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Abstract: The geochemistry of rare earth elements and yttrium (REY) in phosphorite has been widely
studied. However, the effect of organic matter on REY enrichment has not been well determined. We
utilized paired inorganic (δ13Ccarb) and organic (δ13Ccarb) carbon isotopes, total organic carbon (TOC),
and REY content (∑REY) of the Zhijin Motianchong (MTC) phosphorite and compared them with
those of Meishucun (MSC) phosphorite to reveal the effect of organic matter on REY. The δ13Ccarb of
the MTC area (≈0‰) is heavier than that of the MSC area (−5.23‰ to −1.13‰), whereas δ13Corg is
lighter (−33.85‰ to −26.34‰) in MTC than in MSC (−32.95‰ to −25.50‰). Decoupled δ13Ccarb

and δ13Corg in MTC indicate the contribution of chemoautotrophic organisms or methanotrophic
bacteria. Compared to the MSC phosphorite, the MTC phosphorite has higher ∑REY and TOC, and
these parameters have a positive relationship. MTC phosphorite has REY patterns resembling those
of contemporary organic matter. Furthermore, dolomite cement has a higher ∑REY than dolomite in
the phosphorus-bearing dolostone. Additionally, pyrites are located on the surface of fluorapatite in
the Zhijin phosphorites. It is reasonable to suggest that the REY was released into the pore water
owing to the anaerobic oxidation of organic matter at the interface between seawater and sediment,
resulting in the REY enrichment of Zhijin phosphorites.

Keywords: Zhijin phosphorites; early Cambrian; carbon isotopes; total organic carbon; rare earth
elements and yttrium enrichment

1. Introduction

The carbon isotopes of carbonate (δ13Ccarb) record the composition of dissolved inor-
ganic carbon (DIC), in which 13C is relatively enriched owing to the assimilation of 12C
during photosynthesis [1–3]. Therefore, heavier 13C enrichment is often associated with
increased organic carbon burial [4]. However, lighter 12C enrichment is often associated
with a largely dissolved organic carbon (DOC) reservoir, overturning of anoxic seawater,
shutdown of primary productivity (e.g., Neoproterozoic snowball earth), oxidation of
organic carbon reservoirs, and methane hydrate destabilization [5–11]. Carbon isotopes
of organic matter (δ13Corg) can be influenced by clastic organic carbon, DOC reservoir,
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post-sedimentary diagenesis/metamorphism, hydrocarbon contamination, and carbon
isotope fractionation during primary and secondary productivity [12].

Furthermore, the difference between δ13Ccarb and δ13Corg (∆13C = δ13Ccarb − δ13Corg)
reflects the comprehensive influence of chemical, biological, and geological processes [2].
The global mean ∆13C values of >32‰, 28–32‰, and <28‰ are related to chemoautotrophs,
carbon isotope fractionation produced by photosynthesis, and decreased primary fractiona-
tion, respectively [4]. In general, the coupled δ13Ccarb and δ13Corg caused by photosynthesis
are preserved in sedimentary carbonates and organic matters. However, photosynthesis
hardly explains their decoupling [13,14]. Two important hypotheses regarding decoupled
δ13Ccarb and δ13Corg have been propounded: (1) δ13Corg records DOC signals owing to the
buffer influence of a large DOC reservoir [5–7], and (2) photosynthetic organic matter mixes
with exogenous organic matter, including detrital material [15], chemoautotrophic and
methanotrophic organisms [8,13,16], and oil from hydrocarbon source rock [17]. In addi-
tion, there was an obviously vertical δ13C gradient from surface seawater to deep seawater
during the Ediacaran–Cambrian transition [18,19]. Furthermore, there was obvious redox
stratification in the ocean during this period, with oxic surface water and anoxic or euxinic
deep water [20]. Ocean stratification is considered to be an important factor controlling the
vertical δ13C gradient [8,13,21].

In general, the rare earth elements and yttrium (REY) can be divided into light REY
(LREE, La–Nd), middle REY (MREE, Sm–Ho), and heavy REY (HREE, Er–Lu + Y). Previous
studies have suggested that microbial breakdown of buried organic matter plays an impor-
tant role in phosphorite formation [22,23]. This could be supported by the Post-Archean
Australian Shale (PAAS)–normalized REY pattern showing HREE depletion relative to
MREE in sedimentary apatite, which is similar to that of organic matter [24–27]. Although
the sum of REY (∑REY) exhibits a positive correlation with TOC in phosphorites in northern
Iran, the ∑REY only varies from 87.9 to 292 ppm [28]. In contrast, phosphorites were en-
riched with higher REY concentrations (>500 ppm) in the Enoch Valley Mine, United States,
and they showed no correlation between TOC and ∑REY [29]. Overall, the relationship
between organic matter and REY enrichment remains controversial.

Zhijin phosphorite began to form in the early Cambrian Period and it was enriched
with a high quantity of REY. The whole rock exhibits a positive correlation between REY
and P2O5 [30], and the ∑REY in fluorapatite is approximately 2000 ppm [31]. Previous
studies suggested that REY was incorporated into fluorapatite from pore water, and PAAS–
normalized samples exhibit REY patterns of HREE depletion relative to MREE [32–36].
Furthermore, degradation of organic matter occurred during the REY enrichment of Zhijin
phosphorite [36]. However, there is no direct evidence to support this viewpoint in Zhijin
phosphorite. The contemporary Meishucun (MSC) phosphorus deposit has a ∑REY of
approximately 400 ppm [37,38], which is much lower than that of Zhijin phosphorite. The
TOC in Zhijin is relatively higher (0.5–5.2 wt.%) than that of MSC (<0.1 wt.%) [18,39],
indicating a more important role regarding organic matter in Zhijin than in MSC even
though they formed in the same geological period and similar paleogeographic position.
Therefore, whether organic matter influenced REY enrichment in Zhijin compared with
MSC must be ascertained.

To explain the effect of organic matter on REY enrichment, we conducted a study
focused on the drill hole ZK2407 through the phosphorus rock series in the Motianchong
(MTC) ore block, Zhijin deposit, South China. The δ13Ccarb, δ18O, δ13Corg, TOC, and
geochemical compositions of the phosphorus rock series and dolomites were analyzed.
These results will be helpful in improving our understanding of the mechanism of REY
enrichment in phosphorite deposits.

2. Regional Geology
2.1. Paleogeography

The Yangtze Block developed a platform facies, a deep-water basin facies, and a transi-
tion zone between the two facies during the early Cambrian Period [18]. The platform facies
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are dominated by shallow-water carbonate deposits (e.g., Yanjiahe Formation), the basin fa-
cies by black shales and chert deposits (e.g., Niutitang formation and Liuchapo Formation),
and the transition zone between the two facies by carbonate and black shale interbed-
ding [18,26,40]. The early Cambrian Period was one of the most important phosphorus-
forming periods worldwide, wherein thickly bedded phosphorites were mainly formed at
the platform facies [41] (Figure 1). The Zhijin phosphorite deposit (red pentagram, Figure 1)
is located on the southwest margin of the Yangtze Platform.

