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Abstract: The kinetic characterization of the grinding process has always faced a special challenge
due to the constant fluctuations of its parameters. The weight percentage of each size (WPES) should
be mentioned. There are particular considerations for WPESs, because their tendencies are not
monotonic. The objective of this work is to provide a methodology and model that will allow us to
better understand the kinetics of grinding through the analysis of the Response Surface (RS), using
geostatistical (data reconstruction) and computational intelligence (meta-model) techniques. Six
experimental cases were studied and trends were evaluated/adjusted with multiple parameters,
including an identity plot adjusted to 0.75–0.90, a standardized error histogram with a mean of
−0.01 to−0.05 and a standard deviation of 0.63–1.2, a standardized error based on an estimated value
of −0.09 to −0.02, a meta-model adjusted to between 92 and 99%, and finally, using the coefficient of
variation, which classifies the information (stable/unstable). In conclusion, it was feasible to obtain
the results of the WPES from RS, and it was possible to visualize the areas of greatest fluctuation, trend
changes, error adjustments, and data scarcity without the need for specific experimental techniques,
a coefficient analysis of the fracturing or the use of differential equation systems.

Keywords: kinetic grinding metamodel; geostatistics analysis; computational intelligence techniques

1. Introduction

In any mining activity, continuous development in the optimization of the process is
essential, and this is generally reflected by the acquisition of new equipment, continuous
technical updates, and the development of new sensors and algorithms for process control,
but in general terms, proposals for new methodologies have been relegated to a subordinate
role based on calculations and information analyses. This may be due to multiple factors,
but possibly one of the most relevant is the extensive heuristic knowledge that is involved
in operational processes.

Currently, the complex conditions arising from mining technical/economic restrictions,
environmental regulations, and constant conflicts with nearby communities often mean
that the previous knowledge is insufficient; thus, all possible avenues to improve processes
are of major interest.

Among the most relevant processes in the area of comminution is the grinding mills,
which have the objective of reducing the sizes of the particles to obtain a requested product,
but to achieve this, there are varying requirements. These requirements include the follow-
ing: carrying out the process with the least possible energy consumption (some authors
have indicated that between 56% and 70% of energy is used on the comminution of ore,
and the energy consumption associated with it is strongly related to the type of ore and the
operating factors of the mill), low supply consumption (i.e., the wear of steel balls and steel
shells), and low maintenance. These are some of the most important requirements.
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However, grinding has a crucial impact on the processes that follow downstream.
In the first instance, we found flotation of the minerals, which requires a precise par-
ticle size to grant the processes multiple interactions (the relationship between hydro-
dynamics/physicochemical) and to efficiently promote a selective concentration of the
mineral [1–4]. Later, during the thickening, the effect of particle size was on the tailings
(sedimentation rate and rheological parameters) and also in the case for the clarified water
that was recirculated (including an increase in turbidity due to the presence of colloids,
which may cause interference in the flotation process). Finally, the effect was on the tailings
dams, where one of the parameters, in both the chemical and physical stability of these
deposits [5,6], was the granulometry.

To quantify the particle sizes, multiple techniques are described in the literature (test
sieving, laser diffraction, optical microscopy, electron microscopy, elutriation, sedimenta-
tion for gravity, sedimentation, and by centrifugal and online particle size analysis [7]), but
regardless of which technique is used, the reporting of the data is, in general, carried out
by the use of the cumulative weight undersize percentage. This alternative, which is the
most widely used due to its ease of calculations to obtain a curve, will represent a defined
trend that can obtain a reference size.

With this in mind, its main attribute [7] is related to the sample manipulation protocol.
In the case of grinding, it should be considered, if required, to be a delimed, filtered, dried,
mineral cake shredding, homogenization process with sample extraction that involves the
experimental development of a granulometric distribution analysis. All of the sequences
(in addition to the time spent) could generate errors concerning a loss and contamination
of the sample when carried out carelessly, and an inadequate samples preparation time is
critical (drying and granulometric analysis) and can cause bias in the determination of the
granulometric analysis. Secondly, an adjustment to the selected model is important (by
linearization of the data). The coefficients of the model are obtained in this way [7], addi-
tional to the selected errors that are used to quantify the fit of the model or to quantitatively
compare it with other models (the quadratic error is generally used).

However, the reference sizes are very important to quantitatively evaluate the granu-
lometric distribution (GD), and this allows it to be connected to the processes that employ
the mass balances, but a reference size in the mass balance may be insufficient, meaning
that, in some cases, two or three reference sizes obtain very specific information concerning
the granulometric sizes (coarse, intermediate, and fine). However, when it is not possible
to obtain good quality information, it is necessary to introduce the concept of population
mass balance.

The population mass balance (PMB) can be defined as “population balance or mass
size balance”, which describes a family of modeling techniques, including tracking and par-
tially or completely manipulating the particle size distribution as they proceed through the
comminution process [7]. This is a mathematical technique that is widely used in multiple
disciplines [8,9], and it has become increasingly relevant, since it allows us to gain greater
knowledge of the comminution process [10–13]. The only drawback lies in its mathematical
resolution when trying to obtain its coefficients experimentally (generally using experimen-
tal protocols that contemplate mono sizes). They are not easy to obtain, and when looking
at the milling process, which is considered to be a chaotic system [7], it becomes even
more difficult. This is due to the shocking interactions between particles/balls and walls.
This is impossible to predict and could therefore be associated with a significant degree
of uncertainty (the system is considered to be nonlinear and nonmonotonic) in the final
results. Currently, the population mass balance could be resolved mathematically using
dynamic fluid computational techniques [9] that are continually re-evaluated to obtain the
most suitable models [7,12,14–16].

GD models exist, generically defined as meta-models [17–19], that adjust an accumu-
lated trend but do not allow for the representation of all the particle sizes. However, there
are complex mathematical models that provide this information. This has both experimen-
tal and mathematical considerations. However, there may be another alternative, which
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has historically not been considered to be feasible due to the complexity of the results of
the partial retentions (this is because they are nonlinear and nonmonotonic data) [20]. This
alternative is the interpolation technique.

Currently, interpolation techniques have taken the lead due to developments in new
meta-models [17–19], the improvement and development of optimization algorithms, and
a greater computational capacity, which has allowed the solutions of systems to become
increasingly complex.

