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Abstract: Understanding the rheology behavior of non-Newtonian mine paste backfill is critical to
ensure its flowability in the pipeline distribution system. Several rheology measurements methods
for paste backfill have been proposed in the literature to quantify the rheology properties. However,
there is no definite conclusion on the best measurement method to correctly predict pressure loss
in the paste backfill pipeline system with a high solid concentration. This study addresses the
issue by comparing several rheology measurements techniques, i.e., coaxial rheometer with various
configurations, vane viscometer, and slump and pipe loop tests, with regard to Bingham yield stress,
Bingham plastic viscosity, and pressure loss using statistical analysis. The paste backfill samples are
prepared from two different mine tailings: finer and coarser particles. The pressure loss from the
pipe loop test along with Buckingham-Reiner transformation using the Darcy-Weisbach equation are
used as reference properties. The results suggest that a simple slump test can accurately predict the
Bingham yield stress for coarser tailing. At the same time, a coaxial rheometer with MVDIN cup is
found to predict the Bingham paste properties accurately for finer tailing.

Keywords: mine paste backfill; coaxial rotational viscometer; vane; slump test; loop test; rheology

1. Introduction

Paste backfill is used in underground mines to fill voids left by previously mined
stopes and is transported via pipelines. Rheology is among the most important properties
in the paste backfill to determine its transportability and flowability. Rheometry is a general
term that comprises the measurement of rheological properties, while viscometry is specific
to viscosity measurements. In non-Newtonian fluids, the viscosity is dependent on both
shear stress and shear rate and is termed apparent viscosity η. Unlike Newtonian fluids,
multiple rheological parameters are required to define the relationship between shear stress
and shear rate for a non-Newtonian fluid.

Benzaazoua et al., 2004 [1] classifies two types of parameters that influence mechanical
properties of pastefill: (i) macroscopic properties that include all phenomena occurring
at the scale of a stope filled with pastefill and its interaction with adjacent rock such as
pastefill–rock interface, drainage, and cracks; and (ii) microscopic properties that include
the pastefill components (tailings, water, and binder) and their changes during the curing
process.

Paste backfill, a yield-stress fluid, can be characterized as a Herschel-Bulkley fluid [2,3].
However, Herschel-Bulkley being a three-parameter model, is complicated to solve, and
the non-Newtonian Bingham plastic model is more commonly used [4,5]. Two material
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properties of consequence for the design of paste backfill flow are yield stress and plastic
viscosity. When the yield stress of a Bingham fluid is exceeded by applying stress, the fluid
flows as an accurate viscous material with a finite viscosity. Of the numerous methods
available to determine rheology, vane rheometer and slump tests are commonly used
to determine yield stress. In contrast, cup and bob viscometer and flow loop tests are
employed to determine both yield stress and plastic viscosity. The history of these tests and
their development are discussed below.

The cup and bob viscometer setup involves a cylindrical bob rotating inside a coaxial
cylindrical cup with the test material placed in the annulus between the two. The measure-
ment is the torque required to rotate the bob at an angular velocity and this data is related
to the shear stress and shear rate. The shear-stress-shear-rate rheogram is then related to the
preferred non-Newtonian fluid models to determine the yield stress and plastic viscosity.

A disadvantage experienced with the cup and bob viscometer is the potential for the
development of plug flow on the wall of the cup. At low shear rates, the shear stress close
to the bob will be sufficiently higher than the critical yield stress, but near the cup, it may
be below the point. This results in the development of a solid plug while the bob rotates.
The annulus between the cup and bob can be minimized as much as possible to overcome
this. Another possible error in this method is the development of slip due to the cylinder’s
smooth surface and a small gap between cup and bob. When testing a multiphase fluid
such as paste backfill, phase separation along the cylinder wall leads to wall slip [6,7].
The flow near the cylinder wall moves easily and forms a lubrication layer. The particle
concentration is zero near the wall and rises rapidly away from the wall until it reaches the
bulk concentration. This phenomenon of lower concentration is called wall depletion or
slip and is about five particle diameters thick.

Some studies proposed roughening the cylindrical walls or profiling the wall with
cylindrical grooves at right angles to the direction of shear to eliminate slip effects [7–10].
Increasing the gap between cup and bob is believed to reduce the slip effects at the wall as
well [11].

Krieger and Maron, 1952 [12], claimed that in an infinite cup, the material in the cup
does not behave as a fluid throughout. A solid-like behavior is seen in regions where the
shear stress experienced is below the yield point. Jacobsen, 1974 [13], found the yield point
of a fluid in an infinite medium by evaluating from the bob to the critical radius was the
same as that proposed by Krieger and Maron, 1952 [12], who evaluated from the bob to the
cup.

Zengeni et al., 2012 [14], claimed the cup and bob method to be unreliable for yield
stresses above 100 Pa. They proposed a method to measure the rheology by using a bob
in an infinite cup that is at least twice the diameter of the bob and twice the height of the
bob. They compared their results with the conventional cup and bob, vane in an infinite
cup and a pipe loop test. They found close agreement at low viscosity mixtures and lesser
agreement as the solid concentration increased.

The vane was first used in soil mechanics to measure shear strength [15,16], and has
since been adapted as a reliable technique for yield-stress measurement in high concentra-
tion non-Newtonian slurries [6,17].

