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Abstract: With the era of big data, the prediction and evaluation of geological mineral resources have
gradually entered into a new stage from digital prospecting to intelligent prospecting. The theoretical
method of big data mining can contribute to deep mineral resource prediction and evaluation. This
paper extracts ore-causing and ore-caused anomaly information based on text intelligent mining
technology, and constructs a regional conceptual prospecting model based on geological prospecting
big data. First, we set up a corpus based on text big data discovery and preprocessing technology.
Second, we used CNN multiple scale text classification technology to analyze geological text data
from the two main aspects: ore-causing anomalies and ore-caused anomalies. Third, we used a
statistical method to analyze the semantic links between content-words, and we constructed chord
diagrams and ternary diagrams to visualize the content-words and their links. Finally, we constructed
a regional conceptual prospecting model based on the knowledge graphs.

Keywords: geological big data; prospecting information; text mining; Songtao-Huayuan manganese
deposits

1. Introduction

The prospecting model can be classified as a knowledge-driven model, data-driven
model, and hybrid-driven model [1–4]. The development of mineral resources prediction
technology rooted in metallogenic regularity has always been the primary task of quan-
titative prospecting prediction. The intelligent mining method of big data such as deep
learning is a data-driven model [5]. Its advantage is that it can extract useful features
from large amounts of data and form a predictive model. However, there are always some
defects, such as only considering the correlation rather than the causality, only focusing
on the results rather than the process. How to better integrate expert knowledge with
intelligent mining methods is undoubtedly the key to carry out intelligent metallogenic
prediction under the background of big data. In the study of quantitative prospecting
prediction, geoscience literature is an important carrier of achievements in geoscience
research. Extracting key information from it and visualizing it are very important tasks,
because academic literature and mineral exploration reports contain much key prospecting
information. In the era of big data, the main issue of geological informatization will be
mining, organizing, analyzing, and visualizing the key semantic information of massive
geological scientific literature intelligently by computer.

The concept of text mining was proposed by Feldman [6], which mainly includes four
parts: data set acquisition, text pre-processing, data mining, and visualization. It is an
inevitable trend to apply the technical methods of text mining to the mining of geological
text information for finding prospecting information. This technology can not only help us
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obtain key prospecting information from the multi-dimensional massive heterogeneous
geological text big data, but also provide directions for the automatic construction of
prospecting models. Wang et al., proposed a CRF-based word segmenter and analysis
method for the problem of word segmentation in geological dictionaries [7]. In 2006,
the concept of deep learning was put forward, providing a new direction for text data
mining [8]. Convolutional Neural Network (CNNs), as one of the most robust deep
learning classification algorithms [9], has been successfully applied to natural language
processing [10]. Bengio et al., used CNNs to construct language models and measure the
similarity between words by their vector distance [11]. As Yoon Kim et al., adopted CNNs
for sentence classification [12], Liang Jun et al., discussed the feasibility of CNNs in Chinese
Weibo sentiment analysis [13]. Sun Songtao et al., also successfully used the CNN model for
supervised multi-emotion classification learning, and completed the multi-label sentiment
classification of Weibo [14]. Subsequently, the RM-CNN algorithm proposed by Feng S
successfully performed multi-label sentiment detection [15].

A knowledge graph is a form or product of data organization that expresses entities,
concepts, and their semantic relationships by means of directed graphs, providing new
ideas for the visual expression of natural language processing [16,17]. It is essentially a
semantic network [18], and it has been widely used in the field of geosciences [19,20]. Wang
et al., successfully applied the knowledge graph to the key information representation of
geological unstructured text, demonstrating the application potential of natural language
processing and knowledge graph technology in geoscience research [7]. In 2018, Y.L. Wu
proposed a prospecting model construction method based on the key technology of geolog-
ical text big data discovery and mining for the demand of mineral prospecting prediction,
and verified the feasibility of the technical method with a typical example [21]. A workflow
is proposed by Li Shi et al., to extract key prospecting information from geoscience text
data by text mining based on CNN classification, which realizes the intelligent extraction
of geological prospecting information [22].

2. Workflow

With the increasing difficulty of prospecting, breakthroughs in mineralization theories
and exploration techniques have become the most important factors of scientific and
technological innovation. The accurate and comprehensive construction of the prospecting
model is of great significance to quantitative prospecting prediction and evaluation. Based
on previous studies, we propose a conceptual prospecting model construction technology
based on big data. It mainly includes two parts: (1) prospecting information extraction
based on CNN and (2) conceptual prospecting model construction based on machine
learning. The workflow is shown in Figure 1.
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Figure 1. The workflow of conceptual prospecting model construction technology based on big data.
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3. Methods
3.1. Prospecting Information Extraction Based on CNN

The prospecting information extraction technique used in this paper refers to the
method proposed by Li Shi et al. in 2018 [22]. On the basis of this method, the classification
of key prospecting information is refined. In this paper, key prospecting information will be
extracted from both ore-causing geological anomalies and ore-caused geological anomalies
to lay the foundation for the next step of semi-automatic construction of prospecting model.

3.1.1. Data Acquisition and Pre-Processing

We obtained the corpus from both local area network (LAN) and wide area network
(WAN). The Everything software was redeveloped based on C# platform and combined
with MySQL relational database approach to search and filter the LAN data. Then, regional
geological reports that cannot be accessed by public networks were obtained. For WAN
data, a dual iterative approach based on keywords and URLs was proposed. Based on the
expert knowledge system, especially the knowledge of quantitative prediction of mineral
resources, a corresponding logical structure tree was established. The initial URL seed site
was generated by searching the keywords in the knowledge system using a search engine,
and its data content was analyzed and extracted to generate new keywords and added
to the structure tree. Through machine learning of URL link seeds and structure trees,
new URLs and keywords were continuously discovered to form the URL structure trees.
The two branches were mutually iterative to form comprehensive search encirclement
in two directions.

