
Citation: Lucay, F.A. Accelerating

Global Sensitivity Analysis via

Supervised Machine Learning Tools:

Case Studies for Mineral Processing

Models. Minerals 2022, 12, 750.

https://doi.org/10.3390/

min12060750

Academic Editor: Lev Filippov

Received: 10 May 2022

Accepted: 7 June 2022

Published: 14 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

minerals

Article

Accelerating Global Sensitivity Analysis via Supervised
Machine Learning Tools: Case Studies for Mineral
Processing Models
Freddy A. Lucay

Escuela de Ingeniería Química, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile;
freddy.lucay@pucv.cl

Abstract: Global sensitivity analysis (GSA) is a fundamental tool for identifying input variables that
determine the behavior of the mathematical models under uncertainty. Among the methods proposed
to perform GSA, those based on the Sobol method are highlighted because of their versatility and
robustness; however, applications using complex models are impractical owing to their significant
processing time. This research proposes a methodology to accelerate GSA via surrogate models
based on the modern design of experiments and supervised machine learning (SML) tools. Three
case studies based on an SAG mill and cell bank are presented to illustrate the applicability of the
proposed procedure. The first two consider batch training for SML tools included in the Python and
R programming languages, and the third considers online sequential (OS) training for an extreme
learning machine (ELM). The results reveal significant computational gains from the methodology
proposed. In addition, GSA enables the quantification of the impact of critical input variables on
metallurgical process performance, such as ore hardness, ore size, and superficial air velocity, which
has only been reported in the literature from an experimental standpoint. Finally, GSA-OS-ELM
opens the door to estimating online sensitivity indices for the equipment used in mineral processing.

Keywords: global sensitivity analysis; supervised machine learning; mineral processing

1. Introduction

The mining industry has been the economic engine in various countries worldwide,
such as Chile, Perú, and South Africa. In the case of Chile, mining projects face challenges
such as a reducing deposit grade, water stress, energy consumption, and environmental
impact (mainly generating tailings), configuring an adverse scenario to maintain the current
production level. In addition, there is a mineralogical change in the deposits, specifically, a
change from copper oxide ores to copper sulfide ores, that is processed by froth flotation.
This requires a liberated ore processed as pulp, thus increasing energy and water consump-
tion. According to Montes [1], it has been estimated that minerals treated by froth flotation
will increase from 574 million tons in 2017 to 1004 million tons in 2029. Under this scenario,
the operating conditions of the processes implemented in the sulfide ore value chain must
be optimized to mitigate the problems mentioned earlier.

Mineral processing can be optimized using simulation systems such as ModSim,
MetSim, MolyCop-Tools, or JkSIMmet. These systems are powerful tools and have demon-
strated their usefulness in many process applications [2–7]. However, such optimizations
implement fixed operating parameters, unlike industrial practice, because mining process-
ing equipment operates under uncertainty that affects its metallurgical performance. For
instance, the hardness of the ore processed in comminution systems exhibits geological
uncertainty, i.e., it presents a variation inherent to mining deposits whose increment implies
an increase in the energy required to liberate the valuable mineral. In this respect, the ore
size exhibits operating uncertainty in flotation circuits, i.e., there is a lack of knowledge re-
lated to the insufficient measurements or assumptions made in the plant. In both instances,

Minerals 2022, 12, 750. https://doi.org/10.3390/min12060750 https://www.mdpi.com/journal/minerals

https://doi.org/10.3390/min12060750
https://doi.org/10.3390/min12060750
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/minerals
https://www.mdpi.com
https://orcid.org/0000-0001-6690-9450
https://doi.org/10.3390/min12060750
https://www.mdpi.com/journal/minerals
https://www.mdpi.com/article/10.3390/min12060750?type=check_update&version=1

Minerals 2022, 12, 750 2 of 19

the impact of uncertainty could generate poor metallurgical performances; therefore, this
must be quantified to efficiently optimize the process studied.

The effect of the uncertainty on mathematical models, the basis of simulation systems,
can be addressed via global sensitivity analysis (GSA). GSA can be applied using different
approaches, such as screening, linear regression-based, and variance decomposition-based
methods, the latter highlighted for their efficiency and versatility. Within this context,
variance decomposition-based methods have been applied in mineral processing, e.g., flota-
tion [8], grinding [9], mineral leaching [10], and lithium ore processing [11]. However, these
works did not quantify the impact of critical input variables on the metallurgy performance
of the processes; for example, the effect of ore hardness on grinding power consumption
or the impact of superficial air velocity and particle size on flotation copper grade was
not studied. Another aspect to consider is that GSA requires intensive computations [12],
making it unfeasible to study the effect of uncertainty using simulation systems or ro-
bust mathematical models. As a result, surrogate models (SMs) have arisen as a feasible
alternative for avoiding this drawback.

SMs are an engineering tool used when an outcome of interest cannot easily be directly
measured, so an outcome model is used instead. In other words, the primary motivation
to develop surrogate modeling strategies is to make better use of the available, usually
limited, computational burden [13]. SMs are also known as response surface models,
metamodels, emulators, or proxy models [14], and they have been implemented in mineral
processing [15,16]. However, these works exhibit the following disadvantages: (a) they
do not compare different approaches; (b) they do not consider the uncertainty; (c) they do
not compare libraries/packages; (d) they consider only batch learning. The framework
implemented to construct surrogate models includes three components: first, an experiment
design guides the computational experiments; second, an algorithm repeatedly runs the
original computational model in the experiments proposed by the DoE and collects their
responses; third, the collected information is used to train or fit a mathematical technique.
Among the mathematical methods used to construct surrogate models is highlighted
machine learning.

Machine learning (ML) is a branch of computational intelligence having an ever-
increasing presence and impact on a wide variety of research and commercial fields. ML
includes tools focus on endowing programs with the ability to learn and adapt, and they
are classified according to the training type: supervised, non-supervised, and reinforce-
ment [17]. The first requires labeled data samples to approximate mapping to predict
output values or data labels; here, we find regression and classification problems. The
second does not demand labeled data, and its goal is to model the underlying structure or
distribution in the data; here, we find clustering and dimensionality reduction problems.
The third is a robust mathematical framework for experience-driven autonomous learning.
There are multiple libraries/packages for supervised machine learning included in different
programming languages, for example, Python, R, and Julia [17–19].

This work presents a methodology to construct SM for complex models related to
devices implemented in mineral processing, aiming to accelerate global sensitivity analysis.
The procedure includes DoE and SML tools and the Sobol–Jansen method to perform
the GSA. To determine the best tools to build SMs, benchmarking is confected consid-
ering libraries/packages included in the Python and R programming languages. These
libraries/packages offer SML tools trained via exact algorithms, and to enhance this bench-
marking, the technique known as extreme learning machine (ELM) was coded by the
author and trained via an approximate algorithm. Three case studies based on an SAG mill
and a flotation cell bank are presented to demonstrate the applicability of the methodol-
ogy proposed.

