3a, while the apparent resistivity of the stair-step models
with steps of 200, 100 and 20 m are indicated by magenta, blue and green dashed curves,
respectively. Figure 3b shows the impedance phase for the exponential model (black curve)
and stair-step models (magenta, blue and green curves).
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Figure 2. The 1D layered model contains a layer of exponentially varying conductivity (black solid
curve) and a stair-step model with steps of 200 m (magenta solid curve), 100 m (blue solid curve)
and 20 m (green solid curve). The exponentially varying conductivity model is represented by the
“Exponential model” in the legend, and the stair-step model with a step of 200 m is marked as
“Step = 200 m” (and similarly for the other stair-step models). Please note that the bottom layer (the
anisotropic layer) is not shown in the figure.
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Figure 3. Comparison of the MT soundings given by the algorithm presented in this work for the
exponential model denoted by the black solid line shown in Figure 2 and those obtained using the
Pek1DAniCode for the stair-step models shown by magenta, blue and green dashed lines in Figure 2.
(a) Apparent resistivity. (b) Impedance phase. (c) Relative error (RE) of the apparent resistivity.
(d) Phase difference (PD). The results calculated using the method in this study are as by “Analytic
solution” in the legend, and the results for the stair-step model with a step of 200 m are marked as
“Step = 200 m” (and similarly for the other stair-step models). See the text for details.
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To evaluate the accuracy of the algorithm in this work, the relative error (RE) of the
apparent resistivity of the different models was introduced, and the phase difference (PD)
of the models was also evaluated. The formulas used to calculate RE and PD are as follows:{

RE = ρas−ρss
ρas

× 100%
PD = ϕas − ϕss

(22)

where ρas and ϕas represent the apparent resistivity and impedance of the analytic solution,
respectively, and ρss and ϕss are the apparent resistivity and impedance of the step-stair
models calculated by Pek1DAniCode, respectively.

The RE of the apparent resistivity for the stair-step models with respect to the ones
for the exponential model were computed using Equation (22), and the corresponding
results are indicated by the magenta, blue and green dashed curves in Figure 3c. The
maximum value of RE in the apparent resistivity was approximately −3.5% when the step
was 200 m (i.e., the thickness of layers approximating the transitional layer was 200 m),
while it decreased to less than 0.5% when the step decreased to 20 m. The phase difference
(PD) between the results for the stair-step models and those for the exponential model were
also calculated by Equation (22), and the resulting values are represented by the magenta,
blue and green dashed curves in Figure 3d. The maximum value of PD was approximately
0.4◦ when the step was 200 m, while it decreased to less than 0.05◦ when the step was
reduced to 20 m.

Thus, the comparison in Figure 3 clearly shows that the apparent resistivity and
impedance phase for the stair-step model obtained with Pek1DAniCode asymptotically
converge to the analytical solution of the exponential model with an increasing number of
layers (decreasing thickness) approximating the transitional layer. Therefore, the algorithm
presented in this study has been validated.

4. Dependence of the Apparent Resistivity and Impedance Phase on the Model Parameters

In this part of the study, the dependence of the apparent resistivity and impedance
phase on the model parameters (dip angle, anisotropic coefficient and layer thickness)
was investigated.

For the simplicity of analysis, the conductivity in the top layer and the longitudinal
conductivity in the bottom layer were kept unchanged (σ1 = 0.01 S/m, σl3 = 0.1 S/m) in
the following calculation, and then we considered the variations in MT responses with
other parameters (dip angle α, anisotropic coefficient λ and normalized thickness h).
The normalized thickness was defined as h = [(z2 − z1)− z1]/z1, and the anisotropic
coefficient λ was defined in Section 2.1.

To provide an integrated insight into the influence of various parameters on MT
responses, three values were chosen for the anisotropic dip angles (α = 15◦, 30◦, and 60◦),
and four values were assigned for the anisotropic coefficient (λ = 1, 2, 3, and 4) in the case
of two different normalized thicknesses of the transitional layer (h = 1, 2) in the calculation.
The results are shown in Figure 4. For the convenience of plotting, dimensionless quantities
were adopted. That is, the apparent resistivity normalized by the resistivity of the first layer
and the impedance phases were plotted against the normalized skin depth z1/δ1, where δ1
represents the skin depth of the incident EM wave with a given frequency in a half-space
with the conductivity value of σ1. Additionally, it is worth noting that the impedance phase
was transformed into the first quadrant.