Minerals 2022, 12, x FOR PEER REVIEW 3 of 24 
 

 

2. Regional Geology 
2.1. Paleogeography 

The Yangtze Block developed a platform facies, a deep-water basin facies, and a tran-
sition zone between the two facies during the early Cambrian Period [18]. The platform 
facies are dominated by shallow-water carbonate deposits (e.g., Yanjiahe Formation), the 
basin facies by black shales and chert deposits (e.g., Niutitang formation and Liuchapo 
Formation), and the transition zone between the two facies by carbonate and black shale 
interbedding [18,26,40]. The early Cambrian Period was one of the most important phos-
phorus-forming periods worldwide, wherein thickly bedded phosphorites were mainly 
formed at the platform facies [41] (Figure 1). The Zhijin phosphorite deposit (red penta-
gram, Figure 1) is located on the southwest margin of the Yangtze Platform.  

 
Figure 1. Petrographic paleogeography of South China during the early Cambrian Period, modified 
after [18]. The red pentagram represents the Zhijin Area. 

2.2. Deposit Geology 
The Zhijin phosphorus rock series is located in Zhijin County, Bijie City, Guizhou 

Province. The outcropping strata of the study area span from the Ediacaran, Cambrian, 
Carboniferous, and Permian systems to the Triassic system. The Zhijin phosphorus rock 
series spreads toward the northeast (Figure 2a) and a Zhijin phosphorus deposit of ~20 m 
thickness occurs in the Gezhongwu Formation, underlain by the Ediacaran Dengying For-
mation (dolostone) and overlain by the Lower Cambrian Niutitang Formation (black 
shale) [30] (Figure 2b). In this study, the boundary between the Dengying Formation and 
the Gezhongwu Formation can be interpreted as the Ediacaran–Cambrian boundary. Fur-
thermore, the Ni-Mo sulfide layer, which formed immediately above the Zhijin phospho-
rus deposit, has a Re-Os isochron age of 521 ± 5 Ma [42], which means that the Zhijin 
phosphorite deposit was formed in the early Cambrian Period. 

According to P2O5 content, the MTC ore block at drill hole ZK2407 (105°51′45″ E, 
26°40′21″ N) contains three types of rocks: phosphorus-bearing dolostones (P2O5, <10%), 
phosphorus dolostones (P2O5, 10–18%), and phosphorites (P2O5, >18%). The unequal-
thickness interbedding is common between black phosphorites and gray phosphorus do-
lostones, and between black phosphorites and gray phosphorus-bearing dolostones (Fig-
ure 3a). The lower phosphorus sediment (from 61.79 m to 75.55 m) formed wave and len-
ticular structures (Figure 3a,b), which represent strongly hydrodynamic conditions. The 
upper phosphorus sediment (from 49.62 m to 61.79 m) formed parallel bedding and 
striped structures (Figure 3c,d) with thicknesses of approximately 0.1–0.2 cm, which rep-
resent weakly hydrodynamic conditions. Based on the observation of hand specimens, the 
Zhijin seawater was in the process of gradual transgression during the early Cambrian 

Figure 1. Petrographic paleogeography of South China during the early Cambrian Period, modified
after [18]. The red pentagram represents the Zhijin Area.

2.2. Deposit Geology

The Zhijin phosphorus rock series is located in Zhijin County, Bijie City, Guizhou
Province. The outcropping strata of the study area span from the Ediacaran, Cambrian,
Carboniferous, and Permian systems to the Triassic system. The Zhijin phosphorus rock
series spreads toward the northeast (Figure 2a) and a Zhijin phosphorus deposit of ~20 m
thickness occurs in the Gezhongwu Formation, underlain by the Ediacaran Dengying
Formation (dolostone) and overlain by the Lower Cambrian Niutitang Formation (black
shale) [30] (Figure 2b). In this study, the boundary between the Dengying Formation
and the Gezhongwu Formation can be interpreted as the Ediacaran–Cambrian boundary.
Furthermore, the Ni-Mo sulfide layer, which formed immediately above the Zhijin phos-
phorus deposit, has a Re-Os isochron age of 521 ± 5 Ma [42], which means that the Zhijin
phosphorite deposit was formed in the early Cambrian Period.

According to P2O5 content, the MTC ore block at drill hole ZK2407 (105◦51′45” E,
26◦40′21” N) contains three types of rocks: phosphorus-bearing dolostones (P2O5, <10%),
phosphorus dolostones (P2O5, 10%–18%), and phosphorites (P2O5, >18%). The unequal-
thickness interbedding is common between black phosphorites and gray phosphorus
dolostones, and between black phosphorites and gray phosphorus-bearing dolostones
(Figure 3a). The lower phosphorus sediment (from 61.79 m to 75.55 m) formed wave and
lenticular structures (Figure 3a,b), which represent strongly hydrodynamic conditions.
The upper phosphorus sediment (from 49.62 m to 61.79 m) formed parallel bedding and
striped structures (Figure 3c,d) with thicknesses of approximately 0.1–0.2 cm, which repre-
sent weakly hydrodynamic conditions. Based on the observation of hand specimens, the
Zhijin seawater was in the process of gradual transgression during the early Cambrian
Period. Dolomite and fluorapatite are the two main minerals in the phosphorus rock series
(Figure 3e,f). Fluorapatite comes in the form of small shelly fossils (lower phosphorus
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deposit) (Figure 3g,h), and chemically deposited round phosphate particles (upper phos-
phorus deposit) (Figure 3i). Dolomite is an important cement between the fluorapatites
(Figure 3e). Abundant organic matter was found in the Zhijin phosphorites (Figure 3j,k),
and pyrites were formed on the surface of fluorapatite owing to the anaerobic oxidation of
organic matter (Figure 3l).
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Figure 3. Characteristics of specimens and minerals from Zhijin phosphorites, South China. (a) Wave
structure. (b) Lenticular structure. (c) Parallel bedding structure. (d) Striped structure. (e) Transmis-
sive light from polarizing microscope: Dolomite cements between fluorapatites. (f) Transmissive light
from polarizing microscope: Dolomite mineral in phosphorus-bearing dolostone. (g,h) Back scattered
electron (BSE): Fluorapatites in the form of small shelly fossils. (i) BSE: Chemically deposited round
fluorapatite. (j,k) BSE: Abundant organic matter bands in Zhijin phosphorites. (l) Secondary electron
(SE): Pyrites on the surface of fluorapatite. Abbreviations: Fap: fluorapatite; Dol: dolomite; OM:
organic matter; Py: pyrite.

3. Materials and Methods
3.1. Sampling

Representative samples of the phosphorus rock series were selected from the MTC
profile, with a sampling spacing of 100 cm. The sampling site is shown as a red triangle
in Figure 2a and a geologic column in Figure 2b. After sampling, the samples were
cut to remove vertical veins, then washed, dried, and milled to 200 mesh for analysis.
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Furthermore, samples of phosphorites and phosphorus-bearing dolostones from the MTC
profile were cut and polished into thin sections for in situ analysis.

3.2. Compositions of Major Elements, Trace Elements, and REY

For major element analysis, the sample powders were first dried at 105 ◦C. Then
0.66 g of sample powders were fused with a mixed flux (Li2B4O7-LiBO2-LiNO3, guaranteed
reagent GR) at 1050 ◦C. After the melts cooled, they were determined by X-ray fluores-
cence (XRF) at ALS Minerals Co., Ltd. (Guangzhou, China). GBW07211 (phosphate ore),
GBW07237 (zinc ore), and GBW07241 (tungsten ore) were used as standard materials to
estimate the reliability of data. The error of the XRF analysis was less than 7.5% for major
element oxides, and the detection limit of major elements was 0.01%.

