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Abstract: The number of large coal power plants, characterized by pithead plants, is increasing
rapidly in major coal mining countries around the world. Overburden movement caused by coal
mining and greenhouse gas emissions caused by coal thermal power generation are intertwined, and
have become important challenges for mine ecological environment protection at present and in the
future. In order to provide more options for green mining in large coal power plants, a large coal
power base in northwest China was taken as the researching background in this paper, and a green
mining model considering the above two aspects of ecological environment damages was proposed;
that is, the carbon dioxide greenhouse gas produced by coal-fired power plants can be geologically
trapped in goaf, whose overburden stability is controlled by backfill strips made of solid mine waste.
In order to explore the feasibility of this model, the bearing strength of the filled gray brick consisting
mainly of aeolian sand and fly ash under different curing methods was firstly studied, and it was
discovered that the strength of the gray brick significantly improved after carbonization curing. After
that, X-ray diffraction (XRD) and scanning electron microscopy (SEM) were employed to compare
the mineral composition and its spatial morphology in gray brick before and after carbonization,
and it is believed that the formation of dense acicular calcium carbonate after carbonization curing
was the fundamental reason for the improvement of its bearing strength. Finally, a series of stope
numerical models were established with UDEC software to analyze the surface settlement, crack
propagation height and air tightness of the overlying strata, respectively, when goaf was supported
by the backfilling strips with carbonized gray brick. The research results of this paper showed that
the stability of overlying strata in goaf can be effectively controlled by adjusting the curing methods,
width and spacing of the filled gray brick, so as to facilitate the following geological sequestration of
carbon dioxide greenhouse gas in goaf. Consequently, the ecological environment damages caused
by coal mining and utilization in a large coal power base can be resolved as a whole, and the purpose
of green mining can be achieved as desired.

Keywords: green mining; low-carbon utilization; backfill mining; carbon dioxide storage; gray brick

1. Introduction

For several decades, coal has significantly contributed to global energy needs, account-
ing for 25% of global energy production in 2000, 30% in 2010 and 27% in 2020 [1]. However,
in the process of coal mining, it often brings about serious overburden movement, which
causes the loss of groundwater resources and surface collapse, changes the soil structure
and seriously damages the ecological environment [2,3]. For example, in China, the area of
land destroyed by mining has reached 2 million hm2 [4], in which the area of settlement
land has reached 1 million hm2 [5]. These mining impacts pose significant environmental,
socio-economic and mining layout challenges. For this reason, these adverse impacts
and mitigation measures have been extensively studied in several countries, including
Russia [6], Australia [7,8], the United Kingdom [9], South Africa [10,11], India [12,13] and
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Germany [14]. Meanwhile, the number of large coal power plants, characterized by pithead
plants, is increasing rapidly in major coal mining countries around the world. Overburden
movement caused by coal mining and greenhouse gas emission caused by coal thermal
power generation are intertwined, and have become an important challenges for mine
ecological environment protection at present and in the future, as shown in Figure 1.
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Figure 1. Ecological and environmental effects of the traditional coal exploitation and utilization
mode in large coal power bases.

