
Citation: Ao, C.; Teng, X.-M.;

Wei, X.-B.; Lei, T.; Wang, D.; Yang, J.

Geochemistry of Mudstones/Silty

Mudstones from the Qigequan

Formation and Shizigou Formation

in Yuejin-II Area, Southwestern Area

of the Qaidam Basin: Implications for

Sedimentary Environment and

Sandstone-Type Uranium Mineralization.

Minerals 2022, 12, 658. https://

doi.org/10.3390/min12050658

Academic Editors: Callum

Hetherington, Kunfeng Qiu

and Georgia Pe-Piper

Received: 15 March 2022

Accepted: 20 May 2022

Published: 23 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

minerals

Article

Geochemistry of Mudstones/Silty Mudstones from the
Qigequan Formation and Shizigou Formation in Yuejin-II
Area, Southwestern Area of the Qaidam Basin: Implications
for Sedimentary Environment and Sandstone-Type
Uranium Mineralization
Cong Ao 1,2, Xue-Ming Teng 1,2,*, Xue-Bin Wei 3, Tao Lei 3, Duo Wang 3 and Jun Yang 1,2

1 Tianjin Center, China Geological Survey, Tianjin 300170, China; a_o_cong@163.com (C.A.);
yangjun1249@126.com (J.Y.)

2 Key Laboratory of Uranium Geology, China Geological Survey, Tianjin 300170, China
3 China Petroleum Qinghai Oilfield Branch Exploration and Development Institute, China National Petroleum

Corporation, Dunhuang 736202, China; wxbqhyjy@petrochina.com.cn (X.-B.W.);
leitaoqh@petrochina.com.cn (T.L.); wangduoqh@petrochina.com.cn (D.W.)

* Correspondence: cugbtxm@126.com

Abstract: The Qaidam Basin has been the focus of sandstone-type uranium prospecting since the
1950s. In recent years, relying on the uranium geological survey project supported by the China
Geological Survey, and the cooperation with the Qinhai oil company, drilling work at the Yuejin-II
area in this basin has achieved breakthroughs on industrial-level sandstone-type uranium exploration.
In this study, we present major, trace and REE geochemical analysis of the Qigequan Formation
and the Shizigou Formation mudstones/silty mudstones collected from an industrial uranium ore
drillholes in the Yuejin-II area. The Shizigou and Qigequan Formations exhibit signatures of non-
intense alteration, low rock maturity and proximal provenance. The overall arid paleoclimatic
conditions controlled the sedimentation of large volume of uranium rich materials. The period of
relative humidity prompted the sedimentation of reduced agents. Aided by the neotectonic-induced
slopes and tectonic windows, oxygenated fluids migrated along permeable layers and extracted the
hexavalent uranium, transported in the form of uranyl ion (UO2+

2 ). When the oxygen–uranium-
rich fluids finally infiltrated into the reductive sand body, the hexavalent uranium was reduced to
tetravalent uranium and deposited in the form of uranium compounds. Large-scale and centrally
distributed reductive sand bodies provided favorable ore storage space for the sandstone-type
uranium mineralization in the Yuejin-II area.

Keywords: mudstones/silty mudstones; provenance; paleoclimate; sandstone-type uranium
mineralization; Yuejin-II area

1. Introduction

As the largest high-altitude terrestrial multi-energy intermontane basin in the north-
eastern Tibetan Plateau (Figure 1a), the Qaidam Basin preserves exceptionally thick Meso-
zoic and Cenozoic sediments of 3–16 km [1–11]. These sedimentary successions host many
important clues to the process of northward expansion and exhumation of the Tibetan
Plateau [2,12–19], and the climatic and environmental evolution of the Qaidam Basin and
its adjacent regions, especially the aridification process of Central Asia [20–31].
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Figure 1. (a) Satellite map showing the location of the Qaidam Basin and (b) geological sketch map 
of the Altun-Qilian-Kunlun (AQK) orogenic system in the northern Tibet (modified after [32,33]). 