For trace elements and REY analysis, 0.1 g of sample powder was melted at above
1025 ◦C for 30 min using a mixed flux (Li2B4O7-LiBO2, guaranteed reagent GR). Then the
volume was fixed with nitric acid, hydrochloric acid, and hydrofluoric acid after cooling
the molten liquid. Trace elements and REY were analyzed on an Agilent 7900 inductively
coupled plasma mass spectrometer (ICP-MS) at ALS Minerals Co., Ltd. (Guangzhou, China).
For the calibration of ICP-MS, a standard curve was generated using internal standard to
determine the stability of the instrument, and test results were obtained after deducting
background interference and interference between elements. OREAS-100a (granite and
hematite breccia), OREAS-120 (greywacke, siltstone, and mudstone), and STSD-1 (stream
sediment) were used as standard materials to estimate the reliability of data. The analysis
error of trace elements and REE was less than 10%. The elements with a detection limit of
0.01 ppm, 0.03 ppm, 0.05 ppm, 0.1 ppm, and 2 ppm include Th, Tb, Ho, Tm, and Lu, Pr,
Sm, Eu, Er, and Yb, Gd and Dy, La, Ce, Nd, Sc, and Y, and Zr, respectively. The most trace
element and REY contents of blank samples were below the detection limit.

3.3. Scanning Electron Microscopy (SEM)

The images were obtained at the State Key Laboratory of Ore Deposit Geochemistry at
the Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guiyang. The samples
were polished into thin sections and coated with Au before the experiment. Then, a high-
energy electric beam focused into a microbeam of 1 µm was used to react with the minerals’
surface in a JSM-7800F field emission SEM (Jeol Ltd., Tokyo, Japan), obtaining backscattered
electron (BSE) and secondary electron (SE) images.

3.4. Analyses of Isotopes and Total Organic Carbon

C and O isotope values were determined at the Institute of Geochemistry, CAS,
Guiyang. For δ13Ccarb and δ18Ocarb analyses, ~200 µg of powder samples were collected
on weighing paper and transferred to a standard 12-mL headspace sample vial. The sam-
ples were then flushed with helium using a Gasbench II device (Thermo Fisher Scientific,
Breman, Germany) for 8 min. Phosphoric acid was added to dissolve the sample and
produce CO2 at 72 ◦C for at least 4 h. Finally, CO2 gases were measured for δ13C and
δ18O using a Gasbench II device attached to a MAT 253 gas source isotope ratio mass
spectrometer (Thermo Fisher Scientific). The analytical precision was greater than 0.1‰
and 0.2‰ for δ13Ccarb and δ18Ocarb, respectively. Two international standards (IAEA-603
and IAEA-CO-8) and two Chinese standard samples (GBW04405 and GBW04416) were
tested for each set of 16 samples.

For δ13Corg analysis, ~1.5 g of powder samples were reacted with 6N hydrochloric
acid to remove all carbonate and phosphate minerals. The residues were washed with
deionized water until they were neutralized, then dried at 60 ◦C. The dried samples were
combusted at 950 ◦C to release CO2 in a Thermo Finnigan Flash EA 2000, which determined
the organic carbon isotope compositions using a Thermo Finnigan MAT 253 isotope ratio
mass spectrometer. The analytical precision was greater than 0.2‰ for δ13Corg. Three
international standards (IAEA-CH-6, IAEA-CH-7, and IAEA-600) were tested for each set
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of 16 samples during sample analysis. The standard delta notation was used as the per mil
(‰) difference from the Vienna Peedee Belemnite standard:

δ13C = ((13C/12C)sample/(13C/12C)V-PDB − 1) ∗ 1000,

δ18O = ((18O/16O)sample/(18O/16O)V-PDB − 1) ∗ 1000.

The TOC content was determined at ALS Minerals Co., Ltd. (Guangzhou, China).
Organic carbon was separated and filtered through a porous crucible after the samples were
digested with dilute hydrochloric acid. The crucible was then cleaned with deionized water
and dried, and the organic carbon content was quantitatively detected using an infrared
sensor. The analytical precision was better than 5% for TOC. BAUX-CS4, GGC-08, GGC-09,
and TOC-CS1 were used as standard materials to estimate the reliability of data.

3.5. In Situ REY Analysis Using LA-ICP-MS

We selected dolomite from MTC phosphorite and phosphorus-bearing dolostone for
in situ REY analysis, which was performed using a RESOlution S-155 laser ablation system
coupled to an Agilent 7900 ICP-MS at the Institute of Geochemistry, CAS, Guiyang. The
laser system is a 193 nm excimer gas laser (RESOlution, Fyshwick, ACT, Australia). Helium
was used as a carrier gas to enhance the transport efficiency of the ablated material. A
beam of 42 µm and a frequency of 4 Hz were used. The counting time for background
analysis was 20 s and the counting time for sample analysis was 40 s. The glass standards
NIST610 and NIST612 were used as external calibration standards. We used the average Ca
concentration of dolomites in the samples as the internal standard. The data error was less
than 10%.

3.6. In Situ Major Element Analysis

In-situ major elements were obtained at the State Key Laboratory of Ore Deposit
Geochemistry at the Institute of Geochemistry, CAS, Guiyang. We selected dolomites
from thin sections coated with Au for major element analysis, which was performed using
JXA8530F-plus EPMA produced by Jeol Ltd., Tokyo, Japan. The accelerating voltage and
current were 25 kV and 10 nA, respectively. The analysis time was 30 s and the beam spot
diameter was 6 µm during the elemental signal collections. Because of the influence of
matrix effects, including atomic number effect (Z), absorption effect (A), and fluorescence
effect (F), all data was calibrated by the ZAF method. The elements obtained were Mg, Ca,
Mn, and Fe. We used dolomite as a standard material. The detection limit was 0.01%, and
the analytical error was 1%–2%.

4. Results

The compositions of the C isotopes and concentrations of TOC of the Zhijin phosphorus
rock series are shown in Table 1. The δ13Ccarb, δ18Ocarb, δ13Corg, and TOC of the phosphorus
rock series range from −3.54‰ to 0.69‰, from −13.52‰ to −1.83‰, from −33.85‰ to
−26.34‰, and from 0.07% to 1.27%, respectively. Our data reflects a large decoupling
between the δ13Ccarb and δ13Corg curves from the MTC profile, whereas there are coupled
curves between δ13Ccarb and δ13Corg from the MSC profile [18] (Figure 4). Meanwhile, the
δ13Ccarb in the MTC profile is heavier than that in the MSC profile, and the δ13Corg in the
MTC profile is slightly lighter than that in the MSC profile (Figure 4). Except for data spots
influenced by diagenesis, the remaining samples do not show positive correlations between
δ13Ccarb and δ18Ocarb values (Figure 5a). δ13Ccarb does not have any correlation with TOC
from the MTC and MSC profiles (Figure 6a). The TOC content of the MTC profile is higher
than that of the MSC profile (Figure 6b). The ∆13C value of the MTC profile is higher than
that of the MSC profile (Figure 6c and d). The ∆13C from the MTC profile is not correlated
with δ13Ccarb, but there is a positive correlation in the MSC profile (Figure 6c). Both profiles
exhibit a negative correlation between δ13Corg and ∆13C (Figure 6d).
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Table 1. Concentrations of C-O isotopes (‰) and concentrations of TOC (wt.‰) of phosphorus rock
series from the Zhijin and Meishucun (MSC) areas, wherein MSC data were from [18].