2. Methods

This section presents a brief review of the methods supporting the methodology
proposed to accelerate the global sensitivity analysis for metallurgical models.

Minerals 2022, 12, 750 3 of 19

2.1. Global Sensitivity Analysis (GSA)

The sensitivity analysis (SA) helps to detect the contribution of the uncertainties of the
input variables to the uncertainties of the output variables [20]. SA can be divided into local
or global: the first is based on the local derivatives of the output variable concerning one
input variable; the second considers evaluating the output variable variability considering
the simultaneous fluctuation of input variables in their uncertainty domains [12]. GSA can
be performed using different approaches, with an emphasis on those based on variance
decomposition because of their efficiency and versatility. The Sobol–Jansen method belongs
to this category and allows the determination of the first-order sensitivity index and the
total sensitivity index for each input variable of the model [21]. The first-order index
establishes the most significant input variable on the output variable. The total index
provides information to identify the input variables that do not affect the output variable.
According to the literature [22], the Sobol–Jansen method exhibits good performance in
analyzing processes utilized in mining. However, this method consumes a significantly
large processing time when the model analyzed is complex.

2.2. Design of Experiments (DoE)

Design of Experiments is a branch of statistics that helps designers plan, execute,
and analyze tests to evaluate the process responses. DoE employs different space-filling
strategies to empirically capture the behavior of the underlying system over limited ranges
of variables [23]. DoE can be divided into two families, which are classical and modern
experiment design. The first is based on laboratory experiments; examples of this category
are factorial design, central composite design, and Box–Behnken design. The second is
based on computer simulations to replace the expensive physical experiments with faster
and cheaper computer simulations; examples of this category include Latin hypercube
sampling, symmetric sampling, and orthogonal array sampling [13].

2.3. Machine Learning (ML)

Machine learning can be defined as the science (and art) of programming computers so
that they can learn from datasets. According to the literature, the first real ML application
was the spam filter; afterwards, the spam filter was followed by hundreds of ML applica-
tions that now quietly power hundreds of products [17]. Behind these applications is the
resolution of regression, classification, clustering, and dimensionality reduction problems,
among others, the first of these being the spotlight of the current work. This problem
considers a labeled dataset to approximate mapping to predict output values and can be
addressed via tools included in SML. Among the latter can be found the support vector
machine, multilayer perceptron, Gaussian process, and extreme learning machine, among
others—the interested reader can find a review in [17,24]. These tools are available in
scikit-learn [25] and TensorFlow libraries [26] for the Python programming language, and
e1071 [27], RandomForest [28], Neuralnet [29], and Gaupro packages for the R program-
ming language. In this work, they are compared to determine the best alternatives for
developing SMs for minerals processing.

Table 1 shows a detailed breakdown of the programming language, library/package,
and SML tools implemented to construct the SMs. Note that the author has coded ELM,
which will be addressed in more detail in the following section, to introduce the procedure
used for online sequential training.

Extreme Learning Machine (ELM)

ELM was proposed by Guang et al. [30] and it considers a single-layer feedforward
neural network. Unlike most machine learning tools based on descent gradient, ELM
assigns random values to the weights between the input and hidden layer, and biases in
the hidden layer, and they are fixed during the training stage. The expert reader will have
noticed that ELM is based on concepts related to RBF networks training; furthermore, some
researchers have indicated that there is intelligent plagiarism (rewriting others’ results) by

Minerals 2022, 12, 750 4 of 19

Guang and co-workers [31]. Aside from this controversy, ELM has been utilized successfully
in many tasks, such as regression, clustering, and classification problems [32,33]. Below, we
briefly describe ELM, assuming that the entire dataset is available during the training stage.

Table 1. Tools implemented to construct SMs.

Supervised Machine Learning Tools Python R

Support vector regression (SVR) Scikit-Learn e1071
Random Forest regression (RFR) Scikit-Learn RandomForest

Multilayer perceptron (MLP) Scikit-Learn, Tensorflow Neuralnet
Linear regression (LR) Scikit-Learn Stats

Elastic net regression (ENR) Scikit-Learn -
Ridge regression (RR) Scikit-Learn -

Lasso regression (LAR) Scikit-Learn -
Gaussian process regression (GPR) Scikit-Learn Gaupro
Extreme learning machine (ELM) - Authors

We consider a training dataset ℵ0 =
{(

xj, tj
)}N0

j=1 where xi ∈ Rn is an input vector and
ti ∈ Rm is a target vector. The output of a single hidden layer feedforward neural network
with Ñ hidden nodes can be expressed as follows

f
(
xj
)
=

Ñ

∑
i=1

βihi
(
xj
)
= h

(
xj
)

β, j = 1, 2, . . . , N0 (1)

where β =
[
β1, . . . , βÑ

]T is the output weight vector between the hidden layer of Ñ nodes

and the m ≥ 1 output nodes, and h
(
xj
)
=
[
h1
(
xj
)
, . . . , hÑ

(
xj
)]T is the output vector of

the hidden layer concerning the inputs xj. In real applications, hi
(

xj
)

can be expressed
as: hi

(
xj
)
= G

(
ai, bi, xj

)
, where ai ∈ Rn and bi ∈ R are the learning parameters of hidden

nodes, and G is a nonlinear function satisfying ELM’s universal approximation capability
theorems. Some functions reported in the literature are sigmoid, hyperbolic tangent,
Gaussian, multiquadric, hard limit, and cosine. The training procedure for ELM considers
random initialization of ai and bi, facilitating the definition of the matrix H as follows:

H
(
α1, . . . , αÑ , b1, . . . , bÑ , x1, . . . , xN

)
=

G(α1, b1, x1) · · · G

(
αÑ , bÑ , xÑ

)
...

. . .
...

G(α1, b1, xN)
... G

(
αÑ , bÑ , xÑ

)

N×Ñ

Here, H is called the hidden layer output matrix of the network. Afterwards, β is
determined by solving

min
β∈RÑ×m

‖Hβ− T‖2 (2)

where

β =

βT
1
...

βT
Ñ

Ñ×m

and T =

tT
1
...

tT
N

N×m

=

t11 · · · t1m)
...

. . .
...

tN1
... tNm)

N×m

.

Here, T is the training data target matrix, and ||· || is the Frobenius norm. The solution
of Equation (2) is obtained by differentiating ‖Hβ− T‖2 with respect to β and equalizing it
to zero, obtaining 2HT(Hβ− T) = 0 or, equivalently, β = H†T, where H† =

(
HT H

)−1HT

is called the Moore–Penrose generalized inverse of matrix H. The reader interested in the
detailed mathematical formulation and training procedure of ELM can see [33].