To resolve the problems of the environmental damage caused by the mining and
utilization of coal as a fossil fuel in large coal power bases, an innovative mode of green
mining and low-carbon utilization of the coal resources is proposed, as shown in Figure 2.
Firstly, the aeolian sand abundant on the surface of mining area and fly ash produced by
thermal power plant are used as the main raw materials to make the embryo body of filling
gray brick. Then, the gray brick is curved with carbon dioxide gas from the thermal power
plant and backfilled in the underground gob to support overlying strata. Finally, the carbon
dioxide gas can be injected and stored in the gob.
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In the past few decades, backfilling has been extensively applied in underground coal
mining to resolve safety and environmental problems. The backfill bodies were employed to
reduce ground subsidence [15,16], underground water-loss [17,18] and so forth. Meanwhile,
backfill mining employs coal gangue (CG), fly ash (FA) and tailings as primary materials
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to provides a feasible approach for treatment and utilization of solid wastes from mining
industries [19,20]. On this basis, many valuable studies have been carried out recently. For
the first time, a mixture of classified tailings with cement began to be tested in 1969 at the
Mount Isa mine in Australia. This technology has been successfully applied in many mines
in Canada and Sweden. In Russia (USSR), tailings were first used to prepare a monolithic
backfill in 1969 at the Riddersky mine. In 1970, one chamber was laid at the Gaisky mine
(USSR). Currently, man-made wastes are widely used in the production of backfill composite
around the word. Technogenic waste replaces not only the inert filler, but also the binder.
Ercikdi et al. used waste glass and silica fumes as artificial pozzolanas to prepare tailings
cementing filling materials and investigated the effect of the type of waste materials on the
early strength and later strength of the filled object [21,22]. Feng et al. studied the mechanical
properties of cemented filling materials in which gangue was partially replaced by waste
concrete [23,24]. Peyronnard and Benzaazoua studied the effect of CAlSiFrit and deinking
sludge fly ash as partial binder replacement in cemented paste backfill (CPB) [25]. Cihangir
et al. used alkali-activated neutral and acidic blast furnace slags (AASs) with aqueous sodium
silicate (LSS), and sodium hydroxide (SH) were tested as alternative binders to OPC for
CPB of high-sulfide mill tailings [26]. Deng et al. developed a new type of cemented filling
material, using waste rock as a coarse aggregate, FA as a fine powder, slag as an activator and
ordinary Portland cement as a binder [24,27]. Xu et al. studied the strength development and
microstructure evolution of cemented tailings backfill containing different binder types and
contents [28]. Zhou et al. explored the feasibility of replacing cementitious filling materials
with air-accumulated sand as aggregate, and investigated the effects of fly ash (FA) content,
cement content, lime slag (LS) content and concentration on the mechanical properties of
air-accumulated sand-based cementitious filling materials [24]. Wang et al. used hydrogen
peroxide (H2O2) as a chemical blowing agent to improve the foaming performance of the
cemented foam and the reinforcing effect of the foam based on the cemented foam with
gangue and fly ash as the main raw materials [29]. Ermolovich et al. studied the possibility
of creating and using nanomodified backfill material based on the waste from enrichment of
water-soluble ores [30].

Analyzing the above, it can be noted that reducing or ablating the damage to the eco-
logical environment caused by mining activities green mining is a very topical issue. With
the centralized mining and utilization of coal resources, related environmental problems
will appear at the same time, which provides a possibility for the comprehensive solution
of various problems. Therefore, the purpose of this study is exploring a green mining
model that simultaneously controls the strata stability over goaf and geologic sequestration
of carbon dioxide greenhouse gas in goaf. To achieve this goal, the following tasks need
to be addressed: (1) how to prepare the backfilling material in goaf with certain mine
solid waste, and provide it with the bearing strength to meet the requirements through
appropriate curing method; (2) how to evaluate the stability of the overlying strata after
goaf is backfilled by the above-designed materials.

2. Materials and Methods
2.1. Experimental Materials

The cementing agents used in the experiments were quicklime and gypsum. The
quicklime was produced by the Tianshan Cement Factory in Xinjiang, China. The main
composition of quicklime is CaO, but it also contains a small amount of SiO2 and MgO; its
CaO content reaches up to 89%, as shown in Figure 3a,d. The gypsum was purchased from
the factory as β-type hemihydrate gypsum (2CaSO4·H2O). The main chemical composition
of gypsum includes CaO and SO3, and it also contains a small amount of SiO2, Al2O3 and
Fe2O3, as shown in Figure 3b,e. The fly ash used in the experiments was class II fly ash
produced by the Hongyanchi Power Plant in Urumqi, Xinjiang, China. The average particle
size of the fly ash is 0.035 mm. The fly ash is primarily composed of mullite and quartz;
the SiO2 content is 55% and Al2O3 content is 25%, as shown in Figure 3c,f. The aggregate
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used in the experiments was aeolian sand from the Shanshan Desert, Xinjiang, China, with
a particle size primarily between 0.1–0.25 mm and a non-uniformity coefficient of 1.82.
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2.2. Specimen Preparation and the Experimental Study