Most previous climatic studies of the Tibet Plateau focused on the stable isotopes of 
carbonate rocks [27,29,30] and pollen composition of sediments [34–37], and they argued 
that the Late Cenozoic aridification affected by rapid and significant uplift of the Tibet 
Plateau and the land–sea redistribution associated with the continental collision of India 
and Eurasia [20,23,27]. The tectonic process of the Tibet Plateau and the subsequent cli-
matic variations not only control sedimentary materials, but also the concentration and 
preservation of sedimentary-related energy resources, including oil and natural gas [38–
40], coal [41–43] and sandstone-type uranium resources [44–48]. In particular, as the pri-
mary hydrocarbon source rocks, the mudstones/silty mudstones not only record im-
portant information on the paleoclimatic conditions [9], but also play one a significant part 
of source–reservoir–seal association for oil [49,50], source agent for coal [51,52], and serv-
ing as water-resisting layer or ore carrier for sandstone-type uranium deposits [53–55]. 

Factors that control the formation of exogenous uranium deposits are diverse and 
complicated, including the geological conditions, fluid type and behavior, reducing 
agents, etc. [56–60]. As early as 1983, Jiang [61] proposed that the paleoclimatic conditions 
play a basic but important role in controlling the above mentioned factors in all metallo-
genic stages of exogenous uranium deposits. It not only dominated the formation of ore-
bearing rocks, but also tightly controlled the leaching, migration and precipitation of ura-
nium [58,62–64]. However, only a few reports are available on the relationships between 
paleoclimate and sandstone-type uranium mineralization. Since 2000, with the deepening 
of prospecting for sandstone-type uranium deposits in the northern inland basin, the con-
trol of paleoclimate on the sandstone-type uranium mineralization has attracted the at-
tention of more and more scholars [62,65–67]. Two aspects can be concluded regarding to 
the paleoclimate constraints on sandstone-type uranium mineralization. One is that the 
paleoclimate controls the formation of favorable ore-bearing strata, which not only re-
stricts the structure and scale of sand body development of uranium reservoir, but also 
more importantly controls the types and spatial distribution of reduction agents inside 

Figure 1. (a) Satellite map showing the location of the Qaidam Basin and (b) geological sketch map
of the Altun-Qilian-Kunlun (AQK) orogenic system in the northern Tibet (modified after [32,33]).

Most previous climatic studies of the Tibet Plateau focused on the stable isotopes of
carbonate rocks [27,29,30] and pollen composition of sediments [34–37], and they argued
that the Late Cenozoic aridification affected by rapid and significant uplift of the Tibet
Plateau and the land–sea redistribution associated with the continental collision of India
and Eurasia [20,23,27]. The tectonic process of the Tibet Plateau and the subsequent
climatic variations not only control sedimentary materials, but also the concentration and
preservation of sedimentary-related energy resources, including oil and natural gas [38–40],
coal [41–43] and sandstone-type uranium resources [44–48]. In particular, as the primary
hydrocarbon source rocks, the mudstones/silty mudstones not only record important
information on the paleoclimatic conditions [9], but also play one a significant part of
source–reservoir–seal association for oil [49,50], source agent for coal [51,52], and serving
as water-resisting layer or ore carrier for sandstone-type uranium deposits [53–55].

Factors that control the formation of exogenous uranium deposits are diverse and
complicated, including the geological conditions, fluid type and behavior, reducing agents,
etc. [56–60]. As early as 1983, Jiang [61] proposed that the paleoclimatic conditions play a
basic but important role in controlling the above mentioned factors in all metallogenic stages
of exogenous uranium deposits. It not only dominated the formation of ore-bearing rocks,
but also tightly controlled the leaching, migration and precipitation of uranium [58,62–64].
However, only a few reports are available on the relationships between paleoclimate and
sandstone-type uranium mineralization. Since 2000, with the deepening of prospecting for
sandstone-type uranium deposits in the northern inland basin, the control of paleoclimate
on the sandstone-type uranium mineralization has attracted the attention of more and more
scholars [62,65–67]. Two aspects can be concluded regarding to the paleoclimate constraints
on sandstone-type uranium mineralization. One is that the paleoclimate controls the
formation of favorable ore-bearing strata, which not only restricts the structure and scale of
sand body development of uranium reservoir, but also more importantly controls the types
and spatial distribution of reduction agents inside and outside uranium reservoir during
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the diagenetic stage. The second is that during the metallogenic period, the paleoclimate
controlled the formation and properties of uranium-bearing oxidizing fluid. The hot and
arid climate made it difficult for uranium to migrate, and it precipitated quickly and
accumulated in certain parts.