According to a related article [34], the optimization of random initialized weights
and biases of ELM can be addressed using metaheuristic algorithms, classified as swarm

Minerals 2022, 12, 750 5 of 19

intelligence, physics-based, evolutionary, and human-based algorithms. Evolutionary
algorithms (EAs) use mechanisms inspired by biological evolution for solving problems
such as reproduction, mutation, recombination, and selection [35,36]. Some examples of
EAs are genetic algorithms, evolutionary strategies, and differential evolution algorithms
(DEAs) [35]. In this work, the latter was implemented to optimize the weights and biases
of batch ELM and was labeled as ELM-DEA.

On the other hand, as we commented earlier, the batch ELM assumes that the entire
dataset is available for training; however, in specific applications, sometimes we may not
have access to the whole dataset because new samples are being added. Then, we need to
retrain the ELM every time the dataset grows. However, the new samples often account for
only a small part, so it is inefficient to repeatedly retrain the ELM using the whole dataset.
Hence, the ELM’s initial formulation must be modified. Liang et al. [32] proposed the
online sequential ELM (OS-ELM), which can learn the dataset chunk-by-chunk, and it is
summarized as follows [34].

Algorithm 1. The OS-ELM algorithm.

Input: ℵ0 =
{(

xj, tj

)}N0

j=1
Output: A trained ELM model
Initialization phase:
Set t = 0.
Calculate Ho using the training set and random parameters.
Obtain the output weight using βo = Mo HT

o To where Mo =
(

HT
o Ho

)−1

Online sequential learning phase:
For each new block of data, update the layer output matrix as Ht+1 = [ht; ht+1], where ht+1
denotes the hidden output of the new data block.
Update the output weights as βt+1 = βt + Mt+1ht+1

(
tT
i − hT

t+1βt
)
, where Mt+1 =

Mt −Mtht+1hT
t+1 Mt

(
1 + hT

t+1 Mtht+1
)−1

Set t = t + 1

2.3.1. Methodology

Figure 1 shows the procedure proposed to construct SMs. The blue boxes represent
the main structure of the methodology, which is described as follows:

Figure 1. Flowchart for building SMs for accelerating GSA.

Step 1: The user must select a set of input variables for the process studied and their
relevant operating ranges. Then, a modern experiment design is used to sample the space
generated by input variables.

Minerals 2022, 12, 750 6 of 19

Step 2: An algorithm runs the mining processing model following the previous
experiment design. The information generated is collected and processed to filter noise
and outliers.

Step 3: The collected information is implemented to train an SML tool. The latter tends
to overtrain; thus, the initial sample is divided into training and testing datasets. The first
is used to construct the SM, and the second is utilized to validate it. The measure called the
coefficient of determination (R2) is used to evaluate the statistical performance of the SML
tool, which is considered robust if it exhibits an R2 greater than 0.80 in training and testing.
If the SM is not robust, an increase in the size of the experimental design is considered.

Step 4: The GSA is carried out using a Sobol-based method and the SM.
It is worth mentioning that there are several measures to evaluate the performance of

surrogate models. Prominent among these are R2, mean squared error (MSE), root mean
squared error (RMSE), and mean absolute error (MAE) [37]. The latter three can vary from
0 to any larger number, whereas R2 exhibits values between 0 and 1. An R2 value closer to
1 means that the regression model covers most parts of the variance of the values of the
response variable and can be termed as a good model. In contrast, with MSE, RMSE, and
MAE values depending on the scale the of values of the response variable, the value will
be different, and hence, it is difficult to assess for certain whether the regression model is
good or otherwise.

3. Applications

This section presents three examples to illustrate the applicability of the methodology
proposed. It is worth mentioning that all the experiments were carried out in JupyterLab
using R and Python kernels and a computer with an Intel Core i7 2.21 GHz and 16 GB of
RAM.

3.1. SAG Mill: Batch Training

We considered the SAG mill shown in Figure 2, modeled using mathematical expres-
sions reported by [9] and a model to estimate the ore hardness (γ) in the feed. Specifically,
γ(t) = mγ(Γ(t)− 1) + γmax, where mγ = (γmax − γmin)/(Γmin − Γmax); Γ is the ore hard-
ness in the Mohs scale, Γmin is minimum hardness in the Mohs scale, Γmax is the maximum
hardness in the Mohs scale, γmax is equal to 1.5, and γmin is equal to 0.5. For more detail
on the hardness model, see [38]. The grinding model was coded in the R programming
language and solved via the nleqslv solver, assuming that the SAG mill behaved like a
perfectly mixed reactor with first-order kinetics. The input variables considered in the
model are shown in Table 2.

Figure 2. Schematic representation of an SAG mill.

Minerals 2022, 12, 750 7 of 19

Table 2. Input variables from the SAG mill model.

Label Input Variables Operational
Conditions Unit Uncertainty

x1 Feed Flowrate (F) 3.45 t/h U[3.34, 3.55],
x2 Steel ball volume occupation in the mill (Jb) 8.5 % U[6.37%, 10.6%]
x3 Discharge solid percentage (Xd) 74 % U[70.3%, 77.7%]
x4 Percentage of critical speed (φc) 72 % U[70.56%, 73.44%]
x5 Size fraction > 4′′ (f1) 11 % N[11%, 0.4]
x6 Size fraction 4′′–2′′ (f2) 8.5 % N[8.5%, 0.6]
x7 Size fraction < 2′′ (f3) 80.5 % N[80.5%, 0.87],
x8 Ore hardness (Γ) 6 Mohs scale N[6, 0.3]

The power consumption (Pw) and comminution specific energy (Ecs = Pw/F) were
selected as the model output variables because of their relevance to the total cost in the min-
ing industry, representing values between 60 to 80% of the electric costs. The distribution
functions used to describe the uncertainty of the input variables are shown in Table 2. The
GSA was performed using the Sobol–Jansen function included in the sensitivity package for
the R programming language. The Python programming language offers several libraries
for carrying out GSA; however, they do not include the Sobol–Jansen method. Within
this context, this method was coded by the author (see Supplementary Material). The
Sobol–Jansen method requires: (a) a mathematical model; (b) two subsamples of the same
size; (c) a resampling method for estimating the variance of sensitivity indices. According
to Pianosi et al. [39], the sample size commonly used is 500 to 1000 [20]. However, the
researcher indicated that the sample size may vary significantly from one application to
another. Therefore, a much larger sample might be needed to achieve reliable results.
Additionally, the number of samples required to achieve stable sensitivity indices can vary
from one input variable to another, with low sensitivity inputs usually converging faster
than high sensitivity ones [40]. In this first instance, a sample size equal to 1000 allows for
the achievement of stable sensitivity indices. Therefore, the sample size used for carrying
out GSA was 16,000 data. The bootstrapping technique consisting of random sampling
with replacement from the original data was used as the resampling method. The number
of resampling methods used was equal to 100, which is consistent with the literature.