No. Depth (m) Lithology δ13Ccarb δ18O δ13Corg ∆13C TOC

MTC-1 49.65 Phosphorite −1.13 −7.41 −33.62 32 0.60
MTC-2 49.65 Phosphorus dolomite −1.31 −7.12 −29.96 29 0.19
MTC-3 50.74 Phosphorite −0.77 −7.31 −32.30 32 0.54
MTC-4 50.74 P-bearing dolomite −0.85 −7.87 −30.91 30 0.18
MTC-5 51.83 Phosphorus dolomite −0.57 −7.17 −33.85 33 0.97
MTC-6 51.83 P-bearing dolomite −0.84 −2.63 −29.35 29 0.14
MTC-7 52.92 Phosphorite −0.20 −8.22 −30.48 30 1.09
MTC-8 52.92 P-bearing dolomite −0.60 −4.32 −33.61 33 0.90
MTC-9 54.01 Phosphorus dolomite −0.65 −4.99 −33.23 33 0.84

MTC-10 54.01 P-bearing dolomite −0.55 −2.65 −30.21 30 0.16
MTC-11 55.10 Phosphorite 0.12 −8.81 −30.29 30 0.83
MTC-12 56.19 Phosphorite 0.44 −7.47 −30.82 31 0.95
MTC-13 56.19 P-bearing dolomite −0.26 −3.72 −30.57 30 0.14
MTC-14 57.28 Phosphorite −0.11 −7.44 −31.03 31 0.98
MTC-15 57.28 P-bearing dolomite 0.39 −1.83 −30.04 30 0.15
MTC-16 58.37 Phosphorite 0.41 −8.84 −32.07 32 1.04
MTC-17 58.37 P-bearing dolomite 0.35 −8.14 −31.21 32 0.19
MTC-18 59.46 Phosphorus dolomite −0.02 −9.15 −33.26 33 0.78
MTC-19 59.46 P-bearing dolomite 0.19 −8.68 −33.53 34 0.53
MTC-20 60.55 Phosphorite −0.41 −10.18 −33.42 33 1.27
MTC-21 60.55 P-bearing dolomite −0.34 −9.84 −32.78 32 0.33
MTC-22 61.64 Phosphorite −0.61 −9.93 −33.61 33 0.84
MTC-23 61.64 P-bearing dolomite 0.05 −11.28 −33.38 33 0.36
MTC-24 61.99 Phosphorite −0.62 −10.86 −31.72 31 0.24
MTC-25 61.99 P-bearing dolomite 0.40 −12.57 −30.53 31 0.08
MTC-26 62.16 Phosphorite −1.21 −12.87 −30.56 29 0.21
MTC-27 62.16 Phosphorus dolomite 0.16 −11.84 −30.53 31 0.11
MTC-28 63.19 Phosphorite −1.29 −12.63 −30.47 29 0.20
MTC-29 63.19 Phosphorus dolomite 0.10 −11.58 −31.39 31 0.14
MTC-30 64.22 Phosphorite −1.37 −12.99 −30.91 30 0.26
MTC-31 64.22 P-bearing dolomite 0.62 −11.20 −32.76 33 0.17
MTC-32 65.25 Phosphorite −0.05 −11.60 −33.52 33 0.78
MTC-33 65.25 P-bearing dolomite 0.69 −11.18 −31.84 33 0.39
MTC-34 66.28 Phosphorite −1.16 −13.17 −32.94 32 0.56
MTC-35 66.28 Phosphorus dolomite 0.68 −11.13 −33.56 34 0.44
MTC-36 67.31 Phosphorite −1.27 −13.35 −33.02 32 0.80
MTC-37 67.31 Phosphorus dolomite 0.66 −10.98 −33.20 34 0.61
MTC-38 68.34 Phosphorite −0.14 −11.26 −30.25 30 0.17
MTC-39 68.34 Phosphorus dolomite 0.54 −11.02 −26.34 27 0.12
MTC-40 69.37 Phosphorite −0.29 −11.59 −30.26 30 0.17
MTC-41 69.37 Phosphorus dolomite 0.20 −10.76 −28.86 29 0.11
MTC-42 70.40 Phosphorite −0.53 −11.89 −30.39 30 0.17
MTC-43 70.40 P-bearing dolomite 0.50 −10.85 −32.99 33 0.17
MTC-44 71.43 Phosphorite −1.51 −13.52 −31.52 30 0.25
MTC-45 71.43 P-bearing dolomite 0.38 −10.27 −29.67 30 0.11
MTC-46 72.46 Phosphorite −1.13 −11.73 −31.89 31 0.26
MTC-47 72.46 P-bearing dolomite −0.01 −9.76 −29.06 29 0.11
MTC-48 73.49 Phosphorite −0.79 −10.91 −32.38 32 0.45
MTC-49 73.49 Phosphorus dolomite 0.06 −9.90 −30.75 31 0.12
MTC-50 74.52 Phosphorite −0.86 −10.56 −30.96 30 0.20
MTC-51 74.52 Phosphorus dolomite −0.60 −9.52 −30.64 30 0.07
MTC-52 75.55 Phosphorus dolomite −3.54 −12.99 −31.56 28 0.21
MSC-1 34.0 Phosphorite −1.23 −6.88 −30.01 29 0.02
MSC-2 33.5 Phosphorite −1.64 −6.28 −30.30 29 0.03
MSC-3 33.0 Phosphorite −1.13 −5.22 −30.48 29 0.04
MSC-4 32.5 Phosphorite −1.54 −6.27 −31.84 30 0.02
MSC-5 31.9 Phosphorite −2.08 −6.67 −31.69 30 0.01
MSC-6 31.5 Phosphorite −2.54 −7.35 −31.38 29 0.02
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Table 1. Cont.

No. Depth (m) Lithology δ13Ccarb δ18O δ13Corg ∆13C TOC

MSC-7 31.0 Phosphorite −3.68 −7.84 −32.02 28 0.03
MSC-8 30.5 Phosphorite −3.67 −7.38 −32.64 29 0.03
MSC-9 30.0 Phosphorite −5.23 −10.17 −31.78 27 0.03
MSC-10 29.5 Phosphorite −4.17 −9.00 −32.38 28 0.02
MSC-11 29.0 Phosphorite −3.67 −6.47 −31.74 28 0.02
MSC-12 28.0 Phosphorite −3.94 −10.21 −30.85 27 0.02
MSC-14 27.0 Phosphorite −2.10 −6.63 −28.45 26 0.04
MSC-15 26.0 Phosphorite −2.30 −7.27 −28.77 26 0.03
MSC-18 24.7 Phosphorite −3.83 −10.37 −32.33 28 0.02
MSC-19 24.2 Phosphorite −3.74 −10.17 −32.95 29 0.02
MSC-20 23.7 Phosphorite −3.84 −10.49 −28.08 24 0.03
MSC-21 23.3 Phosphorite −4.00 −10.73 −25.50 22 0.03
MSC-22 22.9 Phosphorite −2.70 −9.17 −29.02 26 0.03
MSC-23 22.6 Phosphorite −3.00 −10.06 −30.15 27 0.03
MSC-24 22.3 Phosphorite −3.30 −10.57 −29.46 26 0.01
MSC-25 22.0 Phosphorite −2.22 −9.27 −28.21 26 0.03
MSC-26 21.6 Phosphorite −2.43 −9.82 −31.17 29 0.01
MSC-27 21.3 Phosphorite −2.35 −9.85 −31.53 29 0.05
MSC-28 21.1 Phosphorite −1.84 −10.21 −30.06 28 0.03
MSC-29 20.9 Phosphorite −1.86 −9.75 −30.79 29 0.02