The vane rheometer consists of a star-shaped impeller that is designed to eliminate
slip between the sample fluid and the vane geometry. The study by Saak et al., 2001 [18] on
the influence of wall slip in cement pastes claimed that concentric cylinders suffer from
a slip during yield-stress measurements due to the formation of a slip layer at the walls
of the cylinders as the shear stress approaches the yield point. The vane eliminates this
since shearing occurs within the material and not at the walls. When the vane rotates, the
material in between the blades is trapped within a circular cylinder confined by the blades’
tips. The shear stress is evenly distributed over the cylinder surface and the rotating vane
behaves like a solid cylinder without slip [19].

Liddel and Boger, 1996 [20], studied the effects of rotational speed in a stress-controlled
and rate-controlled mode for yield-stress measurement using vane. They noticed an upper



Minerals 2022, 12, 678 3 of 23

limit for the rotational speed, beyond which the measured yield stress increased with
increasing rotational speed. This was because the network bonds holding the fluid together
stretches beyond its elastic limit and pulls apart rapidly without a possibility for relaxation
at high speeds. Mizani and Simms, 2016, [21] compared yield stresses from different
rheometric techniques. They found some consistency when increasing shear stress and
shear rate for a 90–125 Pa value and larger discrepancies by lowering them.

Chandler, 1986, [22] first adapted the slump test to cylindrical geometries but fell short
in giving an analytical relationship between slump height and yield stress. Since then,
numerous works have been carried out to provide relationships between slump height and
yield stress for different mold geometries and materials [23,24]. Pashias et al., 1996, [25]
developed a technique to determine yield stress for high-volume fraction-concentrated
mine tailings using cylindrical frustums for slump tests. They conducted slump tests on
three suspensions and related them to values obtained from rotational vane tests arriving
at an expression to predict yield stress. Chao et al., 2020, [26] found that the slump reduced
as the solid content increased, while the cement to tailing ratio was kept constant. Niu
et al., 2022, [27] used machine learning to predict the rheological parameters of paste
backfill. Wu et al., 2022, [28] reviewed the characteristics and rheology of cemented
paste backfill. One of their conclusions is that a standard for measuring the rheological
properties of paste backfill should be established. Dikonda et al., 2021, [29] evaluated the
effect of specific mixing energy to the rheological properties of paste backfill. Silva et al.,
2021, [30] compared slump, flow table spread, fall cone, and vane technique to measure
the rheological properties of paste backfill. They concluded that the fall cone test resulted
in best correlation measurement of dry content and of yield-stress measurements using a
viscometer and rheometer.

Researchers have turned their attention to validating slump experiments numerically
using computational fluid dynamics in recent years. Roussel and Coussot, 2005, [31]
compared the slump results from the ASTM mini cone with numerical simulations. They
could predict experimental results with good agreement for the range of yield stresses
tested, assuming a pure shear flow with neglected inertia effects. They further state that
their results hold good for a yield-stress material that can be considered a continuum. The
presence of a granular phase makes the rheological analysis of slump or spread test in
terms of a single intrinsic constitutive equation impossible [32]. The cylindrical and conical
slump tests concluded that the cylinder accurately predicts the material yield stress while
being less mathematically intensive. They also compared the yield-stress values with vane
test results for dimensionless yield-stress values above 0.2 (dimensionless slump values less
than 0.25) and observed that the yield-stress value increased with an increase in cylinder
heights. They concluded this phenomenon was because both slump and yield-stress values
were converted to dimensionless quantities by dividing with mold height H′′ and a change
in height will affect both quantities.

Bouvet et al., 2010, [33] used a numerical approach to study the global flow behavior
of Portland cement pastes. They suggested that surface tension effects were significant
for low yield-stress fluids. At yield stresses above 20 Pa, they observed less agreement
between spread and yield stress. Gao and Fourie, 2015, [34,35] conducted tests on low
viscosity and yield-stress kaolin pastes and observed spread to be a more effective means
of determining yield stress over the slump. They concluded from numerical simulations at
different mold-lifting velocities that the lifting velocity had a greater impact on the slump
than the spread. They claimed this effect is less significant in high viscosity and yield-stress
materials. However, this is in contradiction to previous sensitivity tests carried out that
indicated that the slump is independent of lift rate [32]. In our study, we assume the lift
velocity of the mold does not affect the slump and ignore the effects of inertia and viscosity.
For high-viscosity and yield-stress fluids such as paste backfill, the yielding regions in the
sample stop flowing when the Von mises yield criterion is met and the unyielded regions
keep their initial shape [31].
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The flow pipe loop test is a small-scale laboratory-level experiment performed to
measure the pressure drop across closed loop pipelines. The pressure drop is used to
determine the wall shear stress developed during the flow. In combination with the
Buckingham–Reiner transformation and Darcy-Weisbach equation for shear rate, the yield
stress and plastic viscosity for a non-Newtonian fluid can be determined. This method is
highly accurate but is not widely used due to the expensive nature of the experimental
setup.