The data pre-processing mainly included data cleaning, format conversion, and word
segmentation processing. Data cleaning means de-tagging the text data acquired by big
data discovery, removing wrong or duplicate URLs, as well as preliminary screening of
local literature. Format conversion refers to the batch conversion of file formats of the
geological literature to be processed. Files were divided into three levels: related news,
related literature, and regional reports for weighting operations, and finally formed a
mixed corpus. Word segmentation refers to the process of segmentation firstly according
to the geological dictionary and then the general dictionary in the jieba dictionary before
performing statistics.

3.1.2. Text Classification Based on CNN

In this paper, a CNN algorithm based on the open source TensorFlow architecture
was chosen to train the word vectors of the geological content-words by using massive
geoscience text sample sets. After constructing a word vector lookup table We, supervised
classification learning of CNN models was performed in combination with the training set.
The geological text data of the study area was used as the test set for the final discriminative
output. When the input test set was at word, sentence, and paragraph levels, the output
of the model was the classification results of the text of different levels. The CNN text
classification model (Figure 2) trained by a large number of geological samples in this study
refers to the algorithm proposed by Yoon Kim in 2014 [7].

Sample sets of geological text of sentence and paragraph levels are used as initial
inputs. Feature information is transferred to a multi-layer model for computation. In each
layer, a different convolution is used to extract the important features of the text. The
deeper the level becomes, the more abstract the extracted features. Each feature extraction
layer is connected to a pooling layer used to find the local average or maximum value. This
feature extraction structure enables the model to have good sample transformation error
tolerance and feature recognition capabilities. The training process of the classification
model based on the paragraph sample set can be regarded as the model training process
for multiple long sentences, which is roughly the same as the process above.
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Figure 2. The structure of CNN text classification model used in this work.

3.1.3. Statistics Analysis and Visualization

We performed statistical analysis and visual expression of text data classified by the
CNN model, so that the prospecting information in the massive text data can be presented
more clearly, and it can better serve the geological research. It mainly included content
word extraction and semantic relationship extraction, and finally it was visually expressed
through word clouds and knowledge graphs. Among them, knowledge graphs included
ternary diagrams drawn by Netdraw and Ucinet6, chord diagrams drawn by Gephi, and
word clouds drawn by R language, etc.

Content Word Extraction and Visualization

This study divided geoscience texts into eight categories, namely geological prospect-
ing, geophysical prospecting, geochemical prospecting, remote sensing and metallogenic
background, metallogenic period, genetic type, and mineralization type. Content words
represent the prospecting information contained in geoscience texts, mainly including
terminologies, techniques, data processing, and descriptive texts [7].

Documents containing valuable information often contain high-frequency content
words [23], as well as words that are informative but not frequent [24]. If a word or
phrase appears frequently in an article and rarely in other articles, it is considered to
be a good category differentiator and a good keyword for classification. TF-IDF (Term
Frequency-Inverse Document Frequency) is a method to extract low-frequency words that
are informative to assess a word’s significance to a certain document in a data set.

The term frequency (TF) refers to how often a given word appears in a given document.
For a word in a particular document, its importance can be expressed as:

t fi,j =
ni,j

∑k nk,j
(1)

In the above equation, the numerator is the frequency of occurrences of the word
in the document, while the denominator is the sum of the occurrences of all words in
the document.
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The inverse document frequency (IDF) reflects the general importance of a term. The
IDF for a particular term can be obtained in the following way:

id fi = ln
|D|∣∣{j : ti ∈ dj

}∣∣ (2)

|D| is the number of all documents and
∣∣{j : ti ∈ dj

}∣∣ is the number of documents contain-
ing the term. Thus, the TF-IDF is calculated as:

t f id fi,j = t fi,j × id fi =
ni,j

∑k nk,j
ln

|D|∣∣{j : ti ∈ dj
}∣∣ (3)

A term has a higher TF-IDF when it has a higher term frequency within a certain
document and a lower document frequency in the overall data set. TF-IDF tends to filter out
the common words and keep the keywords. Therefore, TF-IDF can effectively differentiate
between keywords and common words.

The word frequency of the top-ranked high-frequency words was plotted as shown in
Figure 3. The word cloud shows conventional word frequency statistics for high frequency
words (when the frequency is greater than the threshold n). The threshold n can be selected
manually, and the font size is proportional to the word frequency. It helps us to read
prospecting information in this locality of the literature in a simple and clear way by
showing conventional word frequency statistics for high frequency words.

Figure 3. Examples of the word cloud in different shapes: (a) geophysical prospecting; (b) geological
prospecting; (c) metallogenic background.

Relationship Extraction and Visualization

The key words in the geoscience text were extracted, and the co-occurrence ma-
trix was used to determine the connections between the content words. In text data,
a sentence can be divided into content words and semantically ambiguous function
words [25]. Content words representing main entities are the carriers of key informa-
tion in a document, while the high-frequency function words concatenate words into
sentences. If two content words are adjacent to each other in the corpus, their relationship
is co-occurrence. This co-occurrence preserves the word order relationship of adjacent
words and stores the co-occurrence relationship into a two-dimensional array. The co-
occurrence frequency of substantive words is counted, and the N pairs of substantive
words with higher co-occurrence frequency are extracted to finally generate an N × N two-
dimensional co-occurrence matrix. Then, the co-occurrence matrix is visualized to generate
a knowledge graph.