These points are important at the point the error on a given protocol is analyzed. In
general, the occurrences are quantified during the process sampling and its preparation,
but there are gaps in how the information obtained is treated, as there is a strong possibility
that the process will be smoothed (relaxed) to adjust to the GD meta-models, which is due
to the outdated optimization protocols [21].

The present investigation proposes using data from the partial retentions of each size
with a geostatistical analysis, as a new way to characterize the grinding mill processes.

To achieve this, it is necessary to carry out a study concerning its spatial trends,
which are:

- Reconstruction of the missing information from the response surface.
- Possible meta-models that will represent the response surface with a certainty that it

is a global optimum.
- An in-depth analysis of this data and the parameters can be performed.

To carry out all these points, the following mathematical techniques will be used:

- Lineal geostatistical analysis (variograms—Kriging) [22,23] and construction of a
meta-model (to support the vector machine and artificial neural networks on a radial
basis) [13,24].

- Hybrid mathematical optimization (Particle Swarm Optimization) [25] and descriptive
statistics.

- Based on these considerations, this paper will attempt to provide knowledge designed
to answer the observations that are available in the literature, such as:

- The grinding process is a chaotic system and exhibits a significant degree of uncer-
tainty, which is difficult to model. However, is it possible to characterize the grinding
process using GD and to obtain a trend?

- The PMB requires the determination of several experimental parameters. However, is
it possible to propose a different methodology to obtain the weight percentage of each
size without using the techniques that were previously described in the literature?

2. Methodology

The methodology is composed of four phases of development: Phase I: experimental
evaluation, Phase II: Geostatistical evaluation, Phase III: construction of a meta-model
and final report, and Phase IV: complementary analysis. These four phases can be seen in
Figure 1.
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2.1. Phase I: Experimental Evaluation and Traditional Quantification

In the first phase, we considered the treated mineral and the process that was used
(taking into consideration the technical and economic capacity to develop it). This charac-
terization can be subdivided into three groups: the first group refers to the mineral. In this
group, we found physical assessments (density, hardness, work index, Sag Power Index,
porosity, and permeability); chemical assessments (grades of the main and secondary ele-
ments and grades of the contaminants); geological assessments (mineralogy, petrography,
and lithology); and rock mechanic assessments (fracture index, abrasion index, and rock
density, to name a few).

The second group refers to the operation of the process, including the protocols
and parameters used, such as the characteristics found in the preparation of the sample
(crushing, homogenization, and generation of the samples); the grinding (volume filling,
grinding time, ball collar, and mill speed); and product treatment (desliming, drying, and
granulometric analysis).

The third group refers to the design of the process, which includes: the type of
equipment used (crushers, screens, and mills, to name a few) and its relation to the configu-
ration/sequence of the process. All this information could indicate the possible behavior of
the grinding process.
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Once the background that characterized the process was obtained, the respective
grinding tests were carried out according to their specific protocols. In this way, the
necessary information was obtained from the respective masses of each of the meshes,
and with this, we calculated what was partially retained and the accumulated intern and
modeled the data, in addition to determining the F80, P80, work index, reduction ratio, and
any other required parameter.

After completing all these experimental phases and the protocolized calculations, the
second phase of the methodology began.

2.2. Phase II: Geostatistical Evaluation

The second phase of the methodology consisted of different mathematical techniques
being used to establish a better understanding of the tendency of the comminution. For
this, geostatistical techniques were used and analyzed.

2.2.1. The Geostatistical Analysis (GA)

The objective of this analysis was to determine the spatial trend of the experimental
data. For this, variographic techniques (experimental variogram) were used to obtain
the models (modeled variogram) that represented their behavior. Later, reconstruction of
the data was carried out using Kriging, and an analysis of the information obtained was
performed.

The GA [23,26,27] is a branch of statistics that focuses on the spatial positioning of
data. Originally developed to predict the probability distributions of ore grades for mining
operations, it is currently applied to multiple areas of engineering and science [28–30] and
offers tools to build earth models that are required, for example, by the mining industry,
and for the environmental analysis. The main tools include the variogram and different
techniques for Kriging.

The Semivariance analysis [26,28] of the Semivariance (γ) of Z between two data
points is an important concept in GA and is defined as:

γ(xi, x0) = γ(h) =
1
2

var[Z(xi)− Z(x0)] (1)

where h is the distance between points xi and x0, and γ(h) is the semivariogram (commonly
referred to as variograms). The variograms (Vr) provide information about the size of the
search window used in the spatial interpolation methods. In other words, it provides the
structural analysis for the spatial interpolation. Therefore, Vr can be estimated from the
data as follows:

γ̂(h) =
1

2n ∑n
i=1(Z(Xi)− Z(Xi + h))2, (2)

where n is the number of pairs of the sample points that are separated by distance h. The Vr
models may consist of simple models, including Nugget, Exponential, Spherical, Gaussian,
Linear, and Power models, or the nested sum of one or more simple models [26,31] or a
complex model [32].

Reconstruction of the information with ordinary Kriging: This section of the method-
ology seeks to use the concept of spatial prediction (this concept includes interpolation and
extrapolation analysis) or spatial interpolation, which is defined as the “area the studies
use to create surface data based on a set of sampled points” [33].

Spatial interpolation techniques are varied and have multiple combinations, but in
general, they can be divided into three categories: (1) non-geostatistical methods, (2) geo-
statistical methods, and (3) combined methods [28].

For this methodology, we focused on the methods included in the second cate-
gory. For this, we used what is known as the best linear estimation (x) of an unbiased
area (V). In this case, the Kriging [18,28] was defined as linear, because its estimations
were calculated through linear combinations that were weighed against existing data in
Equations (3) and (4). It was also unbiased, because it tried to neutralize the error average.
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The general aim of Kriging is to interpolate data in a continuous space. The main advantage
of Kriging is that it can provide better estimates on data minerals than its counterparts,
which are considered to be traditional methods (arithmetic mean, polygon, and inverse
distance weighting), therefore, its main fundamentals are: (1) The traditional methods use
Euclidian concepts, where the distance is the main consideration, but Kriging considers
the distance, as well as the geometry from where the samples are taken. (2) Using Kriging
minimizes the error variance (difference between the real value and the estimated value),
and in this way, it prevents systematic errors during calculation. The geostatistic methods
are very flexible in the sense that data can be extrapolated and useful when estimating
point values or blocks. It can also include complementary information that is related to the
main variables, which can be expressed as:

Zk(x) = ∑N
i=1 λiz(xi), (3)

Inside the area under scrutiny, V, Kriging attributes the weight (λi) to each of the
material grades (in this case, the grades are sizes), which are obtained from samples z(xi)
inside coordinate xi and, in this way, obtains an estimate of the material size Zk in zone
V. The weights λi are calculated with the sole purpose of minimizing the error variance,
where λ1 + λ2 + · · ·+ λN = 1; therefore, a high weight value is defined for close samplings,
while lower values are used for samplings that are further away in zone V. Therefore, to
obtain the Kriging equations, we have to minimize the expression of σ2

E.