In this study, the ratio of water: cement was 2:3, and the ratio of gypsum: fly ash:
quicklime: aeolian sand was 1:2:3:12. The dry ingredients were mixed and thoroughly
homogenized using a blender (HJW-60 series) for 3 min before water was added into the
mixture, and then stirred for another 2 min. After mixing, the mixed slurry was cast into
an iron mold with dimensions of 5 cm × 5 cm × 5 cm and three specimens were made for
each curing age using different curing methods to reduce the test error. The specimens
were then subjected to natural, autoclave, carbon dioxide and autoclave–carbon dioxide
curing for 4 days, 8 days, 12 days and 16 days [31], as shown in Table 1. Finally, uniaxial
compressive strength (UCS) tests, carbonization tests, X-ray diffraction analysis (XRD) tests
and scanning electron microscope (SEM) tests were carried out on the specimens, as shown
in Figure 4.

The UCS tests on gray brick were carried out using the SANS brand hydraulic single
shaft compressor in the Mechanics Laboratory, School of Mechanical Engineering, Xinjiang
University, China, as per the Chinese standard (JGJ/T 70-2009). The maximum test force
of a uniaxial compressor is 300KN, and the accuracy of the force value is below ±0.3%.
According to the standard, a displacement loading model was used to avoid specimens
rapidly breaking [32]. In this way, the whole stress–strain curve was obtained. In this
study, the pre-peak loading speed was 0.1 mm/s and the loading speed after the peak was
0.2 mm/s. The XRD tests were carried out using a D8 Advance X-ray powder diffractometer
(Bruker AXS GmbH), and the radiation source of this instrument is Cu target. The scanning
range 2θ is 5◦~80◦ and the scanning speed is 10◦/min. The SEM tests were carried out
using a LEO-1430VP scanning electron microscope (Zeiss, Oberkochen, Germany) with the
magnification of 50~20,000 times. Carbonation depth of gray brick under different curing
methods was detected using the phenolphthalein alcohol method (phenolphthalein alcohol
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solution with mass fraction of 1% as chromogenic agent) [33], and carbonation depth
was measured by digital carbonation depth scale (China Zhuolin Science and Technology,
Beijing, China), with measuring accuracy of 0.01 mm and measuring range of 0–25 mm.

Table 1. Specimens’ curing method.

Specimen Number Curing Age Curing Methods

I-A-1, I-A-2, I-A-3 4 days
After 12 h resting, the specimens were demolded and cured in a humid and

ventilated natural environment.
I-B-1, I-B-2, I-B-3 8 days
I-C-1, I-C-2, I-C-3 12 days
I-D-1, I-D-2, I-D-3 16 days

II-A-1, II-A-2, II-A-3 4 days After 12 h resting, the specimens were placed directly on the inner surface of the
autoclave equipment without demolding. After 5 h of autoclave curing in an

environment of 0.165 Mpa and 130 ◦C, the specimens were taken out and then
demolded in a humid and ventilated natural environment for curing.

II-B-1, II-B-2, II-B-3 8 days
II-C-1, II-C-2, II-C-3 12 days
II-D-1, II-D-2, II-D-3 16 days

III-A-1, III-A-2, III-A-3 4 days
After 12 h resting, the specimens were demolded and cured in drying dishes with

CO2 concentration of 0.25 mol/L and pressure of 718.98 Pa.
III-B-1, III-B-2, III-B-3 8 days
III-C-1, III-C-2, III-C-3 12 days
III-D-1, III-D-2, III-D-3 16 days

IV-A-1, IV-A-2, IV-A-3 4 days After resting for 12 h, the specimens were placed cured in the autoclave equipment
for 5 h, and then the specimens were taken out and demolded in drying dishes

with CO2 concentration of 0.25 mol/L and pressure of 718.98 Pa for curing.