Note: ∆13C = δ13Ccarb − δ13Corg.
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The concentrations of major elements, trace elements, and REY of the phospho-
rus rock series from the MTC profile are shown in Tables 2 and S1. The ∑REY val-
ues of phosphorus-bearing dolostones, phosphorus dolostones, and phosphorites are
137–558 ppm (average = 330 ppm), 481–990 ppm (average = 676 ppm), and 654–1969 ppm
(average = 1477 ppm), respectively. In this study, the REY data is normalized by PAAS [27].
The Ce/Ce* of the samples has no correlation with either ∑REY or DyN/SmN (Figure 5c,d),
where Ce/Ce* = CeN/(LaN * PrN)1/2. The Y/Ho of samples exhibits a negative correlation
with Al2O3, Th, Sc, and Zr, respectively (Figure 7). PAAS-normalized REY patterns of
phosphorites exhibit positive La anomalies, negative Ce anomalies, positive Gd anomalies,
and HREE depletions (Figure 8). With an increase in the phosphorus content, ∑REY and
TOC also increase in the MTC profile (Figure 9a,b). The ∑REY and TOC values of MSC
phosphorites are lower than those of MTC phosphorites (Figure 9a,b).

Table 2. The concentrations of major elements (%) and rare earth elements and yttrium (REY) (ppm)
of phosphorus rock series from the Zhijin area.

Lithology Phosphorus-Bearing
Dolomites n = 16 Phosphorus Dolomites n = 13 Phosphorites n = 23

Min. Max Average Min. Max Average Min. Max. Average

P2O5 1.88 9.66 5.72 10.3 18.1 14.0 19.1 37.0 29.8
La 28.0 115 68.1 80.2 200 138 124 437 316
Ce 19.5 82.2 44.9 59.2 154 90.9 83.1 269 199
Pr 4.74 19.5 11.7 15.8 39.2 24.2 21.7 71.8 54.2
Nd 19.4 84.1 50.5 72.2 169 105 96.7 313 233
Sm 3.78 16.5 9.32 13.3 31.3 19.4 17.2 56.5 42.2
Eu 0.76 3.36 2.04 2.90 6.28 4.28 3.89 12.4 9.26
Gd 4.63 18.3 11.1 15.5 36.4 23.2 20.8 67.5 50.6
Tb 0.63 2.61 1.54 2.19 4.99 3.18 2.97 9.22 6.86
Dy 4.02 16.4 9.50 14.0 29.4 19.6 19.1 55.4 41.9
Y 45.4 199 109 163 320 225 241 637 475

Ho 0.91 3.64 2.09 2.95 6.49 4.23 4.21 11.8 8.99
Er 2.70 10.1 5.72 8.17 16.3 11.0 11.3 30.5 23.3
Tm 0.38 1.22 0.70 0.92 1.85 1.30 1.32 3.55 2.71
Yb 2.16 6.41 3.72 4.55 8.81 6.31 5.97 16.8 12.7
Lu 0.30 0.88 0.50 0.59 1.04 0.82 0.75 2.25 1.65

∑REY 137 558 330 481 990 676 654 1969 1477

In situ chemical compositions of the dolomites from phosphorus-bearing dolostones
and phosphorites are shown in Table 3. The laser signal line graphs of representative
samples are shown in Figure S1. Furthermore, the average Ca concentration in dolomite is
used as the internal standard in the software processing of laser signals, and the data are
shown in Table 4. The dolomites from the phosphorus-bearing dolostones and phosphorite
formations have an average ∑REY of 37.5 ppm and 75.5 ppm, respectively. The PAAS-
normalized REY patterns of dolomite cements in phosphorites exhibit more obvious HREE
(Er–Lu) depletion and positive Gd anomalies than those of dolomites in phosphorus-
bearing dolostones, where Gd/Gd* = GdN/(EuN * TbN)1/2 (Table 3, Figure 8).
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Table 3. In situ major elements (%) and REY (ppm) concentrations of dolomites from phosphorus-bearing dolostones, and phosphorites measured using laser
ablation inductively coupled plasma mass spectrometry (LA-ICP-MS).

Elements Dolomite-
1

Dolomite-
2

Dolomite-
3

Dolomite-
4

Dolomite-
5

Dolomite-
6

Dolomite-
7

Dolomite-
8 Average Dolomite

Cement-1
Dolomite
Cement-2

Dolomite
Cement-3

Dolomite
Cement-4

Dolomite
Cement-5 Average

Na2O 0.020 0.028 0.022 0.022 0.005 0.020 0.023 0.021 0.020 0.030 0.053 0.046 0.035 0.043 0.041
MgO 27.3 26.8 27.2 27.2 27.4 26.6 26.7 28.6 27.2 26.5 28.1 28.5 27.7 28.2 27.8

Al2O3 0.029 0.080 0.445 0.053 0.149 0.030 0.083 0.458 0.166 0.030 0.047 0.045 0.053 0.036 0.042
SiO2 0.178 0.668 1.22 0.589 4.00 0.244 7.35 16.6 3.86 0.056 0.195 0.344 0.224 0.037 0.171
P2O5 0.014 0.029 0.030 0.025 0.108 0.010 0.130 0.056 0.050 0.042 0.027 0.042 0.021 0.019 0.030
K2O 0.002 0.015 0.141 0.008 0.051 0.001 0.019 0.135 0.047 0.007 0.013 0.013 0.016 0.011 0.012
CaO 41.5 41.8 42.1 41.8 42.4 41.8 41.8 41.8 41.9 42.4 44.0 44.0 44.0 44.0 43.7
TiO2 0.000 0.006 0.060 0.000 0.007 0.000 0.002 0.004 0.010 0.000 0.001 0.001 0.003 0.000 0.001
MnO 0.434 0.419 0.468 0.389 0.391 0.403 0.441 0.383 0.416 0.161 0.190 0.182 0.171 0.172 0.175
FeO 1.66 1.41 2.05 1.15 1.11 1.45 1.92 0.782 1.44 0.391 0.389 0.410 0.380 0.412 0.396
La 7.45 9.56 5.76 11.3 4.65 6.89 8.01 7.60 7.66 8.79 16.4 20.1 10.7 12.0 13.6
Ce 3.96 4.82 3.25 5.84 2.69 3.63 4.61 4.22 4.13 4.74 8.75 11.0 5.68 6.04 7.25
Pr 0.714 0.957 0.614 1.11 0.522 0.726 0.979 0.800 0.802 1.23 2.30 2.96 1.50 1.68 1.93
Nd 2.89 3.42 2.24 4.11 2.10 2.59 4.04 3.47 3.11 5.48 9.80 12.5 5.97 6.93 8.13
Sm 0.443 0.635 0.392 0.665 0.294 0.443 0.649 0.509 0.504 1.00 1.80 2.30 1.20 1.09 1.48
Eu 0.160 0.198 0.152 0.192 0.091 0.119 0.213 0.173 0.162 0.236 0.272 0.359 0.222 0.195 0.257
Gd 0.581 0.833 0.570 0.846 0.434 0.827 0.834 0.710 0.704 1.43 2.28 2.91 1.52 1.68 1.97
Tb 0.122 0.144 0.103 0.149 0.084 0.155 0.149 0.135 0.130 0.271 0.373 0.456 0.248 0.293 0.328
Dy 0.953 1.17 0.968 1.28 0.632 1.04 1.30 1.16 1.06 2.03 2.88 3.58 1.89 2.42 2.56
Y 15.7 18.8 13.2 20.0 9.19 15.3 17.4 16.2 15.7 28.0 38.0 41.1 26.0 29.3 32.5