Over the years, this test has been adopted for determining rheological properties
of cemented paste backfill or other non-Newtonian fluids by predicting pressure drop
in pipelines and through regression analysis at various solid concentrations and mineral
compositions. Wang et al., 2004, [36] conducted tests to determine the rheology of cemented
tailings from a Chinese nickel mine. They found good agreement between the regression
curve developed through mathematical relationships and test results by assuming the fluid
to be Bingham. Senapati and Mishra, 2012, [37] studied the rheology of high concentration
fly ash-bottom ash mixture slurry in pipelines using the power-law model. They found a
good agreement between the predicted pressure loss and experimental values. Recently,
Wu et al. [38] conducted flow loop tests with cemented coal gangue-fly ash backfill (CGFB)
and studied the effects of solid concentration, ratios of different components to pressure
drop and transportability. Wu et al. [39] conducted flow loop tests to study the effects of
volumetric flow rate, pipe diameter, and solid concentration. They found good agreement
with their CFD results.

Despite numerous research attempts to measure rheology properties and pressure
loss in mine paste backfill, there is no definite conclusion on the best and simple mea-
surement method to be used for such a purpose. The main objective of this paper is to
make a statistical analysis of the rheological properties of paste backfill obtained from
various measurement methods under different temperatures to determine the method that
most accurately predicts the properties and pressure in mine paste backfill. A series of
experiments were conducted, and data were obtained from cup and bob viscometer, slump,
vane rheometer, and flow loop tests. The flow loop test is considered the standard and all
results are analyzed against it for accuracy. This paper discusses the theory behind each
test, comparing results using five statistical models and a conclusion summarizing the
results.

2. Materials and Paste Backfill Preparations

The composition of the tailings from Mine-A and Mine-B are detailed below in Table 1.
The composition of both tailings is similar except that the SO3 content of tailing from
Mine-B is higher. Also, there is no CO2 and ZnO particle in Mine-A tailings. The particle
size distribution (PSD) of tailings is shown in Figure 1 and Table 2. Mine-A tailings have a
wider range of particle sizes than Mine-B. Mine B tailings are very fine, with 80% of the
material passing 20 µm while the cumulative passing of Mine-A is only 45%. Particle sizes
have a significant impact on the pressure drop across a pipe and are dependent on solid
fraction and flow rate. Particles of larger size decrease the void space in the backfill, and,
therefore, porosity. Coarser tailings have larger inter-particle spaces in comparison to finer
tailings [40,41]. The mine-B curve has a steeper grade than Mine-A, indicating a narrower
size range.

A sample of the highest solid concentration is mixed from thickened tailings and
processed mine water for every test. The sample is then gradually diluted by adding
more water for subsequent tests. A sample is weighed and dried in an oven at each solid
concentration to determine the exact solid fraction of the sample used in each trial. The
samples used in this study for Mine-A and Mine-B are detailed below in Tables 3 and 4,
along with the type of experiment performed with them, rheometer sensors, cup types, and
temperatures. The HAAKE Viscotester 550 was used with MVDIN and SVII sensors for cup
and bob tests and FL100 vane sensor for yield stress. Standard and infinite cup mediums
were used to assess the wall effects. All slump tests were conducted using 3-in, 4-in, and
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6-in cylindrical molds. Tests were conducted at three different temperatures, 15 ◦C, 25 ◦C,
and 35 ◦C to represent seasonal temperature variations along with possible viscous heating
along the pipeline, which may influence rheological properties and pressure loss in the
pipeline transportation system. All tests were conducted in clean laboratory environments.

Table 1. Mine-A and Mine-B tailings composition.

Oxide Mine-A Mine-B Oxide Mine-A Mine-B

CO2 - 0.88% K2O 3.46% 2.70%

Na2O 3.32% 1.50% CaO 5.67% 6.52%

MgO 3.26% 3.97% TiO2 0.57% 0.64%

Al2O3 18.64% 17.67% MnO 0.15% 0.13%

SiO2 54.79% 49.02% Fe2O3 6.75% 9.15%

SO3 2.83% 7.29% ZnO - 0.15%
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Table 2. Mine-A and Mine-B tailings characterization.

Parameter Mine-A Mine-B

d80 60 µm 20 µm

d50 25 µm 10 µm

d20 8 µm 6.62 µm

Cu 10.1 3.5

Cc 1.1 1.3

% <20 µm 45% 80%

Specific gravity 2.74 3.40
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Table 3. Mine-A sample data (bullet represents measurement technique performed).

Test Label
Cup Type Temperature (◦C)

Standard Infinite 15 25 35

Loop test • • •
MVDIN-Cup1 • • • •
MVDIN-Cup2 • • • •
MVDIN-Cup3 • • •
FL100-Vane1 • •
FL100-Vane2 •
3in-Slump1 • •
4in-Slump1 • •
6in-Slump1 • •
6in-Slump2 •

Table 4. Mine-B sample data (bullet represents measurement technique performed).