For given anisotropic coefficients and dip angles, it is clear from the top panels in
Figure 4 that as the value of h is increased from 1 to 2, the values of the normalized apparent
resistivity increased correspondingly for intermediate values of z1/δ1(0.1− 1.0), except
for the case of α = 60◦ and λ = 4, while no difference may be seen for very large (>1.0) or
very small values (<0.01) of z1/δ1. The bottom panels in Figure 4 show that the impedance
phase first increased with an increasing h until it reached the peak value and then decreased
with h (except for the case of α = 60◦ and λ = 4). It is also obvious that the extremum
value of the impedance phase decreased as h increased. A possible explanation for this
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phenomenon is that due to the increase in the thickness of the middle layer, more EM energy
was attenuated in this layer; thus, the energy reflected from the lower boundary decreased,
and a less destructive interference with the incident wave was created in this case.
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at the surface of the vertical inhomogeneous and anisotropic Earth with various model parameters.
ρ1 is the resistivity of the first layer and the inverse of σ1; δ1 =

√
2/ωµσ1 is the skin depth of the

incident EM wave with a given frequency and the conductivity in the top layer. The curves presented
in the left, middle and right columns correspond to three different dip angles. In each panel, the
results for different anisotropic coefficients are marked by curves in different colours, while those for
the normalized thicknesses of 1 and 2 are marked by solid and dashed lines, respectively.

For a given anisotropic dip angle, as the value of the anisotropic coefficient (λ) in-
creases, the normalized apparent resistivity and impedance phase change proportionally.
These most significant changes appeared in the normalized apparent resistivity for smaller
values of z1/δ1 (<1) and in the impedance phase for intermediate values of z1/δ1 (0.01–1).
Additionally, the normalized apparent resistivity and impedance phase are independent of
the anisotropic dip angles if the basement layer becomes isotropic (the blue solid or dashed
curves marked by λ = 1 in the legend). The increase in the anisotropic coefficient (λ) im-
plies a decrease (or increase) in the conductivity (resistivity) in the transverse direction, and
the EM energy reflected from the third layer increases and may create more constructive
interference with the incident EM wave.

For a given anisotropic coefficient (except for λ = 1), the normalized apparent resistivity
increases as h increases; however, the impedance phase shows the opposite characteristic.

5. Discussion: Variations in the EM Fields with Model Parameters

In the previous section, the dependence of the apparent resistivity and impedance
phase on the model parameters were investigated. In this section, we discuss how the
intensity of the anisotropy and dip angle affect the current and EM fields in each layer. The
models considered here are the same as those used in the previous section. The thickness
of the top layer is fixed at 500 m, while the thickness of the transitional layer is assigned
as 500 m and 1000 m, which correspond to h = 1 and h = 2 in the previous section.
The variations in the EM fields and current density with depth at a period of 10 s are
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presented as an example. Because the lower boundaries of the transitional layer in the two
cases are located at depths of 1000 m and 1500 m, only the results at depths ranging from
0 to 2000 m are shown (Section 5 and Figures 6 and 7). The variations in the EM fields
and current density with depth for the anisotropic models with dip angles of 15◦, 30◦ and
60◦ are presented in Section 5 and Figures 6 and 7. To show the attenuation of the EM
fields with depth, the EM fields are normalized by the values at the surface of the model.
Additionally, in order to more clearly show the influences of the transitional and anisotropic
layers rather than the top layer on the current density, the current density was normalized
by the electric fields at the surface of the model.
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Figure 5. The variation in the amplitude of the normalized magnetic field (left panel), electric field
(middle panel) and current density (right panel) with depths ranging from 0 to 2000 m for the
anisotropic model with a dip angle of 15◦ in the bottom layer at a period of 10 s.

The attenuations of the magnetic fields are presented in the left-hand panels in
Section 5 and Figures 6 and 7, and the attenuation characteristics are different in dif-
ferent layers. The attenuations are nearly linear with the depth in the first layer, and
the differences in the attenuations for different models are indistinguishable and may
be neglected when the dip angle is 15◦ (left-hand panel in Figure 5), and the differences
become distinguishable as the angle increases (left-hand panels in Figures 6 and 7). At the
approximate depths of the lower boundary of the transitional layer (1000 and 1500 m), the
decay curves for different models merge when the dip angle is 15◦ (left panel in Figure 5)
and 30◦ (left panel in Figure 6). The attenuation of the magnetic fields is strongly affected
by the middle layer’s thickness.