IV-B-1, IV-B-2, IV-B-3 8 days
IV-C-1, IV-C-2, IV-C-3 12 days
IV-D-1, IV-D-2, IV-D-3 16 days
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2.3. Study on the Overburden Control Effect of Gray Brick in Backfill Mining
2.3.1. Establishing a Numerical Model

UDEC is a two-dimensional numerical calculation program based on a continuum
simulation discrete element, which mainly simulates the mechanical behavior of discon-
tinuous medium (such as joint block) under static or dynamic load conditions. UDEC
discontinuous media is reflected by the combination of separated blocks, and the joints are
treated as boundary conditions between blocks, allowing blocks to move and turn along
the joint surface [34]. UDEC can clearly simulate the development of cracks in overlying
strata during gray brick backfill mining, so as to achieve the desired simulation effect.
Because large amounts of coal resources are distributed in western China with shallow
buried depths, large thicknesses and thin overlying rock strata, the stratum conditions in
the mining area in western China were simplified into three components: a bedrock layer, a
weak cementation layer and loose overburden (Figure 5a) [35,36]. Based on this, a typical
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numerical model was established. The block division of the different coal strata in the
model is shown in Figure 5b. The established model was 500 m in length and 340 m in
height, and the heights of the floor, coal seam, roof, bedrock layer, weak cemented layer and
loose overburden were 22 m, 8 m, 6 m, 94 m, 100 m and 100 m, respectively. The bottom
boundary of the model was fixed, the surrounding boundary was displacement constrained
and the upper boundary was free. The Mohr–Coulomb yield criterion was used to calculate
the constitutive relationship of the block. The strata joints were simplified into horizontal
and vertical joints, and the surface contact Coulomb slip model was adopted. Boundary
coal pillars of 100 m were reserved on the left and right sides of the model to eliminate the
boundary effect, and the actual advance length was 300 m. The mechanical parameters of
each rock layer are shown in Table 2.
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Table 2. Mechanics parameters of the rock strata used in simulation.

Stratum Density
Kg/m3

Bulk Modulus
/GPa

Shear
Modulus

/GPa

Friction Angle
/Degree

Cohesion
/MPa

Tensile
Strength

/MPa

Loose overburden 2200 0.05 0.03 25 0.7 0
Weakly cemented layer 2580 1.03 7.5 44 3.5 2

Bedrock layer 2700 2.52 1.6 48 6.97 5.4
Roof 2700 2.52 1.6 48 6.97 5.4

Coal seam 1470 7.9 5.5 37 3.02 3
Floor 1700 5.15 4 36 2.21 2.26

2.3.2. Simulation Scheme

The full-height mining method was adopted, and the advance step of the working face
was 10 m in this simulation. In addition, the mechanical parameters of the gray brick after
16 days of autoclave–carbon dioxide curing were used as the simulation parameters. The
calculated time step for each step from the retrieval was determined to be 2000 steps based
on the time effect of the site. Considering the filling equipment and the actual situation
at mining sites, the top connection rate was set to 95% for the simulation. The specific
simulation scheme is shown in Table 3.

Table 3. Simulation scheme.

Simulation Variables Expected Simulation Results

Different filling spacing Different filling strip width Surface subsidence and
height of crack propagation10 m, 15 m, 20 m, 25 m, 30 m, 35 m 11 m, 12 m, 13 m, 14 m, 15 m, 16 m
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3. Results and Discussion
3.1. Analysis of the Bearing Strength of the Gray Brick

Typical uniaxial compression total stress–strain data of gray brick under different
curing methods were selected for the analysis and are plotted in Figure 6a–d. It can be
seen that, under different curing methods, the shapes of the total stress–strain curves of
the gray brick are basically the same and the plastic characteristics of the gray brick do not
change. The compressive deformation curves of the gray brick are similar to that of typical
rock and experience four stages throughout the entire stress and strain process, namely
the pore compaction stage (the concave curve), the elastic deformation stage (the oblique
line), the plastic ring breaking stage (the concave curve) and the post-peak failure stage
(the post-peak curve).
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The uniaxial compressive strengths of the gray brick under different curing methods
and curing ages are shown in Figure 7. The results indicate that, under autoclave curing,
carbon dioxide curing and autoclave–carbon dioxide curing, the bearing strength of the
gray brick increased to different degrees compared with that of natural curing. The uniaxial
compressive strength of the gray brick under 16 days of natural curing was 1.25 MPa,
while the uniaxial compressive strengths of gray brick under 16 days of autoclave curing,
carbon dioxide curing and autoclave–carbon dioxide curing were 1.58 MPa, 2.58 MPa and
9.65 MPa, respectively, increasing by 26%, 98% and 668%, respectively, compared with
natural curing.
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Figure 7. Bearing strengths of gray brick under different curing methods.