Test Label
Cup Type Temperature (◦C)

Standard Infinite 15 25 35

Loop test • • •
MVDIN-Cup1 • • • •
MVDIN-Cup2 • • •
MVDIN-Cup3 • • •

SVII-Cup4 • • •
FL100-Vane1 • • •
3in-Slump1 • • •
4in-Slump1 • • •
6in-Slump1 • • •

3. Theory and Methods
3.1. Rotational Rheometer

Choosing a rheometer is a crucial element in the accurate estimation of a fluid’s
rheological parameters. There are several methods to obtain viscosities using a rotational
rheometer. The viscometer may be ramped up from a low speed up to a high speed for
quick measurements. Stepping through specific shear rates long enough for a steady-state
viscosity to be achieved is another approach. The type of fluid being analyzed and the
shear rate range determine the type of geometry used with the rheometer. For low-viscous
fluids at low shear rates, a geometry with a large surface area is preferred to maximize
the torque response from the applied shear rate. At higher shear rates, a narrower gap
is preferred to avoid turbulence. Thicker fluids are tested with a cone or plate system to
ensure the applied torque range overlaps with the desired stress range. Figure 2 below
shows a schematic representation of different rheometer geometries.
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Paste backfill, being a mixture of thickened tailings and water, is prone to particle
sedimentation at low solid concentrations and/or if kept untouched. A cup and bob
geometry with a stationary cup and a rotating bob is preferred for such fluids. In this
system, settling occurs parallel to the geometry, so particle concentration close to the surface
is relatively constant. In cone or plate systems, particles settle perpendicular to the upper
surface and concentration reduces over time, resulting in a drop in the viscosity measured.
This behavior also arises due to wall slip. During fluid flow, it is generally assumed that the
velocity at the wall equals zero (a no-slip condition). This condition is not universal, and in
some scenarios, slip occurs on the wall. Slip may not necessarily occur continuously, and it
may alternate with adhesion. This phenomenon, which is characteristic of the flow of melts
and concentrated solutions at high shear stresses, is called the stick-slip phenomenon [42].

As a general rule of thumb, the annulus between the cup and bob should be at least
5–10 times the size of the largest particle in the test sample. For larger particles, the gap
needs to be increased accordingly. Failure to follow this might result in inaccurate data
recordings and scratches on the geometry surface. Viscosity is a temperature-dependent
property, and any sudden changes in temperature will produce erroneous data. To counter
this, the viscometer geometry is enclosed within a thermal jacket, which keeps the tem-
perature gradients to the absolute minimum. The viscosity decreases for liquids with an
increase in temperature. Similarly, an increase in pressure causes an increase in viscosity
but this effect is only seen at very high pressures of 10–100 bar or higher [43].

This study uses a controlled rate rotational viscometer—HAAKE VT 550 to test the
samples. The viscometer is connected to a computer with an installed program to record
data. An FL100 vane attachment immersed in a cylindrical cup filled with the sample is
used to measure yield stress. A cup and bob attachment using MV-DIN and SVII sensors
measure yield stress and plastic viscosity.

3.2. Cup and Bob Viscometer

This setup consists of an inner cylinder (bob) attached to the spindle of the viscometer.
The bob is immersed into a container (cup) that holds the backfill test fluid occupying the
annulus. A torque is applied to the spindle allowing the bob to rotate, generating a velocity
gradient across the gap. The gradient is called shear rate or the change in linear velocity
(cm/s) between two adjacent fluid layers divided by their distance in centimeters (cm).
Hence, the shear rates are expressed in reciprocal seconds (1/s). The resistance to motion
develops shear stress that is expressed in pascal (Pa). The viscometer calculates the shear
stress from the torque and the dimensions of the bob as per Equation (1). Similarly, the
shear rate is determined from the angular velocity and the radii of both cup and bob as per
Equation (2). Figure 3 and Table 5 below detail the schematic representation of the cup and
bob viscometer and its dimensions.

τ =
M

2πR2
b H

(1)
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.
γ =

2ωR2
c(

R2
c − R2

b
) (2)
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Figure 3. Schematic representation of cup and bob viscometer.

Table 5. Cup and bob dimensions.

Description MV DIN SV II

Bob radius (Rb) 19.36 mm 10.10 mm

Cup radius (Rc) 21.00 mm 21.00 mm

Bob height (H) 58.08 mm 19.60 mm

The viscometer tests were conducted in accordance with the ASTM C1749-17a standard
for shear rates of 0 to 220 s−1. The angular velocity varies from 0 to 25 rad/s with maximum
torque of 0.025 Nm. Two sensors, MV DIN and SV II, were used in this test with two
different types of containers. The first is a standard cup attachment and the second a cup
with a height and diameter that is at least twice that of the bob [12]. The second cup is
referred to as an infinite cup and aims to minimize the wall slip effects. Minor modifications
were made in the shear rate calculation to account for the infinite cup. The slope of a plot
between the natural log of angular velocity and shear stress at the bob was determined.
This slope was used to obtain a modified shear rate, as shown in Equation (3).

.
γ
′
= 2ω(slope) (3)

A plot was generated from the shear rate (
.
γ) versus shear stress (τ) values as per

Equations (1) and (2). This plot was curve-fitted with a plot with the same shear rate
(

.
γ) versus a shear stress (τ′) determined using Bingham plastic viscosity and Bingham

yield-stress values as per Equation (4).

τ′ = τB +
(
ηB

.
γ
)

(4)

Tests were conducted in an infinite medium as per Zengeni et al., 2012 [14] and
Jacobsen, 1974 [13] to understand wall slip when measuring paste backfill rheology. When
Rc>>Rb as in the case of an infinite cup, the angular velocity and shear stress at the bob
wall can be written as shown below in Equation (5) [13,14,44].

dω

dτW
=

f (τW)

2τW
(5)
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Solving this expression for the shear rate at bob wall and multiplying both numera-
tor and denominator by angular velocity ω, and simplifying, gives Equation (6), which
provides a means to determine the shear rate at bob in an infinite cup.

f (τW) =
.