As a semantic network with a directed graph structure, the knowledge graph visualizes
the overall knowledge architecture of text data, so as to reveal its dynamic development
pattern. The knowledge graph, as a structured semantic knowledge base, includes a
series of nodes, edges, and attributes, and its basic model is a triad, generally an “entity-
relationship-entity” triad [17]. Chord diagrams and ternary diagrams represent entities and
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relations in terms of nodes and edges. These diagrams are constructed based on the three
variables “from”, “to”, and “weight”.” From” denotes the starting word and “to” denotes
the ending word.” “From” and “to” are defined based on the order of the substantive words.
“Weight” is determined by the co-occurrence frequency of two substantive words in the
corpus. Figure 4a is an example of a ternary diagram that illustrates the key information
in the text data. The arrow on the edge indicates the word order, pointing to the latter
substantive word, and the thickness of the edge indicates the co-occurrence frequency of
the substantive words in the text. Figure 4b is an example of a chord diagram showing the
interrelationship between substantive words in a geological text. The width of the chords
is scaled according to the co-occurrence frequency of the substantive words.

Figure 4. The examples of ternary diagram and chord diagram: (a) ternary diagram of metallogenic
background; (b) chord diagram of remote sensing.

3.2. Conceptual Prospecting Model Construction Based on Machine Learning

In the quantitative prediction and evaluation of mineral resources, the construction
of a conceptual prospecting model has a very important guiding role [26]. The general
idea of this study is to obtain the information of ore-causing anomalies (metallogenic back-
ground, metallogenic period, genetic type, mineralization type) and ore-caused anomalies
(geological prospecting, geophysical prospecting, geochemical prospecting, and remote
sensing) in the study area from the text data through data mining technology, select the
metallogenic keywords and ore-controlling factors, match with the conceptual prospecting
model database, and construct the conceptual prospecting model of this type of deposit
based on machine learning.

The generalized conceptual prospecting model defines the metallogenic background
and metallogenic period of the deposit formation, determines the genetic type of the deposit,
and fully summarizes the combination of various ore-controlling factors of the same type
of deposit in the same geological setting. On this basis, various ore-controlling factors
that can be reflected by the actual data collected in the study area were screened out, then
the conceptual prospecting model was constructed. Combined with the two-dimensional
or three-dimensional digital model of the study area, the cube (or grid unit) was given
different characteristic variables to form the digital model of the study area. Based on
the digital model, combined with the known ore bodies (or ore points), the favorable
metallogenic conditions were analyzed and extracted.

The method of conceptual prospecting model construction used in this article was
proposed by Wu in 2017, and the following is a brief description of how it works [21].

3.2.1. Construction of Conceptual Prospecting Model Database

Conceptual prospecting model database is the foundation of conceptual prospecting
model construction. The construction of conceptual prospecting model database based on
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big data requires the establishment of a unified comprehensive and universal data structure
of prospecting model, so as to form a database composed of massive typical deposits. The
data organization of the database mainly includes two aspects. One is the name of the
model, and the other is the ore-controlling factor. There is a many-to-many relationship
between prospecting model and ore-controlling factors (as shown in Figure 5). The sources
of the models are mainly evaluation and prediction models of mineral resources potential
in China, the existing prospecting models in the laboratory and the prospecting models
sorted out from the relevant literature.

Figure 5. The many-to-many relationship between prospecting model and ore-controlling factors
(adapted with permission from Ref. [21]. 2017, Wu, Y.L).

At present, 88 prospecting models in China, 248 metallogenic models for typical
deposits in China, and 1521 ore-controlling factors have been collected in this database. An
entity description table of the conceptual prospecting model database is shown in Table 1.

Table 1. Entity description table of the conceptual prospecting model database.

Num Entity Description

1 Prospecting model Model number, name, reference, typical deposit, description
information, creation time, modification time

2 Ore-controlling factors Factor number, name, factor category, factor type, creation time,
modification time

3 Intermediate table Model number, factor number

3.2.2. Determination of Prospecting Model

The main process of machine learning approach to determine the best conceptual
prospecting model is as follows. The conceptual prospecting model database mentioned
in Section 3.2.1 is used as a training set, and the prospecting information obtained in
Section 3.1 is used as the data to be processed. The naive Bayesian probability of each
model in the database is calculated. Through the calculation of Bayesian probability,
deposits similar to the target deposit can be analyzed and the corresponding ore-controlling
factors can be extracted. The importance and utilization rate of the factors are calculated,
and weighted with the overall Bayesian probability of the model. The weighted calculation
results are ranked, and the top-ranked ore-controlling factors are selected to construct the
best prospecting conceptual model. The main principles of this method are as follows:
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Suppose there are m conceptual prospecting models y1, y2, . . . . . . ym, denoted as Y;
n ore-controlling factors are collected based on data mining, denoted as X, so there are:

Y = {y1, y2, . . . , ym} (4)

X = {x1, x2, . . . , xn} (5)

The method of model classification is to calculate the probabilities of ore-controlling
factors in the study area classified as a conceptual prospecting model. It is to solve for the
probability value P = {p1, p2, . . . , pm} of X = {x1, x2, . . . , xn} in the sample category set
Y = {y1, y2, . . . , ym}, where pi is the probability that X belongs to the category Yi.