For the attenuation of the electric field shown in the middle panels in Section 5
and Figures 6 and 7, it is clear that the electric field is always continuous across layers
with different conductivities, and the attenuation is approximately linear with depth at
0–2000 m. With the increase in the values of the dip angle in the model, the attenuation of
the electric fields decreases, except when the basement layer is isotropic (blue lines). The
effect of the middle layer’s thickness on the electric fields is negligible.

A comparison of the attenuation of the magnetic fields in the left-hand panels and
the electric fields in the middle panels in Section 5 and Figures 6 and 7 also shows that the
influence of the transitional and anisotropic layers on the magnetic fields is more significant
than that on the electric fields.
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According to Ohm’s law (J = σE), the current should diffuse at the same rate as the
electric field in each layer. However, the magnitude of the current depends on the value of
the conductivity of the medium, and therefore, in general, different conductivities always
cause different currents at the interfaces between layers. This phenomenon is evident in
the right-hand panels in Section 5 and Figures 6 and 7. Of note, the diffusion of the current
is almost the same as that in the first layer for these cases.

6. Conclusions

In this work, the EM fields of a 1D stratified model containing a middle transition layer
of exponentially varying conductivity with depth were explicitly solved. The conductivity
in the transition layer may increase or decrease with depth depending on the conductivity
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value in the top and bottom layers. The electric and magnetic fields in the transitional layer
are written in the form of modified Bessel functions.

The dependence of the apparent resistivity and impedance phase on the dip angles,
anisotropic coefficient and normalized thickness were investigated in detail. The influence
of the intensity of anisotropy and dip angle on the current and EM fields was also examined.
The attenuation of the electric fields is almost linear with depth, while the attenuation of
the magnetic field is nonlinear. The variation of the magnetic fields with depth is strongly
affected by the middle layer’s thickness and the anisotropic coefficient. The variation
in the current density with depth in the transitional layer is similar to the feature of the
conductivity. The interfaces between layers are clearly seen from the current density profile.

The obtained results may be useful for studying and understanding the attenuation
of the EM fields in the Earth. The simple models may also be convenient for testing
computational programs.
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Appendix A. Determination of the Unknown Coefficients in Equation (19)

From the last two equations in Equation (19), it is easy to calculate the ratio of the
unknown coefficients C and D:

C
D

=
UNK1(γ2) + K0(γ2)

UNI1(γ2)− I0(γ2)
(A1)

The ratio of the unknown coefficients A and B may then be expressed in terms of C
D in

Equation (A1):

A
B

=

[
C
D I0(γ1)− K0(γ1)

]
−
[

C
D I1(γ1)− K1(γ2)

]
[

C
D I1(γ1)− K1(γ2)

]
+
[

C
D I0(γ1)− K0(γ1)

] (A2)

Substitution of Equation (A1) into (A2) yields:

A
B

=
Q− 1
Q + 1

e2k1z1 (A3)

where Q = [UNK1(γ2)+K0(γ2)]I0(γ1)+[UNI1(γ2)−I0(γ2)]K0(γ1)
[UNK1(γ2)+K0(γ2)]I1(γ1)−[UNI1(γ2)−I0(γ2)]K1(γ1)

Appendix B. Instructions for the Code Z1ANIS

The program code Z1ANIS used to validate the algorithm in this study was developed
by Pek and Santos [59], who stated the mathematical formulation and solution procedure
for calculating the impedance of an anisotropic layered medium. For completeness, a short
description of the algorithm and instructions for the corresponding code are presented
here. Please refer to the original study for more detailed information.
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The algorithm was developed on the basis of the method of the impedance propagated
through a stack of anisotropic layers. The impedance tensor is propagated from the top
of the homogeneous base layer up to the Earth’s surface. The corresponding computation
program code Z1ANIS was written in Fortran language and attached to the study [59].
Unfortunately, the website server for downloading the source code no longer works, but
readers may obtain the source code from the corresponding author.

Here, the instructions for the code are briefly presented. It requires the user to input
the number of layers of the medium (NL, including the homogeneous base layer), and
four arrays with the layer thicknesses (H(I), I = 1, 2, . . . , NL; in km), effective principal
conductivities (A1(I), A2(I), I = 1, 2, . . . , NL; in S/m) and the effective anisotropy strikes
(α(I), I = 1, 2, . . . , NL; in degrees). For a given period of the EM field t (in seconds), the
subroutine gives the impedance tensor on the surface in the form of a 2 × 2 complex array
(Z(I, J), I, J = 1, 2; in SI units (Ohm)). The apparent resistivity and impedance phase may
then be easily calculated from the surface impedance. The code requires very limited
computational resources and can run on any modern computer.
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