σ2
E = 2 ∑N

i=1 λi
1
V
∫

V γ(xi, x)dx− 1
V2

∫
V

∫
V γ(x, y)dxdy−

∑N
i=1 ∑N

j=1 λiλjγ
(
xi, xj

)
,

(4)

The ith the restriction:
EbZK(x)− z(xi)c = 0, (5)

Finally, because it uses different linear equations and resolves the equations in the
system, Kriging can use different methods in its application, which include ordinary
Kriging and simple Kriging. The first uses the local average from the points being sampled
and a position variable. The second uses the average from all the existing points inside the
evaluated zone. However, while these two types of Kriging are widely used, other types of
Kriging can also be used when ordinary and simple Kriging cannot obtain reliable results.

2.2.2. Cross-Validation

This stage refers to the use of multiple techniques that are designed to obtain the
smallest error variance, both locally and globally. As an example, techniques, such as the
comparison of identity graphs, use histograms and descriptive statistics [34].

2.2.3. Geostatistical Analysis Report

Finally, the information reported in the variographic and Kriging analysis can be
complemented with cross-validation, where the correlation of the experimental data and
that generated by Kriging can be established. This provides a confidence interval in the
data. Another analysis that we can include is the spatial uncertainty analysis, which, among
other things, uses the standard deviation of the spatial data throughout the analysis and
detects the sectors with the greatest uncertainty.

2.3. Phase III: Construction of Meta-Model and Final Report

The main objective of the last phase is to improve the information by using mathemat-
ical assembly techniques. In this case, it is a meta-model assembly (this is better known as
surrogate assembly), and its objectives are [35–37]: (1) to identify regions where we expect
large uncertainties or errors (contrast), (2) to provide a more robust approach, (3) to use an
ensemble of surrogates via the weighted average (combination) or the selection of the best
surrogate model based on error statistics, which would provide a better approximation than
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individual surrogates, and (4) to gain a better understanding of the relationship between x
and y and the extent of its application [38–40].

Therefore, the assembly in this work is focused on the use of geostatistic data, the
generation of superficial models, and the application of heuristic optimization techniques.

Meta-Model Technique

The meta-modeling techniques [41,42] are techniques that are essentially related to
data gathering and can generate approximated models. The most commonly used meta-
models include: the polynomial model, splines model, general linear model, general
additive model, Kriging model, Gaussian process meta-modeling, neural network model,
and regression tree model.

The Least Squares Support Vector Machine (LS-SVM) is used for regression prob-
lems [43]. According to the literature, the support vector machine used for the regression
problems is defined as: given a training dataset of N points {xk, yk}N

k=1, where xk ∈ Rn are
the input data and yk ∈ R are the corresponding prediction values; we can construct a
nonlinear function ( f ) in the form:

yk = f (xk) = 〈w, ϕ(xk)〉+ b, (6)

where ϕ(·) is a nonlinear function that maps the input space into a higher-dimensional
space, w ∈ Rn and b ∈ R . It is difficult to ascertain how the equalities and errors ek in
Equation (7) are introduced:

〈w, ϕ(xk)〉+ b = yk − ek, k = 1, . . . , N, (7)

The unknowns, w and b, can be determined via the following problem:

min
w,b,e

J(w, b, e) =
1
2

wTw +
1
2

γ
N

∑
k=1

ek
2, (8)

Subject to the equality constraints:(
wT ·ϕ(xk) + b

)
= yk − ek, k = 1, 2, . . . , N, (9)

where γ is a regularization factor. The Lagrangian function of the optimization problem
earlier is:

L(w, b, e; α) = J(w, b, e)−∑N
k=1 αk·

((
wT ·ϕ(xk) + b

)
− yk + ek

)
, (10)

where αk are the Lagrange multipliers. Using the Karush–Kuhn–Tucker conditions, it is
possible to determine αk and b via solving the matrix system. However, this depends
on the γ and kernel used. We utilized the kernel K(x, y) = φ· exp (−α ·‖x− y‖2) +
(1− φ)·tanh(β〈x, y〉 + r), where β > 0, α > 0, r < 0, 0 < φ < 1 and 〈ϕ(x) , ϕ(y)〉 =
K(x, y) [44,45]. The factors γ, β, a, r, and φ were determined using Swarm Intelligence.

Swarm Intelligence (SI) [46]: The SI is included in the field of artificial intelligence. This
consists of a population of simple agents that interact locally with one another and with
their environment [47]. In this approach, inspiration often comes from nature, especially
biological systems [48]. Well-known examples of SI include ant colonies, animal herding,
bacterial growth, fish schooling, and bird flocking [47]. This latter is the basis of the particle
swarm optimization (PSO).

PSO was proposed by Kennedy and Eberhart in 1995 [46] and considers an objective
function ( f ) that must be minimized. The goal is to find a solution pbest (particle) for which
f (pbest) ≤ f (x) for all x (particles) in the search space, and this could mean pbest is the
global minimum. Here, each particle´s movement is influenced by its best local position
and the best positions in the search space. The particle´s movement is updated as better
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positions are found by other particles. The position of the particles in PSO is updated
according to its velocity:

vi
j+1 = w·vi

j + c1r1·
(

pbest
j − xi

j

)
+ c2r2·

(
pi

j − xi
j

)
, (11)

xi
j+1 = xi

j + vi
j+1, (12)

where vi
j denotes the velocity of the ith particle in the jth iteration of the search procedure,

xi
j denotes the position of the ith particle in the jth iteration of the search procedure, pi

j

is the best position of the ith particle in the jth iteration of the search procedure, pbest
j is

the best position of the swarm in the jth iteration of the search procedure, w is the inertia
weight used to balance the global exploration and local exploration, coefficients c1 and c2
are positive constant parameters called acceleration coefficients, and r1 and r2 are uniformly
distributed random variables within a certain range [0,1].