To study the failure modes of gray brick under different curing methods, typical failure
surfaces under the different curing methods were selected to draw crack maps, as shown
in Figure 8a–d. The results indicate that, under the different curing methods, there were
two main cracks running through the samples, accompanied by several microcracks on
the surfaces of the gray brick; these cracks had the same characteristics for all methods.
Therefore, changing the curing method did not change the failure mode of the gray brick;
all brick showed typical X-shaped conjugate shear failure.
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3.2. Carbonation Curing Mechanism Analysis of the Gray Brick

The carbonization degrees of the gray brick under different curing methods were
measured and the test results were analyzed, as shown in Figure 9a,b. It can be seen
in Figure 9b that, under natural and autoclaved curing conditions, carbonization of the
gray brick basically did not occur. The carbonization depths of the gray brick under
16 days of carbon dioxide curing and autoclave–carbon dioxide curing were 4.1 mm and
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8.9 mm, respectively. Obviously, the carbonization degree of the gray brick was promoted
by autoclave curing and, with increasing curing age, the carbonization rate of the gray
brick slowed.
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diagram of specimen III-A-2; (b) carbonation depths of gray brick.

To study the mechanism of the increasing bearing strength of gray brick following
carbonization, the internal hydration products and internal structure of the uncarbonized
and carbonized parts of specimen III-A-2 were analyzed via XRD and SEM, as shown
in Figure 10a–d. It can be seen that the internal compactness of the uncarbonized gray
brick was small and that they contained a lot of gaps and pores; therefore, the bearing
strength was primarily provided by the friction between the small internal particles. The
main hydration products of the carbonized gray brick were CaCO3 and CaSO4(H2O)2,
rather than Ca(OH)2. In addition, the internal gaps and pores of the uncarbonized gray
brick were filled by interlaced and needle shaped CaCO3, resulting in higher compactness
and integrity.

3.3. Stability Analysis of the Overlying Strata Filled with Gray Brick Strips

The simulation results showed that the maximum surface subsidence always occurred
directly above the goaf, and this subsidence under mining with different filling spacings
and filling strip widths is shown in Figure 11. It can be seen that the maximum surface
subsidence reached a maximum of 0.675 m when the filling spacing was 35 m and the
width of the filling strip was 11 m and that it reached a minimum of 0.403 m when the
filling spacing was 10 m and the width of the filling strip was 16 m. The maximum surface
subsidence could be reduced obviously when the filling spacing decreased from 35 m to
20 m and the filling strip width increased from 11 m to 13 m. In order to describe the
quantitative relationship between the maximum surface subsidence (S) and the filling strip
spacing (x) and the filling strip width (y) more accurately, the Gauss2D function of the
Origin software was used to obtain the fitting relationship between above parameters, as
shown in Equation (1). According to the results of fitting calculation, the fitting correlation
coefficient (R2) was 0.9926, the mean square error (MSE) was 3.86 × 10−5 and the root mean
square error (RMSE) was 0.0062, and the goodness of this fit was acceptable.

S = 59.3 − 58.9e−
(x+4.7)2

421362 − (y−17.9)2

34322 (x : 10–35 m; y : 11–16 m) (1)
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Figure 10. Comparison of the products and structures in the uncarbonized and carbonized parts of
specimen III-A-2. (a) XRD of the uncarbonized part; (b) XRD of the carbonized part; (c) SEM of the
uncarbonized part; (d) SEM of the carbonized part.
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According to Equation (1), the maximum surface subsidence (S) has an exponential
relationship with filling strip spacing (x) and filling strip width (y). Further, the maximum
surface subsidence (S) decreases continuously with decreasing filling spacing (x) and
increasing filling strip width (y), which provides a valuable reference for controlling the
maximum surface subsidence (S) through adjusting the backfill settings. The primary
consideration for the filling strips spacing (x) is to avoid the caving of the immediate roof
strata over the gob due to fact that the gob must be kept integrated for the purpose of
following storage of carbon dioxide gas. The filling strip width (y) is commonly limited
by the construction speed of filling strips because the backfilling speed and mining speed
need to be consistent to ensure the continuity of backfill mining operations. In practice, the
filling strips spacing (x) can be adjusted in a larger range compared with the filling strip
width (y) because of the fact that the time for backfilling in a backfill mining cycle is always
limited. Consequently, it is more feasible to control the maximum surface subsidence (S) by
adjusting the filling strip spacing (x). It also should be noted that the parameters except for
filling strip spacing (x) and filling strip width (y) in Equation (1) are only applicable to the
engineering geological conditions in this study, and should be adjusted according to the
mining depth, rock strata mechanics and backfilling materials’ strength in different cases.
It can be determined that the relationship between the maximum surface subsidence (S)
and filling strip spacing (x) and width (y) described in Equation (1) could represent the
general surface subsidence of underground mines in northwest China with the overburden
composed of loose layer, weakly cemented layer and bedrock layer from top to bottom.