γW = 2τW

(
dω

dτW

)
=

(
2ωτW

ω

)
dω

dτW
= 2τW

d(lnω)

d(lnτW)
(6)

3.3. Vane Rheometer

The vane rheometer consists of impeller blades attached to a rotating shaft geometry.
This attachment helps minimize slip by increasing sample–sample contact. The vane is
immersed into the backfill test sample in a container with minimum disturbance to the
sample allowing the paste to yield under static conditions. It is slowly rotated at a constant
rate to detect the yielding moment when the torque exerted on the vane shaft reaches
a maximum value [45]. The breaking up of the flocculated particles in the fluid causes
a maximum torque response and as the vane rotates, the yield stress acts uniformly on
the side and ends of an equivalent cylinder [46]. The rotation of the vane in the material
induces irreversible particle depletion near the blades [47] and thus, all-new measurements
were done using newly prepared samples.

To avoid the influence of viscous resistance and instrument inertia, the rotational
speed is kept below 10 rpm and H′

2Ri
< 3.5. The radius of the vane geometry, Ri should be

lesser than the radius of the container Ro in accordance with the relationship in Equation
(7). Figure 4 and Table 6 below detail the schematic representation of the cup and bob
viscometer and its dimensions.
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Table 6. Vane dimensions.

Description FL 100

Vane radius (Ri ) 11.00 mm

Standard cup radius (Ro ) As per Equation (7)

Vane height (H′ ) 16.00 mm

Ro > Ri

(
τy

τ′w

)0.5
(7)

Assuming that the sample yields along the cylindrical surface created by the vane, the
peak torque required to overcome the yield stress can be expressed as explained by Steffe,
1992:

M0 =

(
πH′D2

2

)
σy + 4π

∫ D
2

0
R2

i

(
2Ri
D

)m
σydRi (8)
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The constant m is used to account for the shear stress at the upper and lower ends
of the vane geometry. A value of m = 1 records errors less than or equal to 3.7% for
H′
2Ri

> 2 [48]. A value of m = 0 indicates the end effects are assumed to be insignificant.
Equation (8) can then be re-written to obtain the yield stress.

σy =
2M0

πD3

(
H′
D

+
1
3

)−1
(9)

3.4. Slump Test

The slump test is an experiment generally used to determine the workability of fresh
concrete. It has continued to be used extensively in many fields due to its simplicity in
operation and acceptable accuracy [35]. The difference between the heights of the slump
mold and the slumped material is used to determine the yield stress. Alternatively, the
final spread diameter of the slumped material can also be used [25,31,33].

The slump molds used in this study were cylindrical PVC molds. They were chosen
over the conventional ASTM cones for a few reasons; the cylindrical model contains fewer
variables than the ASTM model, which is mathematically more complex. The conical
geometry of the ASTM model also makes it difficult to fill, giving rise to air bubbles. Three
cylindrical molds were used, with a height of 3 in (76.2 mm), 4 in (101.6 mm), and 6 in
(152.4 mm). The diameter of each mold is equal to its height. A perfect slip condition is
assumed at the wall of the slump mold, such that the lift velocity of the mold, viscosity,
or flow inertia effects do not affect the slump in any form and the undeformed material
is assumed to be a perfect cylinder [31,32]. The only stress that acts on the material is
vertically downwards due to its weight.

It was ensured that the setup was free of dents, deformations, or material stuck from
previous trials. The prepared backfill was poured into the molds placed on top of a flat,
rigid, and non-absorbent surface that had been cleaned prior to the commencement of
the test. The mold was then steadily raised off the surface vertically without torsional or
lateral motion causing the backfill to flow out and settle on the surface. The slump height
of the backfill was measured from the top of the mold to the surface. Slump heights were
converted into dimensionless forms with the use of arithmetic relations laid forth by Pashias
et al., 1996, [25] for the slump cylinder test, as shown in Equations (10)–(12). Figure 5, below,
shows the schematic representation of the stress distribution in the cylindrical slump mold.

s′ =
s

H′′
(10)

τ′y =
τy

ρgH′′
(11)

s′ = 1− 2τ′y

[
1− ln

(
2τ′y

)]
(12)
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Figure 5. Schematic arrangement showing the initial and final stress distribution of the cylindrical
mold slump test [25].
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3.5. Flow Loop Test

The flow loop test experiment is employed to measure the pressure gradient along
the length of the pipe and characterize the fluid flow behavior in pipes. A schematic
arrangement of the setup is shown below in Figure 6. The system is 12 m long with pipes
running 8.2 m and the rest comprises the positive displacement pump and hopper. There
are four pressure gauges installed; two upstream and two downstream. The pipe length L
between gauges P1–P2 and P3–P4 is 1500 mm.
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Figure 6. The flow loop test experimental apparatus (all dimensions are in mm). PD—positive
displacement pump; HP—hopper; P1, P2, P3, and P4—pressure gauges; HE—heat exchanger; FM—
flow meter.