2.4. Phase IV: Complementary Analysis

Phase IV has the objective of integrating/comparing the knowledge acquired from
the different types of mathematical analysis (geostatistical analysis, statistical analysis,
meta-model construction, and uncertainty analysis). In this way, it is possible to integrate
the different observations/conclusions/recommendations to obtain an integral knowledge
of the process under study.

For this phase, we will evaluate the results utilizing the coefficient of variation. (Cv),
the common parameter to evaluate the uniformity on mixing, which is defined as:

Cv =
σ

X
, (13)

where σ is the standard deviation and X is the average. The smaller the Cv, the more
uniform the mixture is. However, it presents different categorizations according to the
different applications that have been used [49–54].

Now, Koch & Link 1971 [54] mentioned three important characteristics where the use
of Cv is relevant:

(1) “The number of ore samples required to obtain a specified precision of estimate for an
unsampled ore deposit”. However, in our case, it would be the number of samples to
obtain the best spatial tendency of the comminutions.

(2) “The coefficient of variation is a guide to the form of the statistical distribution that
should be applied for data analysis” Within the proposed methodology, can be applied
this comment as an additional calculation to confirm an observed trend.

(3) “The coefficient of variation is a useful guide for quality control of sampling”. This
last comment may be particularly relevant when there is no prior information to
determine the number and time lapses required for sampling.

2.5. Final Report

This provides detailed information on the results from the grinding milling process,
and this comes from the multiple mathematical analyzes carried out, both in the parametric
and graphical forms, and may be used to make decisions or to connect them with other
mathematical techniques that are outside this methodology.

3. Cases of Studies

The case studies analyzed below are of two minerals with different characteristics.
They come from two mining companies that are located in the second region of Chile.
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3.1. Fase I: Experimental Evaluation and Traditional Quantification

Minerals: The input information for each ore is described below: first, ore-A: 182.5 kg
of the material, F80, 1388 µm, a specific gravity of 2.84, and a W.I. of 14.9 kWh/short ton.
Second, ore-B: 276.5 kg of the material, F80, 875 µm, a specific gravity of 2.78, and a W.I. of
11.6 kWh/short ton. Third, ore-A is a strata-bound copper deposit and is hardly altered.
Meanwhile, ore-B is a porphyry copper deposit that is highly altered.

A geological analysis of the samples of ore-A was developed by a Motic SMZ-171
electronic magnifying glass; an eyepiece 10X(Ø23)/magnification with a range of 0.75X–
5X, which detects the presence of quartz, plagioclase, orthoclase, biotite, and muscovite,
representing 98% of the samples; and the remaining 2% consists of chalcosine, bornite,
molybdenite, chalcopyrite, and pyrite.

A geological analysis of the samples of ore-B was developed by a Qemscan and detects
the mineralogical elements, including chalcopyrite, bornite, chalcanthite/digenite, pyrite,
the chlorite group, biotite/phlogopite, and the kaolinite group.

Operational and design parameters: The general parameters of the laboratory grinding
protocol (LGP) of three mining companies located in Chile are: LGP-1: 138 iron balls that
have 1” diameters, with a total load weight of 10.22 kg, a roller at 70 rpm, and a solid
percent of 67%. LGP-2: 145 iron balls are of different sizes, including 11/2”, 1,” and 7/8”,
with a total load of 9.34 kg, a roller at 70 rpm, and a solid percentage of 50%. LGP-3:
238 iron balls are of different sizes, including 1”, 7/8”, 3/4”, and 1/2”, with a total ball load
weight of 6.66 kg, a roller at 70 rpm, and a solid percentage of 67%.

Homogenizing equipment: The mechanical homogenization equipment used includes
a Rotary table splitter DR-10 of Labtech-HEBRO, which allowed for division in six contain-
ers, with a maximum capacity of 6 kg. The second piece of homogenization equipment
used was a pro-splitter, which allowed for the division of 30 containers with a capacity of
300 g. Both types of equipment have discharge hopper vibrations and receptacle movement
with variable speeds.

Grinding equipment: The equipment used was a standardized ball mill, a laboratory
scale with a capacity of 5.2 L, and a roller-HEBRO (variable RPM).

Desliming equipment, a drying oven, and granulometric analysis: Desliming equip-
ment was used to remove fine particles by wet sieving with a 200 Ty mesh, the Labtech-
Hebro brand machine, and its products were dried at 95 ◦C for 12 h. The granulometric
analysis was carried out in a Ro-tap W.S. Tyler, model RX-29-10, the meshes used were the
following: #10, #20, #30, #40, #50, #60, #70, #100, #140, #200, #270, #325, and #-325, which
includes all the Tyler series.

The homogenization and production of specific samples: The homogenization process
was the same for ore-A and ore-B, and they were based on the laboratory protocol for the
mining industry to homogenize and create the samples that were evaluated in the mills and
flotation. Therefore, samples of 940 g were generated from ore-A, and samples of 1404 g
were generated from ore-B.

Multiple cycles were developed to obtain both materials in a completely homoge-
nized form, and the effect of the variability of comminution was only due to the grinding
process itself.

Grinding test and GA: The grinding process began by checking the size and weight
of the steel balls, and later, considering the load of the respective balls, the mineral, and
finally, the water was charged to the driving roller. The HEBRO was activated and checked
that 70 rpm was reached and that the timer control was adjusted.

In the case of the three-dimensional analysis, grinding tests were performed based on
a three-minute sampling of the different types of LGP, and a response surface concerning
their partial retentions was obtained.

In the case of the two-dimensional analysis, ten repetitions of the grinding test were
performed as a function of the specific times to be evaluated; thus, the duration of the
samples were 3, 9, and 12 min for the combination of ore-A/LGP-1.
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When the equipment completed the different grinding operations, the content of the
material was discharged into a receptacle that had holes in it to separate the steel balls from
the pulp; the obtained pulp was delimed (200 # Ty), and the final product was dried for up
to 12 h at 95◦.

All the experimental tests of GA were carried out on the previously declared mesh
sizes, and all the materials obtained from the grinding process were analyzed.

A preliminary report is included in this phase, in addition to the existing data, which
incorporates the general calculations of the GA.