Assume that there are ki ore-controlling factors in each conceptual prospecting model.
Therefore, there are H ore-controlling factors in m prospecting models:

H = ∑m
i=1ki (6)

According to the formulas above, the prior probability p(Yi) corresponding to each
conceptual prospecting model is:

P(yi) =
ki
H

(7)

According to Bayes theorem, it is obtained that:

p(yi|X ) =
p(X|yi)p(yi)

p(X)
(8)

The probability that the j− th(1 ≤ j ≤ n) mineral control factor in the study area is
in the i− th(1 ≤ i ≤ m) conceptual prospecting model is noted as p

(
xj|yi

)
. Because the

individual mineral control factors are conditionally independent, there are:

p(X|yi )p(yi) = p(x1|yi )p(x2|yi ) · · · p(xn|yi ) = p(yi)
n

∏
j=1

p
(
xj|yi

)
(9)

Therefore, the Bayesian probability of a certain model in the database is:

pi =
p(yi)∏n

j=1 p
(
xj|yi

)
p(X)

=
ki
H

n

∏
j=1

p
(
xj|yi

)
(10)

The Bayesian probability calculation results are sorted according to the probability.
On this basis, the keywords extracted after text mining are used as the target keywords of
the study area to match the names of high-Bayesian-probability models, then the model
matching results are obtained. The ore-controlling factors extracted after text mining are
matched with those in the model matching results, and m prospecting models M1, M2,
. . . , Mm are selected. For a certain model, the ore-controlling factors are divided into
ci different categories according to the ore-controlling geological conditions in the data
cleaning process. The number of ore-controlling factors corresponding to each type is
Numi1, Numi2, · · · , Numici (1 ≤ i ≤ m), then in the category of the first model, the impor-
tance of each ore-controlling factor is:

Iij =
1

Numij
(11)

The range of i is [1, m], and that of j is [0, ci].
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Since one ore-controlling factor may appear in multiple models, the final importance
index of any ore-controlling factor in the study area is obtained by adding its importance in
each model. The calculation formula is:

I = ∑ Iij (12)

According to the selected m conceptual prospecting models, the number of ore-
controlling factors of all these models is H (without deleting the duplicate ore-controlling
factors), and the utilization rate of a certain ore-controlling factor can be calculated
as follows:

fi =
L
H

(13)

Among them, L refers to the times of occurrences of the ore-controlling factor in m
prospecting models.

On this basis, the weighted coefficient of each factor is calculated. Assuming that there
is an ore-controlling factor F, whose importance is I and utilization rate is f, it belongs to
conceptual prospecting models M1, M2, · · · , Ma in the database, the Bayesian probability
of the corresponding conceptual prospecting model is p1, p2, · · · , pa. Then, the formula
is on this basis, the weighted coefficient of each factor is calculated. Assuming that there
is an ore-controlling factor F, whose importance is I and utilization rate is f, it belongs to
conceptual prospecting models M1, M2, · · · , Ma in the database, the Bayesian probability
of the corresponding conceptual prospecting model is p1, p2, · · · , pa. Then, the formula is

W = ∑a
i=1 pi I f (14)

Based on the calculated weighting factor W, the ore-controlling factors are ranked
from highest to lowest according to their W values, and the top-ranked ones are selected to
form the best conceptual prospecting model.

In order to verify the correctness of machine learning, several ore-controlling factors
in the model are removed. The machine learning results are reliable if there are still the
removed factors in the matching results.

4. Experiment

The Songtao-Huayuan area was selected as this study area. A conceptual prospecting
model of Songtao-huayuan area will be constructed based on big data.

The study area is located in the adjacent area of Hunan and Guizhou provinces, and
it is the most important manganese resource accumulation area in China [27]. In recent
years, great progress has been made in manganese ore prospecting [28]. As one of the
important metallogenic belts in China, there are many large and medium-sized deposits
in northwestern Hunan, such as the Chatian mercury deposit, Minle manganese deposit,
Limei lead-zinc deposit, and Naopo lead-zinc deposit. By comparing the geological data
of the study area and other favorable areas of sedimentary manganese deposits, it is not
difficult to find that the adjacent areas of Hunan and Guizhou have a favorable environment
for sedimentary manganese mineralization. Therefore, the geological structure pattern and
paleo-sedimentary environment in the adjacent areas of Hunan and Guizhou provinces
have gradually become a research hotspot. The study area has also become an important
potential area for further exploring the “Datangpo“ sedimentary manganese deposits in
South China [29,30].

4.1. Prospecting Information Extraction Based on CNN
4.1.1. Data Acquisition and Pre-Processing

The establishment of text data is the basis of text analysis, and the acquisition sources
mainly include two aspects. On the one hand, the relevant text data were automatically
discovered and crawled from the WAN. On the other hand, the regional reports were
discovered from LAN, etc. The statistics are shown in Table 2 below.
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Table 2. Statistics of the corpus collection.

Type of Text Domestic Foreign Study Area Total

Related News 54,308 33,238 74 87,620
Related Literature 9327 4876 111 14,314
Regional Reports 57 0 8 65

Total 63,692 38,114 193 101,999

4.1.2. Text Classification Based on CNN

In this paper, the corpus collected was standardized and labeled with eight different
tags, namely geological prospecting, geophysical prospecting, geochemical prospecting,
remote sensing, metallogenic background, metallogenic period, genetic type, and mineral-
ization type.

In this study, we extracted some corpora to form training sets, including sentence
level and paragraph level. The sentence level contained 7766 labeled samples, and the
paragraph level contained 4771 labeled paragraph samples. A total of 1000 samples were
randomly selected from each training; 70% of the samples were used as the training set and
30% as the validation set. The testing set was processed by screening the corpus related to
“Songtao-Huayuan Manganese Mine”, and 800 words, 800 sentences and 800 paragraphs
were randomly selected (Table 3).

Table 3. Statistics describing the numbers of each category and levels in the training and testing sets.