In the simulation process, if the joint contact appears to slip and have tensile failure,
this indicates that the contact has fractured; that is, that cracks appear in the overburden [37].
The overburden fracture height under different filling spacings and filling strip widths
is shown in Table 4. Based on the overburden fracture heights under different filling
settings obtained from Table 4, the fracture propagation height (H) variation diagram of
the overburden with different filling spacing (x) and filling strip widths (y) are drawn, as
shown in Figure 12. In order to describe the quantitative relationship between the fracture
propagation height (H) and the filling strip spacing (x) and the filling strip width (y) more
accurately, the Gauss2D function of the Origin software was used to obtain the fitting
relationship between above parameters, as shown in Equation (2). According to the results
of fitting calculation, the fitting correlation coefficient (R2) was 0.99938, the mean square
error (MSE) was 15.2, and the root mean square error (RMSE) was 3.897 and the goodness
of this fit was acceptable.

H = 30.9 + 719294e−
(x−109.1)2

1352 − (y+28.2)2
327.7 (x : 10–35 m; y : 11–16 m) (2)

According to Equation (2), the fracture propagation height (H) has an exponential
relationship with filling strip spacing (x) and filling strip width (y). Further, the fracture
propagation height (H) decreases continuously with decreasing filling spacing (x) and
increasing filling strip width (y), which provides a valuable reference for controlling the
fracture propagation height (H) through adjusting the backfill settings. It also should be
noted that the parameters except for filling strip spacing (x) and filling strip width (y) in
Equation (2) are only applicable to the engineering geological conditions in this study, and
should be adjusted according to the mining depth, rock strata mechanics and backfilling
materials’ strengths in different cases. It can be determined that the relationship between
the fracture propagation height (H) and filling strip spacing (x) and width (y) described
in Equation (2) could represent the general fracture distribution of underground mines in
northwest China with the overburden composed of loose layer, weakly cemented layer and
bedrock layer from top to bottom.
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Table 4. Fracture propagation height of different filling spacings and filling strip widths.
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Table 4. Cont.
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3.4. Evaluation of the Gas Tightness of Overlying Rock Filled with Gray Brick Strips

There are two main aspects that need to be considered with respect to the escape
of CO2 from goaf. The first aspect is that, when the capping pressure is less than the
CO2 sealing pressure, the formation stress is redistributed; this is primarily reflected in an
increase in the capping cracks and permeability, resulting in the escape of the sequestered
CO2 [38,39]. Because of the depth of the coal buried in mining areas in western China,
the CO2 storage pressure in the goaf is small; therefore, it is difficult to reach the cap
rock breakthrough pressure. Accordingly, this was not studied in this paper. The second
aspect is that of the permeability of CO2 through the micropores of the cap as a result
of the difference in the pressure gradient, which is primarily related to the permeability
coefficient of the cap. In general, the permeability of the bedrock layers is in the range of
10−1–10−3 µm2 because of the high internal microporosity; the permeability of the weakly
cemented layer is generally relatively low at 10−11–10−5 µm2. Moreover, gas seepage is a
slow and long-term process that can be calculated using Darcy’s law:

Q = KA(P1
2 − P2

2)/2P0µL (3)

where Q is the gas flow through rock, cm3/s; A is the cross-sectional area of gas passing
through the rock, cm2; µ is the Viscosity of gas, MPa·s; P1 and P2 are the rock inlet and
outlet gas pressure, MPa; L is the Length of the rock, cm; K is the Permeability coefficient of
gas to rock, µm2; and P0 is Atmospheric pressure, MPa.