The execution time of the Sobol–Jansen function applied to the grinding model was
approximately 18,500 s, revealing that the complexity of the model and sample size severely
affected the applicability of this method, and consequently, the analysis of the results. To
reduce the execution time, the flowchart presented in Figure 1 was applied to construct
SMs. In Step 1, the LHS sampling method was used to generate the operational conditions
of the SAG mill. In Step 2, previous samples were used to simulate the grinding model.
In Step 3, the samples, with their corresponding responses, were used to construct SMs,
whose results are shown in Figure 3.

Figure 3 shows the results obtained during the SML tool training and testing using 80
and 20% of the dataset, respectively. Here, the tools labeled with py and r were constructed
in Python and R, respectively. Note that SML tool multiparameters were tuned via trial and
error. For instance, for MLP, this procedure evaluated the effect of the multiparameters on
its statistical performance, including the number of neurons by layer, activation function,
training rate, training algorithm, and the number of layers. Figure 3 reveals that as the
dataset increased from 100 to 1000, and that R2 increased for both SML tool training and
testing. This increase in samples helped to improve the capture of the SAG mill’s behavior
on uncertainty space, and consequently, the SML tool’s performance. This figure shows
that SVR-py, MLP-skl, LR-skl, ENR-py, RR-py, LAR-py, GPR-py, MLP-TensorFlow-py,
MLP-r, SVR-r, LR-r, and ELM-DEA-r provided a better yield than RFR-py and RFR-r, but
all exhibited an R2 greater than 0.8 when the simulation sample was equal to 1000; then, all
SML tools moved to the next stage. Before they proceeded to the next step, note that RFR-r
and RFR-py exhibited disparate performances. RFR, offered by the RandomForest package

Minerals 2022, 12, 750 8 of 19

(RFR-r) and the scikit-learn library (RFR-p), is based on Breiman’s original version [41]
and Geurts et al. [42], respectively. The latter consists of heavily randomizing both input
variables and cut-point while splitting a tree node. In the extreme case, this approach
randomly chooses a single input variable and cut-point at each node, building totally
randomized trees whose structures are independent of the output variable values of the
learning sample. Therefore, the RFR versions offered by scikit-learn and RandomForest
differ, which could explain the disparity in their performance. In the case of RFR-r, its
decreasing performance could be related to perturbations induced in the models by modi-
fying the algorithm responsible for the search of the optimal split during tree growing [42].
In this context, the researcher indicated that it is productive to somewhat deteriorate the
algorithm’s “optimality” that seeks the best split locally at each tree node. In Step 4, the
GSA was carried out using the Sobol–Jansen method and SMs, and their results are shown
in Figures 4 and 5.

Figure 3. Performance of SML tools to construct SMs for grinding model outcomes.

Minerals 2022, 12, 750 9 of 19

Figure 4. Total sensitivity indices obtained via Sobol–Jansen method and SMs for SAG mill power
consumption.

Minerals 2022, 12, 750 10 of 19

Figure 5. Total sensitivity indices obtained via the Sobol–Jansen method and surrogate models for
comminution-specific energy.

Minerals 2022, 12, 750 11 of 19

Figure 4 shows the total sensitivity indices provided by the Sobol–Jansen method for
the surrogate and grinding models when the output variable was the power consumption.
Here, we can see that the total sensitivity indices obtained from SM were similar to those
obtained with the grinding model, highlighting the indices reached with the ELM-DEA
surrogate model, which required more training time (approximately 600 s) owing to the
stochastic nature of DEA. The GSA indicated that the influential input variables on power
consumption were Jb, φc, Xd, and Γ. The equation used to estimate the power consumption
included the first two input variables, explaining their high total Sobol index [43]. Xd influ-
enced the ratio between the ore mass and water mass retained inside the mill, and therefore,
the power consumption. Γ influenced the specific breakage rate, and consequently, the
mass retained in the mill. The latter influenced a fraction of mill filling, and in turn, the
power consumption (see [9,43]). Figure 5 shows the total sensitivity indices provided by the
Sobol–Jansen method for the SMs when the output variable was the comminution-specific
energy. The latter was influenced mainly by F, Jb, φc, and Γ. By definition, F directly affects
the comminution-specific energy, explaining this input variable’s high total Sobol index. Jb
and φc, and Γ, directly and indirectly, affected the power consumption, respectively, and
therefore the comminution-specific energy [9,38,43]. An immediate result of the GSA was
reducing the uncertainty space to (F = 3.45, Jb, Xd, φc, f1 = 11, f2 = 8.5, f3 = 80.5, Γ)
and (F, Jb, Xd = 74, φc, f1 = 11, f2 = 8.5, f3 = 80.5, Γ) for the power consumption and
comminution-specific energy, respectively. Therefore, optimizing the SAG mill’s outcomes
must be made over the reduced spaces to achieve effective operational conditions and
decrease the computational burden. Such optimization can be addressed via metaheuristic
algorithms [44]. Table 3 shows the execution time required to obtain total sensitivity indices
by each tool, revealing significant computational gains by applying the proposed method-
ology. Note that the execution time was more significant for Python than R, indicating that
the programming of the Sobol–Jansen method in Python must be improved.

Table 3. Execution time for the Sobol–Jansen method using SMs and SAG mill.

Power Consumption Comminution-Specific Energy

Approach Python, s R, s Python, s R, s

SVR 104.47 1.10 104.78 0.87
RFR 34.42 2.61 35.11 2.45
MLP 25.84 (skl), 140.86 (tens.) 0.43 26.10 (skl), 137.51 (tens.) 0.40
LR 25.09 0.47 24.86 0.48

ENR 24.94 - 24.47 -
RR 24.82 - 24.63 -

LAR 24.7 - 24.70 -
GPR 230.38 - 226.85 -
ELM - 2.06 - 2.22

Grinding
model - 18,500 - -

3.2. Cell Bank: Batch Training

We considered the rougher bank shown in Figure 6, modeled using the expressions
proposed by Hu et al. [45]. This model considered the entrained flotation recovery, the true
flotation recovery, the sedimentation velocity of the particle, the viscosity of the slurry, and
the particle size, among others. For this reason, the flotation model was challenging to
solve. Under these conditions, this was coded in the GAMS software and solved using the
BARON solver, which is widely used in optimization. The model input variables and their
standard values (extracted from [45]) are shown in Table 4.

Minerals 2022, 12, 750 12 of 19

Figure 6. Schematic representation of a cell bank.