Levels Geological
Prospecting

Geophysical
Prospecting

Geochemical
Prospecting

Remote
Sensing

Metallogenic
Background

Metallogenic
Period Genetic Type Mineralization Type Total

Training Set
Sentence 1659 506 522 331 3873 171 262 442 7766

Paragraph 1128 450 452 267 1652 196 288 338 4771

Testing Set
Word 100 100 100 100 100 100 100 100 800

Sentence 100 100 100 100 100 100 100 100 800
Paragraph 100 100 100 100 100 100 100 100 800

The best combination of parameters was adjusted by experimental comparison and
analysis. The maximum length of corpus samples was set to 216 bytes, the maximum
length of paragraph samples was set to 766 bytes, the word vector dimension was set to
d = 128, and the filter window size was set to dwin = 3,4,5. The random gradient descent
algorithm was used to update the weight according to the set number of cycles of 500, and
the model verification was carried out every 10 iterations. Finally, the optimal classification
model was trained.

From the overall performance of the model, the CNN classification model based on
multi-scale training set had better classification effect on geological texts (Figure 6). The
training accuracies of CNN models for ore-caused anomalies and ore-causing anomalies in
the classification model of sentence-level data set and paragraph-level data set were 93.6%,
98.4%, 91.2%, and 97.3%, which all achieved the optimal results. The validating accuracies
of these four models reached the peak at 500 iterations, which were 99.2%, 89.6%, 99%, and
83.9%, respectively, and also reached the approximate optimal results. The classification
errors of the models converged with the increase of iterations and the models did not show
over fitting. The training losses were 0.217, 0.033, 0.450, and 0.074, and the validating losses
were 0.019, 0.330, 0.042, and 0.772. The classification validating loss increased slightly as the
text length of the dataset increased. The classification results for the ore-causing anomaly
model were slightly worse compared to the ore-caused anomaly model. This is due to the
fact that the categories of ore-causing anomalies were biased towards geological language
description and therefore much more difficult to classify and identify.
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Figure 6. Comparison of training accuracy and loss of CNN model based on multi-scale training set:
(a,b) shows the training model of ore-caused anomaly based on sentence training set; (c,d) shows
the training model of ore-caused anomaly based on paragraph training set; (e,f) shows the training
model of ore-causing anomaly based on sentence training set; (g,h) shows the training model of
ore-causing anomaly based on paragraph training set.

A total of 800 test data were extracted from the test sample set for classification test.
The test accuracy, recall, and F1 of vocabulary, sentence, and paragraph and their average
values are compared in Tables 4 and 5 below. It shows that the classification accuracy of
sentences was the highest, followed by paragraphs, and the accuracy difference between
these two was 3.3%, indicating that the model has a good classification effect on long texts,
but the classification accuracy was lowest for words. The reason is that although the word
vector trained with the sentence training set preserved the back-and-forth relationship
of the text semantics, there may be multiple different categories of words in a sentence.
Therefore, ambiguity arises when classifying words with this model, leading to a decrease
in classification accuracy. By comparing the ore-caused anomaly classification group with
the ore-causing anomaly classification group, it can be seen that the former was significantly
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better than the latter, but the classification effects of different scale test sets still maintained
the same pattern. However, in general, the classification model based on CNN was effective
in multi-scale geological text classification.

Table 4. Comparison table of evaluation indexes between sentence classification model and paragraph
classification model.

Ore-Caused Anomaly Sentence
Classification Model

Ore-Caused Anomaly Paragraph
Classification Model

Ore-Causing Anomaly Sentence
Classification Model

Ore-Causing Anomaly
Paragraph Classification Model

Word Sentence Paragraph Word Sentence Paragraph Word Sentence Paragraph Word Sentence Paragraph

Test
Accuracy 0.860 0.939 0.879 0.895 0.919 0.912 0.569 0.795 0.627 0.594 0.785 0.810

Recall 0.860 0.938 0.877 0.895 0.919 0.911 0.569 0.795 0.628 0.594 0.785 0.810
F1 0.860 0.9385 0.878 0.895 0.919 0.9115 0.569 0.795 0.6275 0.594 0.785 0.810

Table 5. Comparison table of average accuracy, recall, and F1 measure of CNN model testing based
on multi-scale test set.

Ore-Caused Anomaly
Classification Model

Ore-Causing Anomaly
Classification Model

Word Sentence Paragraph Word Sentence Paragraph

Average Test
Accuracy 87.8% 92.9% 89.6% 58.2% 79% 71.9%

Average Recall 87.8% 92.9% 89.4% 58.2% 79% 71.9%
Average F1 87.8% 92.9% 89.5% 58.2% 79% 71.9%

After CNN multi-scale classification, the original data were automatically divided into
eight categories (geological prospecting, geophysical prospecting, geochemical prospecting,
remote sensing and metallogenic background, metallogenic period, genetic type, mineral-
ization type), and three different levels (word, sentence, and paragraph).

4.1.3. Statistics Analysis and Visualization

Diverse statistical methods and visualization techniques were proposed for classifying
texts in different scales of the study area. This paper performed word frequency statistics for
word-level text, TF-IDF statistics for segment-level text to achieve content word extraction,
and co-occurrence matrix statistics for sentence-level text to achieve relationship extraction.
The visual representation was performed by word cloud and knowledge graph (ternary
diagram and chord diagram) to deepen text features and semantic associations in a more
targeted way.