With several decades of exploration investment in the Qaidam Basin, potential sand-
stone-hosted uranium rich prospecting area and spots have been gradually detected. In
the last ten years especially, breakthroughs on industrial-level sandstone-type uranium
exploration have been achieved in Yuejin-II area and Qigequan area, southwestern area of
the Qaidam, with high grade, thick uranium bodies having been detected. The outstanding
findings hint at great potential in sandstone-type prospecting and exploitation. In order to
gain a preliminary understanding of the metallogenic mechanism of the sandstone-type
uranium deposits in southwestern area of the Qaidam Basin, geochemical analyses on
mudstones/silty mudstones collected from the Qigequan Formation and the Shizigou
Formation in the Yuejin-II area has been performed in this study. Based on the results, this
contribution aims to discuss the sedimentary environment and the paleoclimatic evolution
and further to argue their constraints on sandstone-type uranium mineralization.

2. Geological Background

The Qaidam Basin, with an elevation of 2.7–3 km, covers an area of ca. 12 × 104 km2.
It is bounded by the Qilian Mountains to the north and east, East Kunlun Mountains
to the south and Altun Mountains to the northwest [9,68] (Figure 1b). Since the 1950s,
exploration work regarding sandstone-type uranium mineralization has been carried out.
From the 1950s to the mid-1980s, several potential sandstone-hosted uranium rich spots
(Lvcaosshan, Beidatan, Wucaishan, etc.) were discovered, which provided the basic clues
to further prospecting. From the mid-1980s to 2000, more investigations and research
projects followed in northern and eastern Qaidam Basin, including uranium hydrologic
survey, airborne gamma-ray spectrometry measurement, and research on metallogenic
condition and metallogenic prediction, which revealed high sandstone-type uranium
potential in the Lenghu, Mahai, Wudaoliang and West Tuosu Lake areas. In the perspective
of paleoclimate, hydrogeology, lithofacies paleogeography and uranium source, possible
uranium-bearing strata of Lower and Middle Jurassic and Eocene Shizigou Formation and
Quatenary Qigequan Formation have been reached a consensus. Since the 21st century,
with more drilling work being carried out, more uranium prospecting target areas (Hangya,
Yuxia, Tuanyushan, etc.) and layers (Eocene Xiaganchaigou Formation and Neogene Shang
Ganchaigou Formation) have been verified. In particular, the investigations carried out on
the southwestern Qaidam Basin revealed the prospective areas of Huatugou-Yingxiaongling
area and the Former Mangya-Dong Chaishan area. In recent years, relying on the uranium
geological survey project supported by the China Geological Survey, and the cooperation
with the Qinhai oil company, drilling work at the Yuejin-II area and Qigequan area have
achieved breakthroughs on industrial-level sandstone-type uranium exploration.