Ho 0.325 0.323 0.271 0.366 0.188 0.328 0.335 0.294 0.304 0.526 0.73 0.822 0.520 0.560 0.631
Er 1.13 1.27 1.04 1.23 0.632 1.15 1.34 1.06 1.11 1.90 2.46 2.81 1.70 1.80 2.13
Tm 0.215 0.221 0.201 0.194 0.114 0.258 0.244 0.172 0.202 0.275 0.386 0.395 0.237 0.249 0.308
Yb 1.90 1.70 1.61 1.45 0.910 2.04 2.10 1.49 1.65 1.96 2.61 2.63 1.65 1.86 2.14
Lu 0.271 0.229 0.258 0.242 0.164 0.342 0.316 0.214 0.255 0.276 0.391 0.367 0.241 0.282 0.311

REY 36.8 44.2 30.6 49.0 22.7 35.9 42.6 38.2 37.5 58.1 89.4 104 59.3 66.4 75.5
ErN/LuN 0.634 0.843 0.611 0.771 0.586 0.512 0.642 0.753 1.05 0.957 1.16 1.07 0.968
Gd/Gd* 0.816 0.967 0.893 0.981 0.970 1.19 0.917 0.910 1.11 1.41 1.41 1.27 1.38
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Table 4. Concentrations of major elements of dolomites in Zhinjin phosphorus rocks series measured
using EPMA (%).

Samples Mg Ca Mn Fe Total

Dolomite 21.3 29.6 0.279 0.757 51.9
Dolomite 21.0 29.9 0.268 0.733 51.9
Dolomite 21.0 29.7 0.264 0.803 51.8
Dolomite 22.0 30.3 0.153 0 52.4
Dolomite 20.9 29.8 0.391 1.37 52.4
Dolomite 21.3 29.6 0.279 0.757 51.9
Dolomite 21.0 29.9 0.268 0.733 51.9
Dolomite 21.0 29.7 0.264 0.803 51.8
Dolomite 22.0 30.3 0.153 0 52.4
Dolomite 21.0 29.9 0.354 0.922 51.9
Dolomite 21.0 29.9 0.284 1.25 52.5
Dolomite 21.1 30.0 0.307 0.983 52.4
Dolomite 20.4 31.4 0.163 0.218 52.1
Dolomite 21.8 30.5 0.128 0.259 52.7
Dolomite 21.6 30.9 0.204 0.188 52.9
Dolomite 19.5 33.2 0.131 0.067 52.8
Dolomite 19.6 32.7 0.132 0.051 52.6
Dolomite 21.5 30.8 0.120 0.175 52.6
Dolomite 21.5 30.8 0.116 0.253 52.6
Average 21.1 30.5 0.224 0.543 52.3

5. Discussion
5.1. Diagenetic Evaluation

It has been suggested that the primary stratigraphic signal can be modified by meteoric
diagenesis based on previous δ13C-δ18O data of carbonate samples, resulting in extremely
low δ13Ccarb and δ18Ocarb values (<11‰), and a positive correlation between them [43–46].
Therefore, diagenetic influences must be evaluated before discussing the stratigraphic
characteristics of δ13Ccarb and δ18Ocarb [44,46–50]. In the binary figure of δ13Ccarb and
δ18Ocarb (Figure 5a), the gray samples may have undergone short-term diagenetic alteration;
therefore, they were excluded from the carbon isotope composition curves. The remaining
samples do not exhibit a positive correlation between δ13Ccarb and δ18Ocarb, indicating that
they were less influenced by meteoric diagenesis (Figure 5a).

The PAAS-normalized REY patterns of typical phosphorites (e.g., Meishucun phospho-
rites) during the early Cambrian Period exhibit obviously positive La and Gd anomalies,
and negative Ce anomalies, as well as HREE depletion characteristics [51,52], which are
thought to be influenced by diagenesis. Due to this influence, Ce anomalies exhibit a
positive correlation with the ∑REY, and a negative correlation with DyN/SmN ratios [51].
However, it is doubtful that the ∑REY in marine phosphorites can reach the REY concen-
trations of the Zhijin phosphorites only by diagenesis. For example, the ∑REY of lower
Cambrian Meishucun and Soltanieh phosphorites under the influence of diagenesis is
typically less than 500 ppm and 250 ppm, respectively [28,37]. Furthermore, there are no
obvious δ18Ocarb differences between the Zhijin samples with an ∑REY of below 1000 ppm
and those with an ∑REY of above 1000 ppm (Figure 5b). This result indicates that although
diagenesis caused changes in δ18Ocarb in the profile, its contribution to REY enrichment
was insignificant. The Ce anomalies also have no correlation with the ∑REY or DyN/SmN
ratios in Zhijin samples (Figure 5c,d), which indicates that other factors contributed to the
REY enrichment.
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5.2. Decoupling of Carbonate and Organic Carbon Isotopes

5.2.1. Controls on δ13Ccarb

Previous studies have reported decoupling between δ13Ccarb and δ13Corg, and good
correlations between ∆13C and δ13Ccarb from the early Cambrian stratum of the Yangtze
platform [13], which is mainly attributed to the variation in δ13Ccarb caused by diagenetic
alteration [55,56], degradation of organic matter [18], and overturn of anoxic seawater [57].
In Section 5.1., we first excluded untrue δ13Ccarb caused by meteoric diagenesis. In the
remaining real isotopic data, δ13Ccarb is not correlated with TOC in either the MTC or
MSC profile (Figure 6a), implying that degradation of organic matter had no effect on
δ13Ccarb. Furthermore, the contemporary profiles from shallow to deep water facies exhibit
a gradually lighter δ13Corg in the Yangtze block during the early Cambrian Period [18,19].
The spatial variation of δ13C values between different sedimentary facies is attributed to the
existence of the vertical δ13C gradient in the paleo-ocean [50]. Ocean stratification is consid-
ered to be a key controlling factor for the vertical δ13C gradient between shallow and deep
water [8,20,21]. Owing to the influence of transgression or enhanced upwelling current, 13C-
depleted deep water input resulted in a negative δ13C excursion of up to −6.9‰ [18,58,59],
and formed a strong correlation between ∆13C and δ13Ccarb in contemporary MSC profiles
(Figure 6c). However, the MTC profile exhibits stable δ13Ccarb (approximately 0‰) and no
correlation between ∆13C and δ13Ccarb (Figure 6c).