Conventional word frequency statistics were performed on the word-level classifi-
cation results of prospecting information (as shown in Figure 7). Facing the massive text
data, various types of geological texts were mixed with other words in the previous word
frequency statistics, and some of the keywords were easily washed out by other words,
lacking a certain degree of relevance. In contrast, the word frequency statistics of the
classified word-level documents made the research more targeted and easier to extract the
effective finding information of eight aspects in a targeted manner. For example, Figure 7a
shows that the Huayuan manganese deposit is mainly controlled by sedimentary basins in
the study area, and electrical exploration is the most important geophysical exploration
method in the study (Figure 7b), while geochemical exploration focuses on the high-value
anomalies of manganese such as manganese carbonate (Figure 7c). Figure 6d shows that
the remote sensing metallogenic information of manganese deposits is indirectly searched
by hydroxyl and iron stains. Figure 7e shows that the important ore-controlling factor in
the study area is the structure controlling the sedimentary strata, and the main metallo-
genic epoch is the Datangpo stage of the South China Era (Figure 7f). The genetic type of
Huayuan manganese deposit is generally considered as sedimentary manganese deposit
(Figure 7g), and the most important metallogenic type is rhodochrosite (Figure 6h).
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Figure 7. Word clouds of Songtao-Huayuan manganese ore: (a) geological prospecting, (b) geo-
physical prospecting, (c) geochemical prospecting, (d) remote sensing, (e) metallogenic background,
(f) metallogenic period, (g) genetic type, and (h) mineralization type.

The results of paragraph level classification were analyzed by TF-IDF and the top
ten substantive terms were obtained (Figure 8). By comparing the word frequency and
TF-IDF extraction results, we found that TF-IDF was more targeted and more suitable
for geological terminology extraction, such as “graben”, “rift basin”, “synsedimentary
fault”, etc. The words extracted by the common word frequency method were more
general, such as “geology”, “shale”, “mineralization”, etc. In terms of the extraction of
geophysical prospecting substantives, TF-IDF had obvious advantages in the extraction
of technical methods and data processing vocabulary, such as “inversion” and “AMT”
and so on. For geochemical prospecting, more factors related to mineralization were
extracted compared with word frequency statistics. TF-IDF was more effective in extracting
descriptive vocabulary of remote sensing, and it also extracted some vocabulary related
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to technical methods. This is because the text of remote sensing data was more general,
so the substantive vocabulary extracted by the two methods was basically consistent.
Similar to the results of remote sensing, the results of vocabulary extraction of metallogenic
background by TF-IDF were basically consistent with the results of word frequency statistics.
In terms of the metallogenic period, on the basis of specific geological ages such as “early
Nanhua era” and “Datangpo”, some geological time units with certain descriptions were
added, such as “interglacial”. In terms of genetic types, more professional words were
extracted by the TF-IDF method, such as “exogenous”. By comparing the results of TF-IDF
and word frequency statistics of metallogenic types, it was found that the results of TF-IDF
added more details to word frequency statistics, such as “greinerite”.

Figure 8. TF-IDF statistical graph of Songtao-Huayuan manganese ore: (a) geological prospect-
ing, (b) geophysical prospecting, (c) geochemical prospecting, (d) remote sensing, (e) metallogenic
background, (f) metallogenic period, (g) genetic type, and (h) mineralization type.

The co-occurrence matrix statistics were carried out for the sentence level to extract the
semantic relationship, and the knowledge graph of Songtao-Huayuan manganese deposit
was drawn as shown in Figure 9. It can be seen from the geological prospecting ternary
diagram in Figure 9a that manganese deposits in the study area are mainly controlled
by basins, especially secondary graben basins, and most of these basins related to miner-
alization are controlled by synsedimentary faults. The distribution of manganese ore in
the study area is also closely related to the thickness of shale deposition. The geophys-
ical prospecting ternary diagram (Figure 9b) shows that the commonly used methods
related to manganese exploration are high precision gravity method and audio-frequency
magnetotelluric method (MT, AMT). The geochemical ternary diagram (Figure 9c) reflects
the widespread occurrence of iron and manganese in the study area. The main chemical
composition of the ore is manganese carbonate, and the main redox environment formed is
the reduction environment. The remote sensing chord diagram in Figure 9d shows that the
anomaly information of manganese mineralization is closely related to hydroxyl and iron
staining alteration, and the remote sensing information of manganese mineralization can
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be extracted by the relevant alteration combination. The ternary diagram of metallogenic
background (Figure 9e) shows that the formation of manganese ore is related to the dis-
tribution of sedimentary basins controlled by faults. The fold structure in the study area,
especially the occurrence of anticlines, leads to the exposure of ore-bearing strata, and then
manganese ore can be found and exploited. The ternary diagram of metallogenic period
indicated that the main metallogenic period of Songtao-Huayuan manganese deposit is
the Datangpo period of Early Nanhua era (Figure 9f). From the ternary diagram of genetic
type (Figure 9g), it can be seen that experts and scholars have various understandings of
the genetic type of Songtao-Huayuan manganese deposit, which is generally sedimentary
manganese deposit. However, some scholars believe that it is affected by ancient gas
leakage, hot water sedimentation, or volcanic action. These understandings are dominant
in the current research of experts and scholars. Figure 9h is the mineralization type diagram
of manganese ore in the study area, which indicates that the main types of manganese
ore in the study area are rhodochrosite, calcium rhodochrosite and manganese-bearing
calcite. In addition to manganese ore, pyrite, galena, and sphalerite are also produced in
the study area.

Figure 9. Visualization of semantic relationships extracted: (a) ternary diagram of geological prospect-
ing, (b) ternary diagram of geophysical prospecting, (c) ternary diagram of geochemical prospecting,
(d) chord diagram of remote sensing, (e) ternary diagram of metallogenic background, (f) ternary
diagram of metallogenic period, (g) ternary diagram of genetic type, and (h) chord diagram of
mineralization type.
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4.1.4. Generalized Conceptual Prospecting Model Construction

According to the results of big data text analysis (Figures 7–9), the generalized prospect-
ing model in the study area is summarized as follows:

Ore-Caused Anomalies

Geological prospecting: Songtao-Huayuan manganese deposit is mainly controlled
by secondary graben basins. Therefore, synsedimentary faults have become relatively
important prospecting factors. The sedimentary facies related to manganese deposits in
the study area are manganese-bearing shale facies, and the sedimentary formation is black
shale formation. The deposit is composed of lenticular ore bodies. The manganese ore in
the study area was originally buried deeply, but it was exposed due to tectonic activity.
The lower section of Datangpo Formation is the occurrence horizon of manganese ore in
this area. The thickness of ore body is basically positively correlated with the thickness of
manganese-bearing rock series.