Table 4. Input variables from the cell bank model.

Label. Input Variables Operational Conditions Unit Uncertainty

x1 First cell froth depth (hf1) 0.200 m U[0.15, 0.25]
x2 Second cell froth depth (hf2) 0.200 m U[0.15, 0.25]
x3 Third cell froth depth (hf3) 0.200 m U[0.15, 0.25]
x4 Gangue flotation rate constant (kg) 0.0008 h−1 U

[
6× 10−4, 1× 10−3]

x5 Chalcopyrite flotation rate constant (kc) 40 h−1 U[30, 50]
x6 Gangue flowrate (Qg) 155 m3/h N[155, 1]
x7 Chalcopyrite flowrate (Qc) 0.3 m3/h N[0.3, 0.01]
x8 First cell superficial air velocity (vg1) 0.007 m/s U

[
6× 10−3, 8× 10−3]

x9 Second cell superficial air velocity (vg2) 0.007 m/s U
[
6× 10−3, 8× 10−3]

x10 Third cell superficial air velocity (vg3) 0.007 m/s U
[
6× 10−3, 8× 10−3]

x11 First cell interface bubble size (rin1) 0.00045 m U
[
3× 10−4, 6× 10−4]

x12 Second cell interface bubble size (rin2) 0.00045 m U
[
3× 10−4, 6× 10−4]

x13 Third cell interface bubble size (rin3) 0.00045 m U
[
3× 10−4, 6× 10−4]

x14 Particle size (dp) 55 µm U[30, 80]

The copper recovery and concentrate grade were selected as the output variables of
the cell bank. The distribution functions used to describe the uncertainty on the input
variables are shown in Table 4. Initially, the flotation model was solved considering some
samples of the operational conditions, requiring an average of 10 s to solve one operational
instance. The Sobol–Jansen method requires a large size sample and resample to provide
reliable results. This way, the execution time of this analysis would ascend approximately
to 28,000,000 s, obstructing the analysis of the outcomes. It is worth mentioning that
the Sobol-Jansen method is unavailable in GAMS, and its programming in this software
implies a challenge. Therefore, as it was seen in the previous application, it was necessary
to develop an SM. In Step 1, the LHS sampling method was used to generate the operating
conditions of the cell bank. In Step 2, previous samples were used to simulate the cell bank
model. In Step 3, the samples with corresponding responses were utilized to develop SMs,
which are shown in Figure 7.

Figure 7 shows the results obtained during the SML tool training and testing using
80 and 20% of the dataset, respectively. This figure does not show RFR-r because its
performance was very poor; its inclusion was detrimental to achieving a good resolution of
the performance of the rest of the SML tools. Again, the SML tool multiparameters were
tuned via trial and error. In general, Figure 7 reveals that as the dataset increased from 600
to 2000, R2 increased for both the SML tool training and testing. This increase in samples
benefited the capture of the cell bank’s behavior regarding uncertainty space, and in turn,
the SML tools’ performance. This figure shows that SVR-py, MLP-skl, LR-skl, ENR-py,
RR-py, LAR-py, GPR-py, MLP-TensorFlow-py, MLP-r, and ELM-DEA-r provided an R2
close to 0.8 when the simulation sample was equal to 2000; then, they went to the next
stage. In Step 4, the GSA was carried out using the Sobol–Jansen method and SMs, and the
results are shown in Figures 8 and 9.

Minerals 2022, 12, 750 13 of 19

Figure 7. Performance of SML tools to construct SMs for cell bank outcomes.

Figure 8 shows the total sensitivity indices provided by the Sobol–Jansen method for
the SMs when the output variable was copper grade. Here, we see that the total sensitivity
indices provided by GSA were similar. These indicated that vg1, vg2, vg3, and dp influenced
the cell bank’s copper grade. The particle size and superficial air velocity influenced the
particle–bubble collision efficiency, and consequently, they influenced true and entrained
flotation recoveries [45–48]. These results implied that the uncertainty space can be reduced
to (h f 1 = 0.2 , h f 2 = 0.2 , h f 3 = 0.2 , kg = 8× 10−4 , kc , Qg = 155 , Qc , vg1 , vg2 , vg3, rin1,
rin2, rin3, dp) for the copper grade. In other words, the SM concerning copper grade can be
reduced from 14-dimensional to 9-dimensional.

Minerals 2022, 12, 750 14 of 19

Figure 8. Total sensitivity indices obtained via the Sobol–Jansen method and SMs, copper grade.

Figure 9 shows the total sensitivity indices for the SMs when the output variable was
copper recovery. These indices were similar and indicated that kc and dp influenced the cell
bank’s copper recovery. The flotation rate constant is directly related to the chalcopyrite
mass flow present in the concentrate [45]. Particle size directly influences the contact
probability with the bubbles (“elephant curve”), as well as its settling velocity, and con-
sequently, the true and entrainment flotation recoveries [45,47]. Thus, the SM concerning
copper recovery can be simplified from 14-dimensional to 5-dimensional. Therefore, the
Sobol–Jansen method allowed for simultaneously quantified results reported only from
an experimental point of view. Input variables vg1, vg2, vg3, and dp must be analyzed to
optimize the cell bank copper grade, and kc and dp must be studied to optimize the copper
recovery. Table 5 shows the execution time required to obtain total sensitivity indices
by each tool, revealing significant computational benefit by applying the methodology
proposed. Again, the execution time was more significant for Python than R, revealing that
the programming of the Sobol–Jansen method in Python must be enhanced.

Minerals 2022, 12, 750 15 of 19

Figure 9. Total sensitivity indices obtained via the Sobol–Jansen method and SMs, copper recovery.

Table 5. Execution time for the Sobol–Jansen method using SMs, cell bank.

Copper Grade Copper Recovery

Approach Python, s R, s GAMS, s Python, s R, s

SVR 486.31 3.44 - 496.38 -
RFR 72.46 1.21 - 73.22 -
MLP 54.61 (skl), 283.02 (tens.) 0.48 - 59.07 (skl), 296.95 (tens.) 0.58
LR 55.28 3.34 - 54.54 -

ENR 55.05 - - 55.44 -
RR 55.21 - - 55.18 -

LAR 55.42 - - 55.94 -
GPR 783.03 - - 761.25 -
ELM - 3.39 - - 3.48
Bank

model - - 28 M - -

Minerals 2022, 12, 750 16 of 19

3.3. SAG Mill: Online Sequential Training

The EML-DEA surrogate model provided sensitivity indices close to those obtained
via the grinding model; however, the training time required makes its application difficult
if the dataset arrives sequentially. Under these conditions, the online OS-ELM is presented
as a feasible alternative, whose implementation is illustrated as follows. First, we consider
that 700 samples arrive for the training of batch ELM; second, 10 sets arrive 30-by-30, which
are used to train sequentially via Algorithm 1. The results obtained are shown in Table 6.