The Yuejin-II area is located at the southwestern area of the Qaidam Basin. This
region is bounded by the Altun Mountains, Qiman Tagh Mountains and the inner basin
Yingxiong Ridge Structural Belt with an area of ca. 2000 km2. Most areas of Southwestern
Qaidam Basin are covered by Quaternary sediments, and Paleogene and Neogene strata
are only sporadically exposed at Yingxiong Rigde Structural Belt and similar structurally
high part (Figure 2a). Among these, the Yuejin-II area has been well known for its high oil
production since the mid-1980s. This oilfield is controlled by the Yuejin-II structure, which
is located on the hanging wall of Alaer Fault and belonging to a third-order structure in
the secondary Tiemulike anticline (Figure 2b). Based on seismic data, well-log information
and paleontological analytic results, the basement in the study area is mainly composed by
grayish-white, brownish-gray granite, unconformably overlain by Paleocene-Eocene Lulehe
Formation, and further upwards, including strata of Oligocene Xia Ganchaigou Forma-
tion, Miocene Shang Ganchaigou Formation, Pliocene Xia Youshashan Formation, Shang
Youshashan Formation and Shizigou Formation, and Pleistocene Qigequan Formation.
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The Lulehe Formation is dominantly composed of greyish-white and brown conglomer-
ate, intercalated with a small amount of brownish-red and tan mudstone. All the other
Paleocene-Eocene strata consecutively exhibit conformable contact. The Xia Ganchaigou
Formation is featured by two distinct members. The Lower Member is mainly composed
of brownish-red, brown mudstone and sandy mudstone formed in oxidation environment,
intercalated with brownish-yellow, brown siltstone, fine sandstone, gravelly sandstone
and gravelly sandstone, while the Upper Member is represented by grey and dark grey
mudstone, intercalated with grayish-white and brownish-yellow marl, grayish-white and
brownish-yellow siltstone, fine sandstone, and a small amount of intra-clast carbonate rocks.
The Shang Ganchaigou Formation is generally divided into two parts. The lower part is
mainly composed of gray, dark gray mudstone and calcareous mudstone, intercalated with
brownish-yellow, brown siltstone, fine sandstone, brownish-yellow intraclastic limestone
and gray-white marlstone. The upper counterpart is dominated by brownish-red mud-
stone, intercalated with siltstone and gravelly sandstone. The Xia Youshashan Formation
is characterized by the occurrence of brownish-red, tan and brownish-yellow mudstone
and sandy mudstone, with a small amount of brownish-yellow, brownish-gray sandstone,
gravelly sandstone and conglomerate. The Shang Youshashan Formation is comprised of
light brown-red and brownish-yellow sandy mudstone, mudstone, brown-gray sandstone
and gravelly sandstone, which are frequently intercalated with gray mudstone, calcareous
mudstone and conglomerate. The Shizigou Formation is mainly composed by yellowish,
light brownish-gray and light gray sandy mudstone, intercalated with gray, brownish-gray
and brownish-yellow sandy conglomerate, occasionally with black carbonaceous mud-
stone in the middle part. The Quaternary Qigequan Formation is unconformably covering
the Shizigou Formation. The lithologies of Qigequan Formation are composed of upper
white halite and lower dominant gray conglomerate and gravel sandstone, with light gray,
grayish-yellow mudstone and sandy mudstone (Figure 3).
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3. Characteristics of the Sandstone-Type Uranium Mineralization

Based on six boreholes drilled in the Yuejin-II area, three groups of uranium ore
horizons have been detected (Figure 4).

The No. I group of uranium horizon is situated in the Qigequan Formation at the
depth of 40–60 m. The ore-hosted rocks are dominantly composed of greenish-gray siltstone
and fine sandstone. The No. II group of uranium horizon is at depth of 220–270 m, located
around the unconformity between the Qigequan Formation and Shizigou Formation. This
uranium horizon is the thickest ore-bearing layer with thickness varying from 6.2 m to
10.5 m. The ore-hosted rocks are composed by greenish-gray fine sandstone and pebbly
sandstone. The 300–410-meter-deep No. III group of uranium horizon is composed of sev-
eral longitudinal discontinuous ore-bearing strata with thickness in the range of 1.7–5.3 m.
The ore-carried rocks of this horizon are greenish-gray fine sandstone and siltstone.

The ZKII-05 is one of the industrial uranium ore drillholes revealing the strata includ-
ing Quaternary chemical accumulation of salt lake (0–41.68 m), the Qigequan Formation
(41.68–268.11 m), the Shizigou Formation (268.11–465 m). The Qigequan Formation exhibits
several distinct red rock series (including yellow-brown-red continental clastic rock associa-
tions) and black rock series (including green-gray-black continental clastic rock associations
and coal-oil bearing rocks). Generally, the upper part is characterized by red rock series with
only several relatively thin seams of black rock series, while the lower part is featured by
black rock series. Comparatively, the Shizigou Formation is composed of overall greenish
rocks with plenty of red rock layers. Both the uranium anomaly, uranium mineralized layer
and uranium industrial layers occur at transition of red and black rock series (Figure 5).
The most favorable sedimentary facies for uranium bearing sequences are dominantly
by braided-meandering river and braided-meandering river delta facies, subsequently
by alluvial fan, alluvial fan delta, shore-shallow lacustrine facies [73–76]. Abudukeyumu
et al. [77] reported that disseminated uranyl silicates (coffinite) and uraninite are the main
uranium minerals situated in the ore-bearing strata.
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4. Sampling and Analytical Methods

Samples for this study are all from ZKII-05. In total, 31 mudstones/siltstone samples
belonging to the Qigequan Formation and the Shizigou Formation were collected at differ-
ent depths from 45 m to 454.5 m. For a comparative study, three associated fine-grained
sandstones from Qigequan Formation were also collected.