Using Darcy’s law, the CO2 escape amount under different filling spacings and filling
strip widths in this numerical model was calculated, where the strike length of the model
working face was set to 200 m, the CO2 sequestration pressure was set to 1 MPa, the
permeability of the bedrock layer was set to 10−3 µm2 and the permeability of the weakly
cemented layer was set to 10−5 µm2 combined with the actual situation of the goaf. The
calculated results are shown in Figure 13. In order to describe the quantitative relationship
between the gas escape quantity (Q) and the filling strip spacing (x) and the filling strip
width (y) more accurately, the Gauss2D function of the Origin software was used to obtain
the fitting relationship between above parameters, as shown in Equation (4). According
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to the results of fitting calculation, the fitting correlation coefficient (R2) was 0.99679, the
mean square error (MSE) was 3.4, and the root mean square error (RMSE) was 1.84, and the
goodness of this fit was acceptable.

Q = 6.58 + 786.5e−
(x−109.1)2

703.9 − (y+21.9)2
282.3 (x : 10–35 m; y : 11–16 m) (4)
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According to Equation (4), the gas escape quantity (Q) has an exponential relationship
with filling strip spacing (x) and filling strip width (y). Further, the fracture gas escape
quantity (Q) decreases continuously with decreasing filling spacing (x) and increasing
filling strip width (y), which provides a valuable reference for controlling the gas escape
quantity (Q) through adjusting the backfill settings. It also should be noted that the
parameters except for filling strip spacing (x) and filling strip width (y) in Equation (4)
are only applicable to the engineering geological conditions in this study, and should be
adjusted according to the mining depth, rock strata mechanics and backfilling materials’
strengths in different cases. It can be determined that the relationship between the gas
escape quantity (Q) and filling strip spacing (x) and width (y) described in Equation (4)
could represent the general gas escape quantity of underground mines in northwest China
with the overburden composed of loose layer, weakly cemented layer and bedrock layer
from top to bottom.

4. Conclusions

In this paper, geological and environmental challenges encountered during coal mining
and power generation in large coal power bases were considered as a whole, the bearing
strength of gray brick after carbonation curing for backfill mining and the stability of the
overlying strata after strip backfilling for the geological storage of carbon dioxide were
investigated, and the main conclusions were as follows:

(1) After carbonization curing, the strength of gray brick is significantly improved. The
uniaxial compressive strengths of the backfill gray brick after 16 days of autoclave curing,
carbon dioxide curing and autoclave–carbon dioxide curing are 1.58 MPa, 2.58 MPa, and
9.65 MPa, respectively, reflecting increases of 26%, 98% and 668%, respectively, compared
with natural curing. All bricks show X-shape conjugate shear failure. The main hydration
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product of the backfill gray brick under carbonization curing conditions is CaCO3, as
opposed to Ca(OH)2, which is found under non-carbonization curing conditions. In
addition, the internal gaps and pores of the backfill gray brick following carbonization
curing are filled by interlaced and needle shaped CaCO3, resulting in higher compactness
and integrity.

(2) The stability of overburden is obviously improved by gray brick strip filling.
UDEC numerical simulation results show that the maximum surface subsidence reached a
maximum of 0.675 m when the filling spacing was 35 m and the width of the filling strip
was 11 m, and that it reached a minimum of 0.403 m when the filling spacing was 10 m and
the width of the filling strip was 16 m. When the filling spacing was 35 m and the filling
strip width was 11 m, the overburden fracture height reached a maximum of 149 m. When
the filling spacing was 10 m and the filling strip width was 16 m, the overburden fracture
height reached a minimum of 24 m. The surface subsidence, fracture extension and gas
tightness of the overlying strata could be improved gradually by increasing the width and
reducing the spacing of the brick filling strips.

The results of this paper could provide effective references for green mining and
low-carbon utilization of the coal resources in large coal power bases in other countries
around the world.
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