Table 6. Online sequential training of ELM, SAG mill.

R2-Training

Chunk Outputs Initial Dataset New Dataset Total Dataset R2-Testing

1
Pw 0.9792747 0.9676392 0.9788141 0.9714207
Ecs 0.9872921 0.9801317 0.9869788 0.9862562

2
Pw 0.9792043 0.9656083 0.9783193 0.9713839
Ecs 0.9872607 0.9842905 0.9869990 0.9862292

3
Pw 0.9793019 0.9745175 0.9788893 0.9715430
Ecs 0.9859681 0.9445565 0.9799809 0.9853455

4
Pw 0.9793019 0.9745605 0.9785515 0.9717058
Ecs 0.9854533 0.9563790 0.9795342 0.9850057

5
Pw 0.9792412 0.9772665 0.9788337 0.9717603
Ecs 0.9846342 0.9568821 0.9781478 0.9843283

6
Pw 0.9792202 0.9771648 0.9787545 0.9717825
Ecs 0.9838239 0.9573903 0.9771821 0.9836896

7
Pw 0.9792254 0.9775622 0.9788150 0.9717774
Ecs 0.9831072 0.9589930 0.9765053 0.9831207

8
Pw 0.9791253 0.9767157 0.9784549 0.9717293
Ecs 0.9822101 0.9601473 0.9756296 0.9823725

9
Pw 0.9790951 0.9753149 0.9779454 0.9717686
Ecs 0.9809689 0.9612125 0.9745500 0.9812378

10
Pw 0.9790826 0.9749347 0.9777599 0.9717378
Ecs 0.9800560 0.9634199 0.9742663 0.9803943

Table 6 shows that R2 for training and testing was greater than 0.8 in both power
consumption and specific comminution energy and for all chunks including the batch ELM
(first chunk). This procedure was repeated, considering the arrival of 10 sets 20-by-20.
Again, good results were obtained from the point of view of the solution quality and
execution time (approximately 0.1 s for each chunk). Each SM developed was immediately
subjected to GSA via the Sobol–Jansen method using different magnitudes for uncertainties,
as shown in Figure 10.

Figure 10 shows the sensitivity indices provided by the Sobol–Jansen method and
SMs sequentially constructed. The GSA considered an uncertainty between 5 and 10% on
the input variables’ uncertainty magnitude. We can see that the uncertainty magnitude
changed the influence of the input variables on the SAG mill’s outcomes. For instance,
ore hardness uncertainty-magnitude variations generated total sensitivity indices between
0.135 and 0.3 and between 0.08 and 0.17 for power consumption and specific comminution
energy, respectively. These results are promising for the application of online GSA for
mineral processing. However, depending on the SML tool utilized, the Sobol–Jansen
method requires a few seconds to provide the total sensitivity indices; this time could be
reduced via the parallelization of the Sobol–Jansen method using packages/libraries such
as doParallel [49], Multidplyr, and Numba [50], among others.

Minerals 2022, 12, 750 17 of 19

Figure 10. Sobol indices with different magnitudes of uncertainty for SMs built via online sequential
training. (a) Power consumption, (b) Specific comminution energy.

4. Conclusions

A methodology to build surrogate models for accelerating global sensitivity analysis
was presented. This method considers mining processing simulators, experiment design,
supervised machine learning tools, and Sobol-based GSA methods. The procedure was
illustrated via three case studies, including an SAG mill and a cell bank, batch and online
sequential training, and evaluating libraries/packages included in the Python and R
programming languages. The main outcomes of our work are the following:

• Surrogate models allow for a reduction in the execution time of GSA from hours or days
to seconds, revealing significant computational gains for the methodology proposed.

• In general, the tensorflow and scikit-learn libraries included in Python provide better
surrogate models than the packages included in R.

• The effect of critical input variables on metallurgical process performance was quanti-
fied, including ore hardness, ore size, and superficial air velocity, among others, which
were reported in the literature only from an experimental standpoint.

Minerals 2022, 12, 750 18 of 19

• The online sequential-ELM provides a good performance regarding solution quality
and execution time.

• GSA-OS-ELM opens the door to estimating online sensitivity indices for devices used
in mineral processing.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/min12060750/s1, scripts for GSA and surrogate models.

Author Contributions: Conceptualization, F.A.L.; methodology, F.A.L.; software, F.A.L.; formal
analysis, F.A.L.; investigation, F.A.L.; data curation, F.A.L.; writing—original draft preparation, F.A.L.;
writing—review and editing, F.A.L. All authors have read and agreed to the published version of
the manuscript.

Funding: The authors are grateful for the support of Agencia Nacional de Investigación y Desarrollo
de Chile (ANID) through Anillo-Grant No. ACT210027 and Fondecyt 1211498.

Acknowledgments: This publication was supported by ANID, Anillo-Grant ACT210027, and Fonde-
cyt 1211498.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Montes, C. Forecast for Water Consumption in the Copper Mining Industry, 2018–2029. J. Min. Eng. Res. 2021, 1, 45–54. [CrossRef]
2. Kennedy, M.W. Metallurgical Plant Optimization through the Use of Flowsheet Simulation Modelling. In Proceedings of the TMS

143rd Annual Meeting & Exhibition, San Diego, CA, USA, 16–20 February 2014.
3. Bustamante Rúa, M.O.; Daza Aragón, A.J.; Bustamante Baena, P.; Barros Daza, M.J. Simulación de Plantas de Procesamiento de

Minerales a Través de MODSIM®. Boletín Cienc. Tierra 2016, 33–37. [CrossRef]
4. Farzanegan, A.; Ebtedaei Ghalaei, A. Simulation-Assisted Evaluation of Grinding Circuit Flowsheet Design Alternatives:

Aghdarreh Gold Ore Processing Plant. Arch. Min. Sci. 2015, 60, 123–141. [CrossRef]
5. Mazzinghy, D.B.; Schneider, C.L.; Alves, V.K.; Galéry, R. Vertical Mill Simulation Applied to Iron Ores. J. Mater. Res. Technol. 2015,

4, 186–190. [CrossRef]
6. Qiuyue, Z.; Tingan, Z.; Guozhi, L.; Xiaofeng, Z. Application of Process Simulation Software METSIM in Metallurgy. TELKOMNIKA

Indones. J. Electr. Eng. 2012, 10, 2202–2208. [CrossRef]
7. Haque, N.; Norgate, T.; Bruckard, W. Techno-Economic Evaluation of a New Early Removal Process to Treat High-Arsenic Copper

Ores. In Proceedings of the XXV International Mineral Processing Congress, IMPC2010, Brisbane, Australia, 6–10 September 2010;
Volume 4.