The test was conducted for the two mine tailings, A and B, at various solid concentra-
tions at three different temperatures, 15 ◦C, 25 ◦C, and 35 ◦C, as explained by [5]. From the
data collected by the pressure gauges, the pressure drop due to the resistance in flow is ob-
tained by removing the gravitational head loss as detailed below in Equations (13) and (14).
An average of ∆P12 and ∆P34 gives the pressure gradient as detailed below in Equation (15).

∆P12 = (P1 − ρgL)− P2 (13)

∆P34 = P3 − (P4 − ρgL) (14)
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∆P
L

=
1
2

(
∆P12

L
+

∆P34

L

)
(15)

The Buckingham–Reiner equation shown below in Equation (16) is used to determine
the rheological properties of the paste backfill. The shear rate γ′ from this is equated with
the pseudo shear rate in Equation (17). The wall shear stress expressed in terms of pressure
loss is displayed in Equation (18). Regression analysis is performed between the results
from Equations (16) and (17) to determine the plastic viscosity µP and the yield stress τy.

γ′ =
τW
ηB

[
1− 4

3

(
τy

τW

)
+

1
3

(
τy

τW

)4
]

(16)

γ′ =
8V
D′ (17)

τW =
D′
4

∆P
L

(18)

The yield stress and plastic viscosity obtained from the above-mentioned tests corre-
spond to their respective solid concentration for which they were tested. Bingham plastic
fluids, in general, have yield stress and plastic viscosity that are dependent on the solid
concentrations. Coussot and Piau, 1995, [49] developed empirical correlations to describe
the dependency of yield stress in terms of solid concentration. This relationship is shown
below in Equation (19), where a and b denote empirical coefficients that can be determined
for the conditions; a ≥ 0 and b ≥ 0.

τB = a(C)b (19)

The dependence of apparent viscosity with solid concentration is expressed in terms
of relative viscosity. Relative viscosity is the ratio of apparent viscosity to a dynamic
viscosity of carrier fluid which is water in this case. Krieger and Dougherty, 1959, [50]
developed a relationship that is shown below in Equation (20) where c and d denote
empirical coefficients that can be determined for the conditions; c ≤ 1 and d ≥ 1.

ηB
ηW

=

(
1− C

c

)−d
(20)

Equations (19) and (20) provide the Bingham yield stress and Bingham plastic vis-
cosity of the non-Newtonian paste backfill samples in terms of entire sets of tested solid
concentrations.

4. Results and Discussion
4.1. Yield Stress

The graphs displaying the yield-stress results are shown below in Figure 7a–f. For
Mine-A at 15 ◦C and 25 ◦C, all MVDIN standard cup results show very good repeatability
and good agreement with loop test data when extrapolated to higher solid concentrations.
Vane’s results show very good agreement with slump results but not with the loop test. At
35 ◦C, there is a moderate agreement between the cup and bob results and the loop test. For
Mine-B, there is very good agreement between MVDIN standard cup, SVII standard cup
and loop test results at 15 ◦C and 25 ◦C and moderate agreement at 35 ◦C. There is moderate
repeatability in the slump results at lower temperatures than higher temperatures and no
good correlation is seen between a slump and the other tests. Slump results overpredict
the yield stress by a minimum of 200 Pa at lower solid concentrations, and this is seen to
increase at higher solid concentrations.

Generally, increasing solid fraction increases Bingham yield stress. Looking into the
effect of temperature on the rheological properties, increasing paste temperature decreases
the Bingham yield stress for both tailings. This is due to the fact that higher temperature
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leads to lower shear rate. Particle size has significant effect on the Bingham yield stress—
higher particle size gives rise to a higher yield stress. Notably, paste from tailings of Mine-B
has around 50% higher Bingham yield stress as compared to its Mine-A counterpart.

Minerals 2022, 12, x FOR PEER REVIEW 13 of 23 
 

 

overpredict the yield stress by a minimum of 200 Pa at lower solid concentrations, and 

this is seen to increase at higher solid concentrations. 

Generally, increasing solid fraction increases Bingham yield stress. Looking into the 

effect of temperature on the rheological properties, increasing paste temperature de-

creases the Bingham yield stress for both tailings. This is due to the fact that higher tem-

perature leads to lower shear rate. Particle size has significant effect on the Bingham yield 

stress—higher particle size gives rise to a higher yield stress. Notably, paste from tailings 

of Mine-B has around 50% higher Bingham yield stress as compared to its Mine-A coun-

terpart. 

(a) 

 
(b) 

 

Figure 7. Cont.



Minerals 2022, 12, 678 14 of 23
Minerals 2022, 12, x FOR PEER REVIEW 14 of 23 
 

 

(c) 

 
(d) 

 

Figure 7. Cont.



Minerals 2022, 12, 678 15 of 23
Minerals 2022, 12, x FOR PEER REVIEW 15 of 23 
 

 

(e) 

 
(f) 

 

Figure 7. Bingham yield stresses for (a) Mine-A at 15 °C; (b) Mine-A at 25 °C; (c) Mine-A at 35 °C; 

(d) Mine-B at 15 °C; (e) Mine-B at 25 °C; and (f) Mine-B at 35 °C. 

4.2. Plastic Viscosity 

The graphs displaying the plastic viscosity results are shown below in Figure 8a–f. 