Preliminary report: As a first preliminary report, it was found that, when using
the same experimental protocol and considering the input data of ore-A and ore-B, the
evolution in the comminution process was different, and it provided an evolution of a
much finer material for ore-B than for ore-A (experimental data in Tables A1 and A2). This
is shown in Figure 2.
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(b) ore-B.

For the granulometric adjustment analysis, the two most common types of models
were evaluated: the Rosin-Rammler Model (RRM) and the Gate-Gaudin-Schuhmann Model
(GGSM). Both were adjusted by the least-squares minimization and constitute the RRM
model, which is the one that presents the smallest error. Through this, it was possible to
determine the respective P80 and the optimal grinding times for the flotation tests. This
was the case for both ore-A and ore-B, as shown in Table A3.

3.2. Phase II: Mathematical Evaluation

Different mathematical programs, but the most relevant was the MATLAB, Isati [47],
Gslib [55], Sgems [48], and Excel programs, which were used on a computer with Inter (R)
Core (TM) i5-7200K 2.7 GHz and 8 GB of RAM.

The input data is positioned in a mesh generated by the residence time, which is
located on the x-axis, and the opening sizes of the sieves are located on the y-axis (two-
dimensional position in Annex 1). The results from the retained particles are shown on
the z-axis. It is important to remark that the y-axis was taken in millimeters, because
micrometers are not accepted as distance units in the Isati, Gslib and Sgems programs.

General analysis: This part concerns some considerations in the calculation develop-
ment of the 1 and 2-dimensional systems. The first element that can be mentioned is the
position of the data in space, which shows an irregular spacing (mesh) within the plane
(Figure 3a) and has a greater proximity to the information in the area of small sizes (x-axis).
This is due to the opening system of the ASTM mesh (geometric progression) [20]. Another
relevant point is the dimensioning of the parameters on the x-axis, as well as the y-axis. For
this particular case, the x-axis (time) shows units and mathematical values that are larger
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than those shown on the y-axis (mm). In this way, scale problems between both structures
are generated.

To solve the second problem, the dimensions of the shafts must first be adjusted with
the coefficient (constant of 18 in the y-axis) that was incorporated (Figure 3b). In this way,
it was possible to make the dimensions of the axes compatible (arithmetic progression),
in addition to the information generated becoming acceptable to the Gslib geostatistical
program [55]. Another method could be used that normalizes the axes [56]. To solve the
first problem, this methodology was carried out.

Other relevant aspects include the input data and the deepening of statistical informa-
tion, as can be seen in Figure 4, where:

- The general parameters, such as the mean, variance, and the upper quartile, do not
show a significant difference between the two cases. This could obviously generate
appreciation errors due to insufficient analysis and could lead to hasty conclusions
being made.

- It is only when partially accumulated histograms are observed that a more noticeable
difference could be seen. This is the case when there is a greater accumulation of
information on small sample sizes (mesh 140# Ty to −325# Ty).

- It is important to remark that these two results cannot be extrapolated to other cases,
as shown in Figures A1 and A2. In each particular case, the basic statistical data and
their respective histograms differ considerably; therefore, this is evidence of the effect
of the implications of the ball collar chosen [57–59].
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Currently, it is well-known that the information is concentrated in small sizes, but the
question to be asked is: How will the LGP affect the grinding kinetics? In this case, it is not
possible to determine this using the previous statistical analysis. Therefore, it is necessary
to quantify it from a spatial (three-dimensional) point of view.

Three-Dimensional Analysis

Semivariance analysis: This analysis was carried out in two ways: As a first comment,
it was the result of an omnidirectional analysis [49] and was later carried using the multi-
directional analysis (using different directions for your analysis), which had a poor result
in the first analysis of the retrofit, and for the multidirectional analysis, better options for
selecting a variogram model were detected. Figure 5 shows this difference.

Further, the experimental variograms obtained allowed us to observe a clear anisotropy,
and these presented significant differences. For example, in Figure 5a, a drift component is
present, while, in Figure 5b, it has a greater influence on the geometric anisotropy. These
two trends were seen in all the data analyzed and were differentiated by the type of ore
evaluated.

According to the variographic analysis, the models that best represent their spatial
tendencies are called the “composite models” [28,32], and the parameters of the variogram
model for both directions (Figure 5) were: an angular tolerance of 45◦, a lag of 2.5, a count
of 10, and a tolerance lag of 50%. Additionally, the model for ore-A (Figure 5a) was a
nonstationary model that was composed of three structures: the nugget effect has a sill: 3, a
lineal scale with (5, 5, 12) and gaussian scale (15, 25, sill 20). The model of ore-B (Figure 5b)
showed anisotropy, which can be interpreted as geometric—that is, it had different ranges
but had a similar plateau and variability within the analyzed area. The model used had two
structures: a nugget effect has a sill: 15, a spherical structure has a sill: 35, and in addition
to a direction scale (5, 20) (the data in parentheses, correspond to parameters specific to
each of the variographic models [23,32], being the traditional way of describing them).
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Figure 5. Experimental (thin line) and modeled (thick line) anisotropic variograms: (a) LGP-1 for
ore-A with directions: north: 0◦ (red) and directions: north: 90◦ (green); (b) LGP-1 for ore-B with
directions: north: 0◦ (red) and directions: north: 90◦ (green).

Reconstruction of information: Through the variographic analysis, it was possible to
apply the ordinary Kriging in order to reconstruct the missing data in the response surface.
For this, an 80% confidence was considered; its spatial tendencies are presented in Figure 6a
for LGP-1 and Figure 6b for LGP-2. In this case, the differences between the spatial trends
were clearly presented, and it showed a much smoother and clearer spatial trend on the
right direction of the information in the case of LGP-1, unlike the data obtained for LGP-2.

Geostatistical analysis: In this part of the analysis, we focused on two main subjects:
first, the quality of the reconstruction of the missing data within the studied area, and the
second was to detect any new information that could be incorporated in the report.

For the first analysis, it can be mentioned that the data generated by the variogram/Kriging
analysis was recalculated several times. This iterative process was due to the fact that
there was no single variogram that fitted the existing information. A model was chosen
to fulfill four criteria in the cross-validation: scatter plot (identity line) between real and
modeled values, standardized error histogram, standardized error based on the estimated
value histogram, and statistical parameters of the estimated data. All these criteria must be
compatible in order to provide the best estimate of the data so as not to produce a bias or
manipulation of the spatial trend of the data.
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In ore-A (Figure 7a), the dispersion of the data is mainly focused on what was retained
from 5% to 15%. The data show scattered points, but all these are within the trend. Com-
pared to ore-B (Figure 8a), where up to 10% was retained, ore-A had a good fit, but some
data that were presented later were outside this trend.