Geophysical prospecting: The main geophysical methods used in the study area are
AMT and high-precision gravity method. There are many strata and complex lithology
in the study area, but it can be basically divided into the resistivity structure of “high
resistivity–low resistivity–high resistivity”. The manganese-bearing rock series is located
in the transition zone of the second low resistivity layer and the third high resistivity layer,
and has the electrical characteristics of high polarizability and low resistivity. The Bouguer
gravity anomaly in the study area is negative, and the distribution of ore-bearing strata in
the study area can be inferred by studying the Bouguer residual gravity anomaly.

Geochemical prospecting: Iron and manganese are commonly associated in the study
area. The main chemical composition of the ore is manganese carbonate (MnCO3), which is
mainly formed in a relatively anoxic deep water reduction environment. Chemical elements
related to the distribution characteristics of manganese deposits in the study area are Mn,
P, Fe, etc.

Remote sensing: The abnormal information of manganese mineralization is closely
related to the alteration of hydroxyl and iron. The remote sensing information of manganese
mineralization can be extracted by the relevant alteration combinations.

Ore-Causing Anomalies

Metallogenic background: The study area is located in the southeast margin of the
Upper Yangtze Block, and the stratigraphic area is a transitional zone between the Yangtze
Block and the South China Block. The distribution of manganese deposits in the area is
strictly controlled by major faults, especially synsedimentary faults. At present, most of the
known manganese deposits are distributed in secondary graben basins.

Metallogenic period: The main metallogenic period of Huayuan manganese deposit is
Datangpo period. In the extensional environment of the Datangpo period, synsedimentary
faults constitute a manganese sedimentary basin. With the advent of the interglacial period,
the climate at that time became warm, leading to glacier ablation and a sharp rise in sea
level. At the same time, due to the decline of the crust after the Xuefeng Movement, the
transgression began, and the shallow-sea shelf deposits formed.

Genetic type: A general understanding of Songtao-Huayuan manganese deposit is
that it belongs to sedimentary manganese deposit. However, there are different opinions on
its specific genesis, including biochemical sedimentary genesis, carbonate cap sedimentary
genesis, volcanic eruption-sedimentary genesis, ancient gas leakage genesis, and hot water
sedimentary genesis. The most influential one is sedimentary genesis, but the ancient gas
leakage genesis, hot water sedimentary genesis, and volcanic eruption-sedimentary genesis
also have certain influence.

Mineralization type: The manganese minerals in the study area are mainly rhodochrosite,
followed by manganese calcite, calcium rhodochrosite, etc. The gangue minerals are mainly
quartz, dolomite, barite, pyrite, and so on. In addition to manganese ore, lead-zinc deposits
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(galena and sphalerite), copper deposits (chalcopyrite), and iron deposits (pyrite) are also
developed in the study area.

4.2. Conceptual Prospecting Model Construction Based on Machine Learning

Based on the above big data text analysis and mining technology of Songtao-Huayuan
manganese ore, the keywords are: “sedimentary”, “volcano”, “hot water”, “ancient gas”,
“manganese ore”; the selected ore-controlling factors are as follows: “deep fault belt”,
“early Nanhua epoch Datangpo priod”, “synsedimentary fault”, “rift basin”, “sedimentary
basin”, “shallow-sea basin facies”, “shallow-sea carbonate rock”, “shelf edge paleogeo-
graphic deposition”, “manganese-bearing rock series (black shale)”, “manganese carbon-
ate”, “rhodochrosite mineralization”, “hydroxyl alteration”, “iron alteration”, “lenticular”,
“interglacial period”, “Bouguer gravity anomaly”, “low resistivity”, “high polarizability”,
“Mn anomaly”, “P anomaly”, and “Fe anomaly”. The keywords and ore-controlling factors
obtained by text mining are matched with the database. Through the calculation of Bayesian
probability, the deposit model with high similarity with Songtao-Huayuan manganese
deposit can be selected (partly shown in Table 6), and the corresponding ore-controlling
factors can be extracted.

Table 6. List of the top 15 prospecting models in Bayesian probability ranking.

Rank Model ID Bayesian
Probability Model Name

1 ba0be2863b874b4086a7a359f423b6e4 0.077754 Shallow marine sedimentary manganese
deposit in Dounan, Yunnan

2 f1007cc260d442c084ddd69ef09a47da 0.013668 Sedimentary manganese deposit
3 7eff184b0ee24d34aa2ae4ed0fc25d02 0.010934 Sedimentary iron deposit

4 fe0efa84176e4ea78a5b6eb5c4bb2aed 0.010934 Sedimentary manganese deposit in
Xialei, Guangxi

5 e827a69faf85494bad054d0d8aed6bb2 0.008639 Layered carbonate lead-zinc-silver ore
6 b7416ae01c3f4bf9a6758af889ec32ab 0.008639 Sedimentary natural pyrite ore
7 33593590864c4a87adff8482d9016b25 0.008639 Sedimentary pyrite ore
8 6b760cc451ae4f4e87dadddfc6ab3cd5 0.004999 Carbonate type potash deposits