The carbonates of Dengying Formation during the late Ediacaran Period suffered
from dissolution and erosion in different degrees due to the regression, resulting in un-
conformity between the Ediacaran and Cambrian Periods, and formation of paleo-karst
depression [60,61]. A previous study also suggested that the thickness of the Zhijin phos-
phorus deposit was controlled by the paleo-karst topography of the Dengying Formation;
meanwhile, the samples of this study were deposited in the basal carbonate depression of
the Dengying Formation [62]. This resulted in the 13C-depleted upwelling current during
the transgression not changing the δ13Ccarb of the MTC profile due to the restrictions of
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paleo-karst topography. Furthermore, the Zhijin area had a higher primary productivity
due to heavier δ13Ccarb in the MTC profile compared to the contemporary MSC profile
(Figure 4).
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5.2.2. Controls on δ13Corg

The ∆13C caused by photosynthesis ranges from 28 to 32 during geological time [4].
The MSC profile exhibits a coupled change between δ13Corg and δ13Ccarb (Figure 4),
recording a typical photosynthetic characteristic with stable ∆13C values of approximately
28‰ [18]. Meanwhile, the δ13Corg of the MSC profile was also affected by the 13C-depleted
upwelling current [18], which resulted in a strong negative correlation between ∆13C and
δ13Corg (Figure 6d). However, the MTC profile exhibits decoupled δ13Corg and δ13Ccarb
curves (Figure 4). The ∆13C also exhibits a strong negative correlation with δ13Corg, and
the MTC profile has higher ∆13C and slightly lower δ13Corg values than those of the MSC
profile (Figure 6d). Owing to the restriction of paleo-karst topography, the MTC profile
records relatively stable δ13Ccarb values. The decoupling between δ13Ccarb and δ13Corg
should be attributed to variation of δ13Corg.

In addition to photosynthesis, δ13Corg can also be influenced by clastic organic car-
bon [12,15], a large DOC reservoir buffering below the oxygen chemocline [5,6], post-
sedimentary processes [63], and chemoautotrophic organisms or methanotrophic bacte-
ria [4,64]. First, the δ13C values of most modern terrigenous organic matters range from
−23‰ to−33‰ [65], which may result in decoupled δ13Corg and δ13Ccarb curves. However,
land plants were scarce during the Ediacaran−Cambrian transition, until their explosive
evolution during the Silurian led to a diversity of photosynthetic organisms on Earth [66,67].
Furthermore, Y has much lower marine-particle reactivity, and longer residence time than
Ho [68,69]. Compared with other REY, the removal efficiency of Y from seawater is also
relatively low [68,69]. Because of these phenomena, seawater has a higher Y/Ho ratio than
continental crust [68,69], with seawater and terrestrial sources having Y/Ho ratios of ~60
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and ~28, respectively [28]. Meanwhile, the influence of terrestrial sources can be tested
using immobile elements (e.g., Th, Sc, and Zr) [70]. Although the samples were influenced
by terrestrial sources as the Y/Ho ratios of samples exhibit weakly negative correlations
with Al2O3, Th, Sc, and Zr, respectively, the samples’ Y/Ho ratios (45−59) are closer to that
of seawater (~60) (Figure 7). The PAAS-normalized flatly REY pattern of the upper conti-
nental crust is also quite different from that of the Zhijin phosphorite with HREE depletion
(Figure 8) [27]. These results suggest that seawater-sourced REY played an important role
in Zhijin phosphorites. Meanwhile, ∑REY increases with increasing organic matter content
in the Zhijin phosphorus deposit (Figure 9a,b). Therefore, the terrigenous organic matter
in the Zhijin profile probably did not play a significant role. Second, if a large-sized DOC
reservoir was preserved in Zhijin seawater, δ13Ccarb should have exhibited dramatically
negative excursions, while δ13Corg would have been largely stable due to the buffering
of DOC [7]. In fact, a completely opposite result is observed with a stable δ13Ccarb (~0‰)
and a significantly fluctuating δ13Corg in the Zhijin profile (Figure 4). The profiles from
the shelf to basin facies exhibit gradually lighter δ13Corg during the Ediacaran–Cambrian
transition [18], which also suggests that the δ13Corg of the Zhijin area was not influenced by
DOC buffering. Furthermore, the accelerated removal of organic matter from surface sea-
water, seafloor ventilation, and oxygen uptake also resulted in the elimination of suspended
organic carbon reservoirs in seawater during the Ediacaran–Cambrian transition [7,71].
Third, the thermal degradation of sedimentary organic matter can change δ13Corg values
during diagenesis, which will result in heavier δ13Corg values in residual organic matter
due to preferential mobilization of the 12C [72]. Previous research, however, demonstrated
that the δ13Corg variation of sedimentary organic matter was relatively small during diage-
nesis [65]. Although increased thermal alteration can decrease the H/C ratio of organic
matter, the thermal decomposition has little effect on the carbon isotope composition of
kerogen when the H/C ratio is greater than 0.2, otherwise, the kerogen is richer in 13C [73].
Therefore, the H/C ratio of kerogen in nearly contemporary strata within the Yangtze Plate
is usually >0.2, demonstrating that the δ13C of organic matter was not severely altered by
post-sedimentary processes [74,75].
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For secondary production, the carbon isotopic fractionation caused by chemoau-
totrophic organisms can reach −35‰, while the carbon isotopic fractionation produced
by marine phytoplankton is about −28‰ [77]. Methanotrophic bacteria take up carbon
from 13C-depleted methane, causing their biomass to be 13C-depleted by up to −15–−40‰
compared to photosynthetic organic matter [78,79]. Previous studies revealed that redox
stratification developed during the Ediacaran–Cambrian transition with oxic surface sea-
water and anoxic/euxinic deep seawater [20]. The whole-rock Fe isotopes (~0‰) from
the MSC phosphorus deposit indicate that these phosphorites were deposited under an
oxic seawater environment [52]. However, the whole-rock Fe isotopes (~0–0.45‰) of the
Zhijin phosphorus deposit indicate a fluctuating oxic–suboxic seawater environment [52].
The redox environment of Zhijin seawater recorded by Fe isotopes is consistent with the
weakened hydrodynamic condition recorded by petrography during the Zhijin phosphorus
rock series sedimentary (see Section 2.2.). The TOC content of the MTC profile is higher
than that of the MSC profile (Figure 6b); meanwhile, we can obviously see that organic
matter and pyrite coexist in the Zhijin sample (Figure 3k), also indicating that the Zhijin
samples were deposited in a relatively reductive environment compared to the MSC pro-
file. The fluctuating oxic–suboxic environment of Zhijin seawater may indicate a spatially
heterogeneous redox environment during the early Cambrian Period [80].
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We can clearly see pyrites located on the surface of fluorapatite under secondary
electron mode (Figure 3l). The previously reported values of ∆34Ssulfate-pyrite range from
4.45‰ to 18.63‰ from the Zhijin phosphorites, suggesting fractionation produced by
bacterial sulfate reduction [81]. The polymetallic Ni–Mo sulfide layer of the Niutitang
Formation has a Re–Os age of 537 ± 10 Ma from the Zhongnancun profile of Zunyi, South
China, which is consistent with the age of the Ni-Mo sulfide layer formed immediately
above the Zhijin phosphorus deposit (521 ± 5 Ma) [42,82]. As a result, the formation age
of black shale in the Niutitang Formation of Zunyi, South China, is almost the same as
that of the Zhijin phosphorus deposit. The negative Ce anomalies of organic matter in
black shales indicate that most of the organic matter came from primary productivity in
surface seawater [83]. When the organic matter in surface seawater sank to the interface
between seawater and sediment, 12C was re-released into bottom seawater or pore water
due to the anaerobic oxidation process of organic matter (bacterial sulfate reduction).
Chemoautotrophic organisms or methanotrophic bacteria in the water column assimilated
recycling 12C, which resulted in decoupled δ13Ccarb and δ13Corg curves in the Zhijin profile.
Although the DOC concentration of modern shallow water columns close to the chemocline
can reach 280 µM, the organic matter would be degraded by bacteria within several
months [84,85]. The Zhijin area controlled by paleo-karst topography was less affected
by marine circulation ventilation, and the formation of suboxic seawater in the Zhijin
area was more conducive to organic matter recycling by chemoautotrophic organisms
or methanotrophic bacteria. Furthermore, the statistical results of paired δ13Ccarb and
δ13Corg from geological history exhibit that organic matter with ∆13C values of >32‰ is
associated with chemoautotrophic biomass contribution [4]. The ∆13C values of Zhijin
samples can reach 34, indicating that organic matter in the Zhijin area was contributed
to by chemoautotrophic biomass. Moreover, the statistical data from geological history
shows that the intermittently decoupled δ13Ccarb and δ13Corg from the Yangtze platform
are associated with chemoautotrophs or methanotrophs [13]. Therefore, the decoupled
δ13Ccarb and δ13Corg of the MTC profile were associated with chemoautotrophic organisms
or methanotrophic bacteria in the water column.