In regard to the standardized error, it is shown that ore-A (Figure 7b) has a mesokurtic
trend, and there are some data outside the confidence level at both ends of the histogram;
however, the highest concentration of data is mainly located in the left sector of the his-
togram. For ore-B (Figure 8b), the data has a leptokurtic trend, and data points outside the
confidence level are presented in the left section of the histogram.

For the standardized error based on the estimated data in ore-A (Figure 7c), there are
data outside the confidence level, both in the upper and lower limits. However, this is
shown in the entire study range for the lower limit, while, in the upper limit, they are in
the zone with the highest percentage of what was partially retained. For ore-B (Figure 8c),
the data outside the confidence level were at the lower limit, and a high percentage was
partially retained.

Finally, the histogram and its statistical data can be compared qualitatively/quantitatively
to the histograms of the original data (the last analysis was performed to avoid errors
such as biases in the data generated). For ore-A (Figure 7d) and ore-B (Figure 8d), a
good similarity is observed in their respective histograms, as well as in their statistical
parameters. Therefore, an observer could think that he/she could be in the presence of one
of the best variograms (it can be a local optimum), but there is no certainty that it is the
global optimum.
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Figure 7. Cross-evaluation of the geostatistical analysis of LGP-1 in ore-A: (a) the scatter plot (identity
line) on the x-axis is the modeled data, and the y-axis shows the experimental data; (b) standardized
error histogram; (c) standardized error based on the estimated value; and (d) histogram and the
statistical parameters of the estimated data.
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In these cases, although a good correlation was determined (in addition to Figures A5 and A7),
this does not mean that they have similar performances in all cases, as can be observed
in Figures A6 and A8, where their adjustments were very poor and were the product of
several possible causes, including experimental data that were detected well outside the
trend. In this case, it is recommended that this test be repeated. Another element is the
impossibility of finding a suitable variogram. Finally, the experimental protocol could have
generated a greater uncertainty in some specific grinding tests.

As a second analysis, the results of the spatial standard deviation are presented
(Figure 9), where their respective fluctuations are observed, showing that, for ore-A, its
fluctuation is slightly less than the fluctuation of ore-B; this could be a possible criterium to
incorporate other grinding times, which were not contemplated in the original program. In
this way, the quality of the geostatistical adjustment and analysis could be improved.

Another comment that could be made on Figure 9 is that it clearly shows that the
density of the information directly affects the quality of the standard deviation of the
Kriging. The areas with higher densities of information have lower deviations, as compared
to the less dense areas, but this is strongly related to the inhomogeneous scale [7,20] used
for the quantification of the particle sizes.
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3.3. Fase III: Construction of a Meta-Model and Final Report

For this phase, the most relevant program was R-software on two computers; the
first computer was used to perform the algorithm and for supervised training of SVM
(exploratory analysis) using a computer with Intel Core i7 2.21 GHz and 16 GB of RAM.
The second computer was used for calculating the cases reported in the publication (deter-
mination of meta-model) using a computer with a CPU core I9-9900K 5GHz, RAM Corsair
DDR4 16 GB 3000 MHz Vengeance, and, finally, the first computer was used to generate
the final graphs (cases studio).

The objective of this phase is to pass from discontinuous data to a meta-model that
represents the entire response surface. For this, datasets obtained from the geostatistical
analysis (256 data for both minerals) were used to train the LS-SVM via PSO. Subsequently,
the experimental datasets (91 data for both mineral) were used to test LS-SVM. The first
thing that must be reported is the mesh that was used for the adjustment of the model.
As shown in Figure 10, the blue points are the coordinates that were used to adjust the
meta-model, and the red points are the experimental data; the geostatistical data were
generated with a displacement in normalized time with a normalized size of 0.05. Therefore,
this is not reported, because there is a saturation in the graph.

The LS-SVM parameters obtained from the adjustment were C = 142.180, α = 0.001,
β = 14.43, r = −452, and φ = 0.298 for ore-A. For ore-B, the LS-SVM parameters were
C = 1000, α = 0.001, β = 0, r = 0, and φ = 1. Additionally, for ore-A, the following results
were obtained: a three-dimensional diagram (Figure 11a), a contour diagram (Figure 11b),
an identity diagram between the meta-model and the geostatistical data (Figure 11c), and
an identity diagram of the geostatistical data and the experimental data (Figure 11d).

The first thing to highlight is the fit that was obtained between the meta-model and the
geostatistical data/experimental data, which had an adjustment of over 92%; therefore, the
model could provide a good approximation and the trend obtained could be representative
of the milling process. Additionally, through the use of the meta-model, it is possible to
obtain a better graphical evaluation of the trend, for example, in Figures 7a and 12b.

Per the analysis shown in Figure 11a, it is possible to observe much more of the non-
linear and monotonic trend in all the grinding time evaluations, and it is also possible to
define three zones: the first zone is from the initial time to 5 min, where it has a more stable
tendency. The second zone that can be noticed is a transition zone from 5 min to 10 min
(high fluctuation), and finally, the last zone also has a more stable trend, but a high amount
of material above 850 µm was observed due to the presence of the peak within the trend.
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The result obtained for ore-B (Figure 12) shows a better fit than ore-A, which was
over 94.24% (Figure 12c) and had some points outside the trend in the middle region of
what was partially retained. However, it was possible to observe a great fluctuation in
this mineral, as compared to ore-A. Finally, the trends in Figures 12, A6 and A8 confirm
the great complexity of the results that could be obtained from the altered (soft) minerals
during the grinding process, as compared to the less-altered minerals that are independent
of the LGP used.

Minerals 2022, 12, x FOR PEER REVIEW 17 of 31 
 

 

 

Figure 10. Spatial positioning of the experimental data (red) and meta-model data (blue). 

  

(a) (b) 

 
 

(c) (d) 

Figure 10. Spatial positioning of the experimental data (red) and meta-model data (blue).

Minerals 2022, 12, x FOR PEER REVIEW 17 of 31 
 

 

 
Figure 10. Spatial positioning of the experimental data (red) and meta-model data (blue). 