8. Sepúlveda, F.D.; Cisternas, L.A.; Gálvez, E.D. The Use of Global Sensitivity Analysis for Improving Processes: Applications to
Mineral Processing. Comput. Chem. Eng. 2014, 66, 221–232. [CrossRef]

9. Lucay, F.A.; Gálvez, E.D.; Salez-Cruz, M.; Cisternas, L.A. Improving Milling Operation Using Uncertainty and Global Sensitivity
Analyses. Miner. Eng. 2019, 131, 249–261. [CrossRef]

10. Mellado, M.; Cisternas, L.; Lucay, F.; Gálvez, E.; Sepúlveda, F. A Posteriori Analysis of Analytical Models for Heap Leaching
Using Uncertainty and Global Sensitivity Analyses. Minerals 2018, 8, 44. [CrossRef]

11. Calisaya-Azpilcueta, D.; Herrera-Leon, S.; Lucay, F.A.; Cisternas, L.A. Assessment of the Supply Chain under Uncertainty: The
Case of Lithium. Minerals 2020, 10, 604. [CrossRef]

12. Zhou, X.; Lin, H.; Lin, H. Global Sensitivity Analysis. In Encyclopedia of GIS; Springer: Boston, MA, USA, 2008; pp. 408–409.
13. Asher, M.J.; Croke, B.F.W.; Jakeman, A.J.; Peeters, L.J.M. A Review of Surrogate Models and Their Application to Groundwater

Modeling. Water Resour. Res. 2015, 51, 5957–5973. [CrossRef]
14. Razavi, S.; Tolson, B.A.; Burn, D.H. Review of Surrogate Modeling in Water Resources. Water Resour. Res. 2012, 48, W07401.

[CrossRef]
15. Rabhi, A.; Chkifa, A.; Benjelloun, S.; Latifi, A. Surrogate-Based Modeling in Flotation Processes. Comput. Aided Chem. Eng. 2018,

43, 229–234. [CrossRef]
16. Koh, E.J.Y.; Amini, E.; McLachlan, G.J.; Beaton, N. Utilising a Deep Neural Network as a Surrogate Model to Approximate

Phenomenological Models of a Comminution Circuit for Faster Simulations. Miner. Eng. 2021, 170, 107026. [CrossRef]
17. Géron, A. Hands-On Machine Learning with Scikit-Learn, Keras and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent

Systems, 2nd ed.; O´Reilly Media: Sebastopol, CA, USA, 2019.
18. Miller, A.M. Review of R for Data Science: Import, Tidy, Transform, Visualize, and Model Data by Hadley Wickham and Garrett

Grolemund. ACM SIGACT News 2017, 48, 14–19. [CrossRef]
19. VanderPlas, J. Python Data Science Handbook: Essential Tools for Working with Data, 1st ed.; O´Reilly Media: Sebastopol, CA,

USA, 2016.

https://www.mdpi.com/article/10.3390/min12060750/s1
https://www.mdpi.com/article/10.3390/min12060750/s1
http://doi.org/10.35624/jminer2019.01.05
http://doi.org/10.15446/rbct.n39.50451
http://doi.org/10.1515/amsc-2015-0009
http://doi.org/10.1016/j.jmrt.2014.10.011
http://doi.org/10.11591/telkomnika.v10i8.1660
http://doi.org/10.1016/j.compchemeng.2014.01.008
http://doi.org/10.1016/j.mineng.2018.11.020
http://doi.org/10.3390/min8020044
http://doi.org/10.3390/min10070604
http://doi.org/10.1002/2015WR016967
http://doi.org/10.1029/2011WR011527
http://doi.org/10.1016/B978-0-444-64235-6.50041-3
http://doi.org/10.1016/j.mineng.2021.107026
http://doi.org/10.1145/3138860.3138865

Minerals 2022, 12, 750 19 of 19

20. Saltelli, A.; Ratto, M.; Andres, T.; Campolongo, F.; Cariboni, J.; Gatelli, D.; Saisana, M.; Tarantola, S. Global Sensitivity Analysis. The
Primer; John Wiley & Sons, Ltd.: Chichester, UK, 2007; ISBN 9780470725184.

21. Saltelli, A.; Annoni, P.; Azzini, I.; Campolongo, F.; Ratto, M.; Tarantola, S. Variance Based Sensitivity Analysis of Model Output.
Design and Estimator for the Total Sensitivity Index. Comput. Phys. Commun. 2010, 181, 259–270. [CrossRef]

22. Lucay, F.A.; Lopez-Arenas, T.; Sales-Cruz, M.; Gálvez, E.D.; Cisternas, L.A. Performance Profiles for Benchmarking of Global
Sensitivity Analysis Algorithms. Rev. Mex. Ing. Química 2019, 19, 423–445. [CrossRef]

23. Durakovic, B. Design of Experiments Application, Concepts, Examples: State of the Art. Period. Eng. Nat. Sci. 2017, 5. [CrossRef]
24. Kumar, S.; Bhatnagar, V. A Review of Regression Models in Machine Learning. J. Intell. Syst. Comput. 2021, 2, 40–47. [CrossRef]
25. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg,

V.; et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. Available online: https:
//www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf (accessed on 5 March 2022).

26. Tutorials Point TensorFlow Tutorial. Tutor. Point (I) Pvt. Ltd. 2019. Available online: https://www.tutorialspoint.com/tensorflow/
tensorflow_pdf_version.htm (accessed on 5 March 2022).

27. Meyer, D. The Interface to Libsvm in Package E1071. Support Vector Mach. 2022. Available online: https://cran.r-project.org/
web/packages/e1071/vignettes/svmdoc.pdf (accessed on 4 March 2022).

28. Breiman, L. Documentation for R Package RandomForest. Mach. Learn. 2001, 45. Available online: https://cran.r-project.org/
web/packages/randomForest/randomForest.pdf (accessed on 4 March 2022).

29. Fritsch, S.; Guenther, F.; Wright, M.N.; Suling, M.; Mueller, S.M. Package ‘Neuralnet.’. 2019. Available online: https://cran.r-
project.org/web/packages/neuralnet/neuralnet.pdf (accessed on 3 March 2022).