For Mine-A, there is a moderate agreement between MVDIN standard cup results and 

loop test data with a standard cup over predicting the plastic viscosity at all temperatures. 

The variation is lower at low solid concentrations and rises as the concentration increases. 

In the case of Mine-B, at all temperatures, there is very good agreement between the 

MVDIN standard cup results and the loop test data. The SVII infinite cup shows good 

Figure 7. Bingham yield stresses for (a) Mine-A at 15 ◦C; (b) Mine-A at 25 ◦C; (c) Mine-A at 35 ◦C;
(d) Mine-B at 15 ◦C; (e) Mine-B at 25 ◦C; and (f) Mine-B at 35 ◦C.

4.2. Plastic Viscosity

The graphs displaying the plastic viscosity results are shown below in Figure 8a–f. For
Mine-A, there is a moderate agreement between MVDIN standard cup results and loop
test data with a standard cup over predicting the plastic viscosity at all temperatures. The
variation is lower at low solid concentrations and rises as the concentration increases. In
the case of Mine-B, at all temperatures, there is very good agreement between the MVDIN
standard cup results and the loop test data. The SVII infinite cup shows good agreement
at 15 ◦C but deviates and underpredicts at 25 ◦C. The MVDIN infinite cup does not show
good agreement with the loop test and the MVDIN standard cup.
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In general, it is obvious that increasing the solid fraction increases the Bingham plastic
viscosity. The effect of temperature to the Bingham plastic vicosity is apparent. Higher
temperature reduces the viscosity due to lower water viscosity for both pastes. Similarly to
yield stress, higher particle size also increases the Bingham plastic vicosity significantly. In
this particular case, paste from the Mine-B tailing has about twice higher Bingham plastic
viscosity as compared to paste from Mine-A tailings.
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Tailings are the larger component in paste backfill and their influence on rheology is by
PSD. The characterization of paste backfill from different mines is unique because of PSD,
tailings mineralogy, history of mineral processing, and intended application [51,52]. Along
with PSD, particle surface area and density strongly affect the yield stress and apparent
viscosity of a fluid [53]. The rheological behavior of paste backfill is highly dependent
on PSD and, in particular, the fraction of particles under −20% µm (Fall et al., 2005). A
minimum of 15% < 20 µm is necessary to create paste properties [54]. Very fine tailings
are generally mixed with aggregates such as sand to alter the PSD to achieve desirable
rheological properties and strengths. These factors determine the design of paste backfill
mixing, distribution, and transport systems.
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The cup and bob tests have a 72–73% solid fraction limitation when testing paste
backfill. This limit does not apply for loop, vane, and slump tests where samples up to
74–75% could be tested. This upper limit for cup and bob restricts its application despite
having the best agreement with loop test data. Smaller bobs are more preferred for testing
large yield-stress fluids and this is seen with the small-sized bob SVII having a better
agreement with the loop test data in an infinite medium than the larger MVDIN bob.

4.3. Statistical Analysis

The large amount of data generated from each test was statistically compared with
loop test data. The goal was to use different statistical analyses tools to identify trends
between the different tests to determine the best fit. Root mean square error (RMSE), mean
absolute percent error (MAPE), symmetric mean absolute percent error (SMAPE), Akaike
information criterion (AIC), and the Bayesian information criterion (BIC) were employed
in this study. Table 7 shows the governing expression used in each statistical model and its
interpretation criterion. Tables 8 and 9 showcases the results obtained from each statistical
analysis for Mines A and B. The statistical analysis was conducted for each rheology test
against the loop test for all three temperatures.

Table 7. Governing expression of each statistical model and its interpretations.

Model Governing Expression Interpretation

Root mean square error (RMSE) RMSE =

√
∑N

i=1(Ft−At)
2

N

The smaller the errors, the better the
model

Mean absolute percent error (MAPE) MAPE = 100
N

N
∑

i=1

|Ft−At |
At

The smaller the percentage error, the
better the model

Symmetric mean absolute percent error
(SMAPE) SMAPE = 200

N

N
∑

i=1

|Ft−At |
|Ft+At |

The smaller the percentage error, the
better the model

Akaike information criterion (AIC) AIC =
N + Nlog(2π) + Nlog

(
RSS

N

)
+ 2(p + 1)

The smaller the value, the better the
model

Bayesian information criterion (BIC) BIC = N + Nlog (2π) + Nlog
(

RSS
N

)
+(logN)(p + 1)

The smaller the value, the better the
model

Table 8. Statistical analysis of rheology tests against the loop test experiment for Mine-A.

Rheology Test RMSE MAPE SMAPE AIC BIC

Bingham yield stress

MVDIN standard cup
and bob 41.249 380.800 102.122 161.899 160.373

FL100 vane 326.416 113.171 68.964 190.295 188.589

3in slump 199.101 165.085 83.508 76.360 73.484

4in slump 235.518 179.605 89.476 77.964 75.089

6in slump 338.703 239.278 104.574 81.436 78.560

Bingham plastic viscosity

MVDIN Standard cup
and bob 0.256 240.080 93.455 25.045 23.520

For Mine-A Bingham yield stress, the RMSE analysis shows that MVDIN standard
cup and bob had the lowest error (41.249), MAPE and SMAPE showed that FL100 vane
had the lowest percentage error (113.171 and 68.964), while AIC and BIC showed that the 3
in cylindrical slump had the best regression (76.360 and 73.484). The MVDIN standard cup
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and bob had the least errors only from the RMSE method, while all the other methods gave
high errors—indicating the test to be ineffective in accurately predicting the Bingham yield
stress for Mine-A. A plausible explanation could be due to lower particle sizes in Mine-A
tailings that travel through the space in between standard cup and bob and have minimum
wall slip effect, as compared to larger tailing particles. The same trend was observed when
comparing Bingham plastic viscosity values, but a conclusive result may be obtained by
comparing against different types of testing methods.