5.3. Effect of Organic Matter on REY Enrichment

The PAAS-normalized REY pattern of modern seawater exhibits a positive La anomaly,
a negative Ce anomaly, and HREE enrichment [34,76] (Figure 8). The apatite from modern
deep-sea mud directly inherits from seawater information [33]. However, the phosphorite
from geological history does not exhibit the REY pattern that is consistent with modern
seawater [86,87]. The PAAS-normalized REY patterns of these phosphorites exhibit positive
La anomalies, positive Gd anomalies, negative Ce anomalies, and HREE depletions [86,87].
It is suggested that there is no clear temporal gap between HREE enrichment and HREE
depletion in marine phosphate, wherein the HREE depletion characteristics of some phos-
phorites can be explained by diagenesis [51,86]. Because diagenesis can result in preferential
enrichment of MREE [51]. In fact, the PAAS-normalized REY pattern of seawater during
the geological history should be consistent with that of modern seawater [86]. The HREE
depletion of marine phosphate that was not affected by diagenesis may be attributed to
REY exchange with a non-clastic component [86].

The PAAS-normalized REY patterns of Zhijin phosphorites exhibit positive La anoma-
lies, positive Gd anomalies, negative Ce anomalies (0.32–0.45), and HREE depletions
(Figure 8). This and previous results suggest that both the negative Ce anomalies (0.32–0.52)
and Y/Ho values (45–60) of Zhijin phosphorites represent seawater characteristics [31].
Meanwhile, the Sr–Nd isotopes of Zhijin phosphorites are consistent with those of Cam-
brian seawater [88]. The δ13Ccarb and δ18Ocarb of Zhijin area are consistent with that of early
Cambrian seawater [3,53] (Figure 5a). These results suggest that seawater sources played
an important role in REY enrichment. The PAAS-normalized REY patterns of dolomites in
the Zhijin phosphorus rock series are consistent with that of modern seawater (Figure 8),
also indicating that seawater-sourced REY is in Zhijin samples.
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Although REY was derived from seawater in Zhijin phosphorite, modern seawater
has an extremely low REY concentration (~30 ppt) [76]. Previous studies had concluded
that REY in apatite was derived directly from pore water [32,33,89,90]. Therefore, the REY
cycling between seawater and pore water is important. The REY concentration in the
pore water of marine sediment is 1–2 orders of magnitude higher than that in seawater
due to REY release from host matter influenced by early diagenesis [25]. Meanwhile, the
PAAS-normalized REY pattern of pore water will change from HREE enrichment to HREE
depletion [34]. It is interesting to note that REY is preferentially scavenged by organic
matter and then released into pore water to generate a pattern of HREE depletion [24,25].
The REY pattern of phosphate can also inherit those of organic matter [24,25,91–93]. The
REY patterns of HREE depletions and positive Gd anomalies from the Zhijin phosphorites
are also similar to those of nearly contemporary kerogen [40] (Figure 8). In Section 5.2.2., we
believe that organic matters from surface seawater participated in the process of bacterial
sulfate reduction at the interface between seawater and sediment. Before organic matters
sink to the interface between seawater and sediment, they can scavenge REY from seawater,
leading to the first accumulation of REY in organic matters. When bacterial sulfate reduction
occurred at the interface, the anaerobic oxidation of organic matters resulted in the re-release
of REY into the bottom seawater or pore water, which eventually led to REY enrichment in
the pore water. Moreover, REY concentration can reach 500 ppm in organic matter [40]. In
particular, the ∑REY of dolomite cement in phosphorite is higher than that of dolomite in
the phosphorus-bearing dolostone in the MTC profile (Table 3). These results suggest that
the degradation of organic matter caused the high REY abundance in pore water.

Compared to dolomites from phosphorus-bearing dolostones (ErN/LuN = 0.512–0.843,
Gd/Gd* = 0.816–1.19), dolomite cements from phosphorites exhibit more obvious HREE
depletion (Er–Lu) and positive Gd anomalies (ErN/LuN = 0.957–1.16, Gd/Gd* = 1.11–1.41)
(Figure 8). Thus, even though REY from pore water was ingested into fluorapatite, dolomite
cements partially retain the geochemical characteristics of pore water. Furthermore, the
Zhijin phosphorite has a higher ∑REY and TOC than that of the MSC profile (Figure 9a,b).
These results imply that organic matter played a significant role in the REY enrichment
process in the Zhijin phosphorus deposit (Figure 10).
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6. Conclusions

The Zhijin area had higher primary productivity due to heavier δ13Ccarb in the MTC
profile compared to the contemporary MSC profile. The decoupling of paired C isotopes
results mainly from the contribution of chemoautotrophic organisms or methanotrophic
bacteria.

The REY pattern of the Zhijin phosphorite is similar to that of contemporary organic
matter. The ∑REY of dolomite cement in the Zhijin phosphorite is higher than that of
dolomite in the phosphorus-bearing dolostone. Compared to dolomite in the phosphorus-
bearing dolostone, dolomite cement from phosphorite exhibits more obvious HREE deple-
tion (Er–Lu) and a positive Gd anomaly, which records partial information of pore water. It
can be concluded that the degradation of organic matter increased the REY concentration
of pore water, causing REY enrichment in Zhijin phosphorite and producing REY pattern
transition from HREE enrichment to HREE depletion.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/min12070876/s1, Figure S1: The laser signal line graphs of representative samples. (a) The
laser signal line graph of dolomite cement-4 from Table 3. (b) The laser signal line graph of dolomite-2
from Table 3, Table S1: The concentrations of major elements (%), trace elements (ppm), and REY
(ppm) of the Zhijin samples.
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