9 149c98869b704bf0942c6cab67f4e0d4 0.004999 Marine volcanic eruption sedimentary
iron-copper-sulfur deposit

10 81a2d91389e34f258658dbb63bb56fee 0.004665 Weathered crust type manganese ore

11 4a1887ad25ad45c49c98062aa87521bf 0.004116 Hydrothermal antimony polymetallic
deposit in clastic rock strata

12 32cf88ba33e844a8abdd0a36136e3daa 0.003888 Layered or hydrothermal veined
layer-controlled barite ore

13 2e874ed4a60f41949cc1455d1d5eda1c 0.003499 Marine or volcanic sedimentary rock type
copper-silver-gold deposits

14 545b0ff20d904d3183ed1dd4ec0e89bb 0.003499 Hydrothermal antimony deposits in
carbonate rocks

15 7bb1b395c8a54c179e97c463bdacf050 0.003499 Continental volcanic type pyrite ore

We calculate the importance and utilization rate of each ore-controlling factor in these
models. Combined with the Bayesian probability of each model, we calculate the weighted
value W, and rank the values of W from large to small. Table 7 is an example of W value
calculation of ore-controlling factors in shallow marine sedimentary manganese deposit in
Dounan, Yunnan.

We selected the top-ranked ore-controlling factors to form the best conceptual prospect-
ing model. Finally, the conceptual model of Songtao-Huayuan manganese ore prospecting
was formed as in Table 8. By comparing with the names of ore-controlling factors ob-
tained from text mining, it was found that there were more factors not extracted from text
mining, such as “Gravity Anomaly Transformation Zone” and “Y anomaly”. We believe
that the differences can reflect the additional value created by machine learning methods
to some extent.
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Table 7. An example of importance, utilization rate, and Bayesian probability weighting calculation.

Deposit Name Factor Type Factor Name Utilization Rate Importance Bayesian
Probability W

Shallow marine
sedimentary

manganese deposit
in Dounan, Yunnan

Stratigraphic
Signatures

Middle Triassic Ladinian stage 3 3 0.077754 0.699786
Deyoujiang fold belt of South

China fold system 2 2 0.077754 0.311016

Speculated distribution of
manganese-bearing rock series 2 0.67 0.077754 0.10419

Calcareous siltstone 2 0.67 0.077754 0.10419
Manganese-bearing outcrops 32 16.03 0.077754 39.88469

Bioclastic limestone intercalated
with mudstone 2 0.67 0.077754 0.10419

Geochemistry
Signatures Mn anomaly 2 2 0.077754 0.311016

Geophysical
Signatures

Aeromagnetic anomaly 9 9 0.077754 6.298074
Gravity anomaly 3 3 0.077754 0.699786

Tectonic
Signatures Fault 19 18 0.077754 26.59187

Ore Body
Morphology

Lenticular 21 8.53 0.077754 13.92807
Interbedded 41 19.53 0.077754 62.25996

Table 8. Songtao-Huayuan manganese ore conceptual prospecting model.

Deposit Name Factor Type Factor Name

Sedimentary manganese ore of
“Datangpo style”

Rock conditions Interglacial period, thick
moraine conglomerate

Ore body morphology Lenticular, interbedded

Stratigraphic signatures
Nanhua epoch Datangpo period

Manganes-bearing outcrops
Speculated distribution of

manganese-bearing rock series

Tectonic signatures
Manganese forming basin

Synsedimentary fault
Petrographic paleogeography

Geophysical signatures Gravity anomaly
Gravity Anomaly Transformation Zone

Geochemistry signatures
Mn anomaly
P anomaly
Y anomaly

5. Conclusions

A conceptual model construction method of mineral search based on geological big
data was innovatively proposed. Taking Songtao-Huayuan manganese ore in Hunan
province as an example, this paper completes the intelligent classification and annotation
of geological text big data, intelligently extracts the key information of mineral prospecting
from the massive geological text data, and constructs the prospecting model of the study
area. This method provides a strong basis for the automatic construction of the geological
big data-based prospecting model.

This study shows that CNN-based classification models are effective in multi-scale
geoscience text classification. Different classification models were trained for words, sen-
tences, and paragraphs, with the best classification results for long texts and the second-best
results for words. The method effectively avoids the phenomenon that important infor-
mation is overwhelmed by the massive data due to the mixing of multiple types of text
data, and provides a more targeted processing method for the intelligent extraction of
prospecting information.

The TF-IDF statistics and co-occurrence matrix statistics were used to extract content
words and semantic relationships, and the keywords and semantic associations of ore-
causing and ore-caused anomalies were expressed visually through word clouds, ternary
diagrams, and chord diagrams, which effectively and purposefully characterized the
potential prospecting information in geological literature.

This paper classifies the common ore-controlling factors in the prospecting model
into two categories: ore-causing anomalies and ore-caused anomalies, with a total of eight
subcategories. For these eight different subcategories, a CNN multi-scale classifier was
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used to classify the geological literature. The test accuracy rates of ore-caused anomalies
were 87.8%, 92.9%, and 89.6%, respectively; and ore-causing anomalies were 58.2%, 79%,
and 71.9%. By applying different statistical and visualization methods to different types of
texts, key prospecting information was extracted and machine learning algorithms were
used to match the conceptual prospecting model of the study area. This classification
method is more detailed than the method we proposed in our previous study, which is of
great significance to the prospecting of sedimentary types closely related to ore-causing
anomalies such as metallogenic background and metallogenic period.

In our previous work, the keywords used to match the prospecting model database
were obtained by reading literature. This paper uses the geological big data method to
replace the manual method in the stage of keyword selection, laying the foundation for the
intelligent construction of prospecting model in the future.
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