30. Huang, G.-B.; Zhu, Q.-Y.; Siew, C.-K. Extreme Learning Machine: Theory and Applications. Neurocomputing 2006, 70, 489–501.
[CrossRef]

31. Wang, L.P.; Wan, C.R. Comments on “The Extreme Learning Machine. IEEE Trans. Neural Netw. 2008, 19, 1494–1495. [CrossRef]
[PubMed]

32. Liang, N.Y.; Huang, G.B.; Saratchandran, P.; Sundararajan, N. A Fast and Accurate Online Sequential Learning Algorithm for
Feedforward Networks. IEEE Trans. Neural Netw. 2006, 17, 1411–1423. [CrossRef] [PubMed]

33. Huang, G.; Huang, G.B.; Song, S.; You, K. Trends in Extreme Learning Machines: A Review. Neural Netw. 2015, 61, 32–48.
[CrossRef] [PubMed]

34. Wang, J.; Lu, S.; Wang, S.-H.; Zhang, Y.-D. A Review on Extreme Learning Machine. Multimed. Tools Appl. 2021, 1–50. [CrossRef]
35. Gogna, A.; Tayal, A. Metaheuristics: Review and Application. J. Exp. Theor. Artif. Intell. 2013, 5, 503–526. [CrossRef]
36. Talbi, E.G. Metaheuristics: From Design to Implementation; Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009; ISBN 9780470278581.
37. Jierula, A.; Wang, S.; OH, T.-M.; Wang, P. Study on Accuracy Metrics for Evaluating the Predictions of Damage Locations in Deep

Piles Using Artificial Neural Networks with Acoustic Emission Data. Appl. Sci. 2021, 11, 2314. [CrossRef]
38. Sbárbaro, D.; del Villar, R. (Eds.) Advanced Control and Supervision of Mineral Processing Plants; Springer: London, UK; Dordrecht,

The Netherlands; Berlin/Heidelberg, Germany; New York, NY, USA, 2010. [CrossRef]
39. Pianosi, F.; Beven, K.; Freer, J.; Hall, J.W.; Rougier, J.; Stephenson, D.B.; Wagener, T. Sensitivity Analysis of Environmental Models:

A Systematic Review with Practical Workflow. Environ. Model. Softw. 2016, 79, 214–232. [CrossRef]
40. Nossent, J.; Elsen, P.; Bauwens, W. Sobol’ Sensitivity Analysis of a Complex Environmental Model. Environ. Model. Softw. 2011, 26,

1515–1525. [CrossRef]
41. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
42. Geurts, P.; Ernst, D.; Wehenkel, L. Extremely Randomized Trees. Mach. Learn. 2006, 63, 3–42. [CrossRef]
43. Magne, L.; Barría, J.; Améstica, R.; Ll, J.M. Evaluación de Variables de Operación En Molienda Semiautogena. Segundo Congreso

en Metalurgia e Ingeniería de Materiales, IBEROMET II. 8-14 noviembre, 1992, Instituto Tecnológico de Monterrey, Campus
Estado de México, México. Available online: https://www.revistas.usach.cl/ojs/index.php/remetallica/article/view/1701/1581
(accessed on 9 April 2022).

44. Abdel-Basset, M.; Abdel-Fatah, L.; Sangaiah, A.K. Metaheuristic Algorithms: A Comprehensive Review. In Computational
Intelligence for Multimedia Big Data on the Cloud with Engineering Applications; Elsevier: Amsterdam, The Netherlands, 2018;
pp. 185–231.

45. Hu, W.; Hadler, K.; Neethling, S.J.; Cilliers, J.J. Determining Flotation Circuit Layout Using Genetic Algorithms with Pulp and
Froth Models. Chem. Eng. Sci. 2013, 102, 32–41. [CrossRef]

46. Rahman, R.M.; Ata, S.; Jameson, G.J. The Effect of Flotation Variables on the Recovery of Different Particle Size Fractions in the
Froth and the Pulp. Int. J. Miner. Process. 2012, 106–109, 70–77. [CrossRef]

47. Kohmuench, J.N.; Mankosa, M.J.; Thanasekaran, H.; Hobert, A. Improving Coarse Particle Flotation Using the HydroFloatTM

(Raising the Trunk of the Elephant Curve). Miner. Eng. 2018, 121, 137–145. [CrossRef]
48. Maldonado, M.; Araya, R.; Finch, J. An Overview of Optimizing Strategies for Flotation Banks. Minerals 2012, 2, 258–271.

[CrossRef]
49. Weston, S. R: DoParallel. CRAN. 2022. Available online: https://cran.r-project.org/web/packages/doParallel/doParallel.pdf

(accessed on 9 April 2022).
50. Lam, S.K.; Pitrou, A.; Seibert, S. Numba. In Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in

HPC—LLVM ’15, Austin, TX, USA, 15 November 2015; ACM Press: New York, NY, USA, 2015; pp. 1–6.

http://doi.org/10.1016/j.cpc.2009.09.018
http://doi.org/10.24275/rmiq/Sim547
http://doi.org/10.21533/pen.v5i3.145
http://doi.org/10.51682/JISCOM.00202005.2021
https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf
https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf
https://www.tutorialspoint.com/tensorflow/tensorflow_pdf_version.htm
https://www.tutorialspoint.com/tensorflow/tensorflow_pdf_version.htm
https://cran.r-project.org/web/packages/e1071/vignettes/svmdoc.pdf
https://cran.r-project.org/web/packages/e1071/vignettes/svmdoc.pdf
https://cran.r-project.org/web/packages/randomForest/randomForest.pdf
https://cran.r-project.org/web/packages/randomForest/randomForest.pdf
https://cran.r-project.org/web/packages/neuralnet/neuralnet.pdf
https://cran.r-project.org/web/packages/neuralnet/neuralnet.pdf
http://doi.org/10.1016/j.neucom.2005.12.126
http://doi.org/10.1109/TNN.2008.2002273
http://www.ncbi.nlm.nih.gov/pubmed/18701376
http://doi.org/10.1109/TNN.2006.880583
http://www.ncbi.nlm.nih.gov/pubmed/17131657
http://doi.org/10.1016/j.neunet.2014.10.001
http://www.ncbi.nlm.nih.gov/pubmed/25462632
http://doi.org/10.1007/s11042-021-11007-7
http://doi.org/10.1080/0952813X.2013.782347
http://doi.org/10.3390/app11052314
http://doi.org/10.1007/978-1-84996-106-6
http://doi.org/10.1016/j.envsoft.2016.02.008
http://doi.org/10.1016/j.envsoft.2011.08.010
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1007/s10994-006-6226-1
https://www.revistas.usach.cl/ojs/index.php/remetallica/article/view/1701/1581
http://doi.org/10.1016/j.ces.2013.07.045
http://doi.org/10.1016/j.minpro.2012.03.001
http://doi.org/10.1016/j.mineng.2018.03.004
http://doi.org/10.3390/min2040258
https://cran.r-project.org/web/packages/doParallel/doParallel.pdf

	Introduction
	Methods
	Global Sensitivity Analysis (GSA)
	Design of Experiments (DoE)
	Machine Learning (ML)
	Methodology

	Applications
	SAG Mill: Batch Training
	Cell Bank: Batch Training
	SAG Mill: Online Sequential Training

	Conclusions
	References