  

(a) (b) 

  
(c) (d) 

Figure 11. Results obtained for LGP-1 for ore-A. (a) Spatial trend with normalized data. (b) Contours
graphic. (c) Cross-analysis with the meta-model data and geostatistical data. (d) Cross-analysis with
the experimental data and meta-model data.



Minerals 2022, 12, 823 18 of 31

Minerals 2022, 12, x FOR PEER REVIEW 18 of 31 
 

 

Figure 11. Results obtained for LGP-1 for ore-A. (a) Spatial trend with normalized data. (b) Contours 
graphic. (c) Cross-analysis with the meta-model data and geostatistical data. (d) Cross-analysis with 
the experimental data and meta-model data. 

  
(a) (b) 

  
(c) (d) 

Figure 12. Results obtained for LGP-1 for ore-B. (a) Spatial trend with normalized data. (b) Contours 
graphic. (c) Cross-analysis with the meta-model data and geostatistical data. (d) Cross-analysis with 
experimental data and meta-model data. 

3.4. Phase IV: Complementary Analysis 
In this phase, the 𝐶𝑣 was evaluated in three types of analysis, the first analysis is the 

evolution of 𝐶𝑣 concerning the data obtained from the geostatistical estimation (catego-
rizing the limits based on mining economics [50]), the second is related to the data ob-
tained from an uncertainty analysis of LGP-1 ore –A [60], where it was evaluated for each 
size and at specific times, and the last evaluation is the composite of the data associated 
with the grinding times. 

For the first analysis, the exploratory analysis of the data is performed, showing the 
differences in the dispersion of the data between the LGP-1 ore-A and ore-B (Figures 13a 
and 14a); it is possible to clearly observe a zone that presents a reduction of the dispersion; 
in the case of ore-A, this is approximately at 9 min, while, in ore-B, it is presented at 4 min. 
This effect is present in all the cases studied (Figures A9a,c and A10a,c) having similar 
dispersion reduction times but with different tendencies, this being associated to the dif-
ferent grinding surfaces obtained (the dotted lines being a range established at 95% con-
fidence). 

Figure 12. Results obtained for LGP-1 for ore-B. (a) Spatial trend with normalized data. (b) Contours
graphic. (c) Cross-analysis with the meta-model data and geostatistical data. (d) Cross-analysis with
experimental data and meta-model data.

3.4. Phase IV: Complementary Analysis

In this phase, the Cv was evaluated in three types of analysis, the first analysis is the
evolution of Cv concerning the data obtained from the geostatistical estimation (categoriz-
ing the limits based on mining economics [50]), the second is related to the data obtained
from an uncertainty analysis of LGP-1 ore-A [60], where it was evaluated for each size and
at specific times, and the last evaluation is the composite of the data associated with the
grinding times.

For the first analysis, the exploratory analysis of the data is performed, showing the differ-
ences in the dispersion of the data between the LGP-1 ore-A and ore-B (Figures 13a and 14a);
it is possible to clearly observe a zone that presents a reduction of the dispersion; in the case
of ore-A, this is approximately at 9 min, while, in ore-B, it is presented at 4 min. This effect
is present in all the cases studied (Figures A9a,c and A10a,c) having similar dispersion
reduction times but with different tendencies, this being associated to the different grinding
surfaces obtained (the dotted lines being a range established at 95% confidence).

Now, the dispersion analysis is much clearer with the Cv, where, for ore-A, Figure 13b
presents several classification zones of the data fluctuations, being presented in all the cases
studied (Figures A9b and A10b). While, in the case of ore-B (Figure 14b), its data can be
classified as chaotic, being the same when analyzing the case of LGP-2 (Figure A9d) but
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in the case of LGP-3 (Figure A10d). This information can be considered relevant when
evaluating certain desired milling conditions (P80), since we could be working in a zone
of high variability, and the general criteria of operation control may not be applicable (in
addition to considering the propagation of the uncertainty of each control parameter).

For the second analysis, the Cv was analyzed for each of the sizes and as a function
of time (Figure 15, above), and it can again be observed that there are fewer points with a
lower Cv value for the 8 min grinding time compared to the values obtained in 4 and 12 min
of grinding; therefore, this parameter can also be manifested as an additive contribution of
uncertainties [60,61]. In addition, particular sizes are observed that present a higher value
of Cv, which may also be a consideration when defining a specific size for process control.

Finally, when analyzing the composited Cv data (Figure 15, bottom), the same trend
as in Figure 13b is obtained, but considering the general statistical criterion [49], showing
again that there is this zone of lower fluctuation of the information; therefore, independent
of the technique with which the input data are obtained for analysis (geostatistical or
uncertainty experimental analysis), it is possible to detect potential zones where the process
achieves greater stability to the detriment of the other zones.
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3.5. Final Report

As presented in the methodology descriptor, the final report has all the information
obtained from all the analyses obtained, being, in this case, the contents of all the different
analyses, observations, and conclusions that were reported.

4. Conclusions

In general terms, it was possible to generate a methodological proposal that could
provide an alternative to the current analysis of GD in order to obtain WPES. It could,
through a meta-model, also be an alternative for PMB that is associated with a geostatistical
analysis and computational intelligence techniques.

In terms of spatial analysis, the complexity of the minerals that produce more alter-
nance than the others were shown to generally be softer/broken, and at the same time, these
minerals present highly fluctuating trends in the area under investigation (ore-B) (this may
be due to the modification of the physical mechanism of comminution or could predomi-
nately be the result of impact/compression/abrasion or a mixture of them). In some cases,
they generate areas with more than one change in the trend, and this might explain the
high rate of variability that has been reported for these types of materials [14,20]. Despite
the previous consideration, the kinetic evolution of the milling process has a defined spatial
trend (shown in the variographic analysis), and this depends on the characteristics of the
minerals used, in addition to the work protocols used and the variability of the process itself.
This could be improved by increasing the number of experimental tests that are conducted
in relation to the maximum uncertainty of the quantifiable points (uncertainty analysis for
each specific grinding time) or by using the spatial standard deviation (Figure 10) obtained
from the geostatistical analysis.
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An important consideration that was noted in this paper is that the geostatistical
analysis necessarily requires an interactive/cyclical evaluation due to the multiple criteria
that can be considered in the cross-evaluation, and this is strongly dependent on the
experience of the engineer or researcher who analyzes the data. This observation is directly
related to the multiple considerations that are relevant when using geostatistical programs
(Sgems, Isati, etc.), since they are not designed for the analysis of this type of information.
However, its use allows for significant improvements to be made to the analysis of the
data. The analysis technique managed to adjust to different ranges, including the identity
plot, which adjusted to the range of 0.75–0.90, the standardized error histogram, with
mean of −0.01 to −0.05 and a standard deviation of 0.63–1.2, a standardized error based
on the estimated value of −0.09–0.02, and the statistical parameters of the estimated v/s
experimental data. The adjustments are variable, since they depend on the confidence
limits that are self-imposed in order to develop the calculations. Finally, in the analysis of
the estimated v/s experimental histograms, it is visually more difficult to compare, but its
direct comparison uses scatter plots (identity adjustment).