Table 9. Statistical analysis of rheology tests against loop test experiment for Mine-B.

Rheology Test RMSE MAPE SMAPE AIC BIC

Bingham yield stress

MVDIN standard cup
and bob 53.642 40.862 54.591 126.916 125.001

MVDIN infinite cup
and bob 61.292 21.417 25.343 54.357 51.220

SVII infinite cup and
bob 56.292 38.419 48.264 59.088 56.088

FL100 vane 88.563 100.430 71.147 102.776 100.467

3in slump 220.953 150.203 81.409 116.275 113.967

4in slump 279.756 179.837 91.663 119.760 117.451

6in slump 416.296 240.154 107.715 125.629 123.320

Bingham plastic viscosity

MVDIN standard cup
and bob 0.083 23.419 23.537 −2.349 −4.264

MVDIN infinite cup
and bob 1.034 57.297 92.982 22.448 19.311

SVII infinite cup and
bob 0.500 68.024 107.564 17.182 14.045

For Mine-B Bingham yield stress, the MVDIN infinite cup and bob has all-round
lowest errors across the five statistical models. This could be due to the minimum wall-slip
effect in the MVDIN infinite cup. It is very closely followed by SVII infinite cup and bob,
MVDIN standard cup and bob, and FL100 vane. The slump tests for Mine-B showed the
highest errors, making them unsuitable for Mine-B testing. The Bingham plastic viscosity
comparisons showed that MVDIN standard cup and bob had the lowest errors. The SVII
infinite cup and bob and MVDIN infinite cup and bob also had marginally lower errors
than the MVDIN standard cup. The infinite cup medium is accurate when measuring yield
stress and plastic viscosity. Its superiority over the standard cup is not easily discernible,
although the results were consistent throughout when using a smaller bob.

A comparison of the different available rheology testing methods shows that for
backfill prepared from tailings of fine particle sizes (d50 = 10 µm; 80% < 20 µm), such as
Mine-B, the cup and bob viscometers have very good accuracy in predicting both Bingham
yield stress and Bingham plastic viscosity and show good agreement with loop test data.
For tailings with coarser particle sizes (d50 = 20 µm; 45% < 20 µm), such as Mine-A, the
vane and slump tests show better overall agreement over MVDIN standard cup and bob
while predicting Bingham yield stress.

When the statistical analyses result from Tables 8 and 9 are read in conjunction with
the results from Figures 7a–f and 8a–f, it is clear that the model selection criteria AIC and
BIC best represent the test results accuracy. The smaller 3-in-sized slump mold has the
best accuracy in predicting Bingham yield stress of coarser Mine-A paste backfill over 4-in
and 6-in slump molds and the rotational rheometer tests. Larger mold sizes overpredicted
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the yield stress, as stated by Clayton et al., 2003. For the much finer Mine-B paste backfill,
MVDIN infinite cup and bob best predicts the Bingham yield stress and MVDIN standard
cup and bob best predicts the Bingham plastic viscosity. A larger number of tests performed
using more varied types of mine tailings based on particle size, mineralogy, and chemical
properties will help us to gain a better understanding of the characterization of mine paste
backfill and to select the most efficient and easily accessible rheology testing method.

5. Conclusions

In this study, different commonly used rheology measurement techniques for mine
paste backfill were compared. All tests were compared against the results from the pipe
loop test for accuracy. The tests were conducted at three different temperatures, 15 ◦C,
25 ◦C, and 35 ◦C in laboratories. The following conclusions were made from observed
results.

i. Slump tests overpredicted the Bingham yield stress for the finer Mine-B tailings but
showed good agreement with vane for the coarser Mine-A tailings. The predictions
made using the smallest 3-in mold had the least errors as statistical analyses while
testing coarse paste backfill. MVDIN bob in an infinite cup showed the least errors
while testing the finer Mine-B tailings.

ii. FL100 vane tests showed moderate agreement with the loop test data for both sets
of mine tailings. The effects of wall-slip reduced by the vane compared to smooth
cylinders using MVDIN cup and bob tests were not profound in the tests. Good
agreement was seen between FL100 vane and MVDIN cup and bob tests.

iii. The infinite cup did not show a discernible superiority over the standard cup. How-
ever, the smaller SVII bob in the infinite cup has a better agreement for both Bingham
yield stress and Bingham plastic viscosity over the MVDIN bob in the infinite cup.

iv. The MVDIN standard cup had the least errors while predicting Bingham plastic
viscosity for finer Mine-B tailings, as well as coarser Mine-A tailings.

v. Higher particle size gives rise to a higher Bingham yield stress and viscosity.
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