The construction of a meta-model that represents the grinding kinetics could be
developed, but it would require, in addition to experimental data, being paused at different
stages of grinding, as well as additional generated data through geostatistics [56].

The use of normalized axes or adjustment factors is required in order to develop the
linear geostatistical analysis; this is because the concept of the “nominal opening size”
of the mesh follows the geometric progression. However, in the case of linear geosta-
tistical techniques, the maximum use of the different geostatistic/statistic techniques is
obtained through an arithmetic progression; in this way, the data are distributed in an
“approximately” uniform space, thereby reducing the concentration of the information in
specific sectors.

Another point to consider is the number of data necessary; using excess data could
generate an overload in the work area, thus producing overfitting of the meta-model and
consequently resulting in a very slow calculation that is not necessarily better. Additionally,
this could result in greater errors in the adjustment for the same numbers of data.

An important consideration concerning the quality of the adjustment is that the grind-
ing process continues to have an uncertainty associated with its z-axis. If a statistical study
of its variability of this z-axis is not generated as a function of specific times (uncertainty
analysis), its error may be within the intrinsic variability of the process.

Furthermore, obtaining the meta-model turns out to be a combination of mathematical
techniques that are compatible, and they can have a good fit between the experimental
and modeled data, with an adjustment of over 92% (considering that the surface under
study had a complex tendency) and an adjustment of 99.999% in the geostatistical analysis;
therefore, the analyses of each of the parameters associated with cross-evaluation (scatter
plot, standardized error histogram, standardized error based on the estimated value, and
histogram and its statistical parameters of the estimated data) can be considered to be
compatible. Therefore, in this way, it was possible to determine, at a particular grinding
time, a series of sizes or one size of interest that was urgently needed. In addition, it
is important to remark that, when a meta-model is available, it can be used in multiple
analyses and calculations. The main disadvantage is the computation time. For example,
the geostatic data process can be generated in a few seconds, while the determination of
the meta-model can easily take several hours or days.

Finally, the use of parameters such as Cv to evaluate from another point of view the
variability of the information allows us to have a global idea of the potential fluctuations, its
different zones, the range of its variability in the milling process, a recommendation of the
number of samples being analyzed, and its tendencies confirmed between the correlation
of the geostatistical data and a previously published research of experimental uncertainty
analysis, but if it should be evaluated, which are the adequate ranges of how the information
is classified, since, in this publication, they were evaluated through techniques that perhaps
were not completely compatible with the grinding process.
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Appendix A

Table A1. Experimental data for the weight of each sizer (%) for LGP-1 ore-A.

Grinding Time (min)

Size (µm) 0 3 6 9 12 15 18

850 53.14 28.99 16.66 8.89 3.86 1.33 0.26

600 13.08 13.24 10.10 6.15 2.91 0.92 0.23

425 8.16 11.00 10.69 8.51 5.09 1.92 0.46

300 5.42 8.19 9.57 10.10 8.58 4.67 1.60

250 2.44 3.62 4.51 5.36 5.67 4.50 2.20

212 1.68 2.75 3.61 4.45 5.11 4.98 3.31

150 2.93 5.45 8.28 8.78 10.43 12.14 11.79

106 2.26 4.84 6.99 7.76 8.59 11.96 14.61

90 2.16 3.95 7.36 12.06 15.00 10.14 13.98

74 2.06 3.07 6.51 9.65 12.26 11.78 13.26

53 1.80 4.06 5.21 6.59 9.39 7.86 9.33

43 0.83 3.61 5.35 6.48 7.33 13.90 13.69

33 3.76 7.13 5.08 5.16 5.79 13.89 15.25

Table A2. Experimental data for the weight of each sizer (%) for LGP-1 ore-B.

Grinding Time (min)

Size (µm) 0 3 6 9 12 15

850 20.80 8.12 2.18 0.45 0.07 0.01

600 9.48 6.75 2.68 0.57 0.10 0.02

425 8.09 8.21 4.84 1.35 0.27 0.05

300 6.99 8.27 7.69 3.24 0.96 0.24

250 3.62 4.00 4.71 3.18 1.28 0.41

212 3.14 3.25 4.20 3.64 1.95 0.72
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Table A2. Cont.

Grinding Time (min)

Size (µm) 0 3 6 9 12 15

150 4.86 6.44 8.44 9.60 7.14 4.59

106 6.21 6.32 7.57 9.99 12.73 9.70

90 5.18 8.02 6.01 7.37 12.25 16.81

74 4.59 6.93 6.71 7.73 10.25 11.26

53 6.06 6.39 8.44 11.18 11.05 13.14

43 7.90 11.14 12.09 14.64 15.65 17.45

33 13.06 16.17 24.45 27.07 26.29 25.61
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Table A3. Results of P80 with RRM.

Time (min)
P80 (µm)

ore-A ore-B

3 486

4 864

8 463

9 162

12 234

15 102
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Figure A5. Cross-evaluation of the geostatistical analysis of LGP-2 with ore-A. (a) Scatter plot (identity
line) where the x-axis represents the modeled data, and the y-axis represents the experimental data.
(b) Standardized error histogram. (c) Standardized error based on the estimated value. (d) Histogram
and its statistical parameters of the estimated data.
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Figure A6. Cross-evaluation of the geostatistical analysis of LGP-2 with ore-B. (a) Scatter plot (identity
line) where the x-axis represents the modeled data, and the y-axis represents the experimental data.
(b) Standardized error histogram. (c) Standardized error based on the estimated value. (d) Histogram
and its statistical parameters of the estimated data.
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