All these samples were crushed and powdered to 200 mills for whole rock geochemical
analyses. The whole rock geochemical analyses were conducted at the laboratory of
Tianjin Center, China Geological Survey. The major elements were determined by X-ray
fluorescence (XRF), with analytical uncertainties ranging from 1 to 2%. Loss on ignition
was obtained using about 1 g of sample powder heated at 980 ◦C for 30 min. The trace
elements (including REEs) were determined as solute by XSERIES-II inductively coupled
plasma mass spectrometry (ICP-MS). About 50 mg of powder was dissolved for about
7 days at ca. 100 ◦C using HF–HNO3 (10:1) mixtures in screw-top Teflon beakers, followed
by evaporation to dryness. The material was dissolved in 7N HNO3 and taken to incipient
dryness again, and then was re-dissolved in 2% HNO3 to a sample/solution weight ratio
of 1:1000. The analytical errors vary in the range of >5% depending on the concentration of
any given element.
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5. Results and Discussions

Whole rock geochemical data, including major, trace and rare earth elements for rock
samples from the Qigequan Formation and Shizigou Formation, ZKII-05 are presented
in Supplementary Material Table S1. The Si, Al, Ca, Na and K contents, REEs and other
selected trace elements for all the samples were normalized to the Upper Continental Crust
(UCC, ref. [78]) as shown in Figure 6.
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5.1. Evaluation on Factors That Control the Final Chemical Components during Diagenetic Process

Generally, during the diagenetic process, factors that control the final chemical compo-
nents of siliciclastic sedimentary rocks include (1) grain-size effect due to hydrodynamic
sorting [9,79], (2) chemical weathering throughout the sedimentary process and outcrop
stage [80,81], and (3) burial diagenetic K-metasomatism and later metamorphism [82,83]. In
order to utilize geochemical data to deduce the signature of source rock or tectonic setting,
influences on the above three factors for the samples in this study must be evaluated.
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During the process of hydrodynamic sorting, relatively coarse-grained sediments
which contain more quartz and feldspar are likely to display a low Al/Si ratio, while
relatively fine-grained sediments usually exhibit high Al/Si rations due to high contents of
phylo-silicates and clay minerals [9]. In the UCC-normalized spider diagram (Figure 6a),
the three associated fine-grained sandstones display relatively low REE and other ele-
ment abundances (e.g., Th, Zr and Hf), and high Ba and Eu abundance. The relatively
high ∑REE in mudstones can be attributed to enrichment of clays, while sandstones
with high Ba abundances and positive Eu/Eu* values due to elemental concentration
by high content of plagioclase. Those mudstone/silty mudstone samples (as shown in
red color in Figure 6) with high U contents indicate the occurrence with absorbed Uor
uranium minerals. The overall similar UCC-normalized patterns of mudstones and three
associated fine-grained sandstones suggest that they were likely derived from the same
UCC-sourced region. The chemical differentiation between mudstones and the associated
sandstones can be attributed to the effect of physical sorting rather than different source
rocks. In that case, compared to sandstone, conglomerate and other large grain sized and
poorly sorted sedimentary rocks, mudstone/silty mudstone could be more efficiency to
deduce the provenance, paleoclimate and tectonic setting due to its relatively homogeneous
composition [9,84,85].

In terms of the influence of chemical weathering, the major elements-based chemical
index of alteration (CIA = Al2O3mol/(Al2O3mol + CaO*mol + Na2Omol + K2Omol) × 100% in
molecular proportions [80,86]) has been widely used to evaluate the degree of chemical
weathering relative to source and to reconstruct the paleo-weathering conditions of ancient
mudstones [9,82,84,85]. In particular, the CaO*mol represents Caomol solely from the silicate
fraction. However, due to the existing chemical-related CaO, the CaOmol in silicates could
be first empirically calculated by the formula of CaOem

mol = CaOmol − (10/3 × P2O5mol), then
if the CaOem

mol ≤ Na2Omol, we accepted the value of CaOem
mol as the CaO*mol. Otherwise,

we assumed that the real moles of silicate CaO*mol = Na2Omol [86]. However, for the
Cenozoic mudstones, the diagenetic K-metasomatism may significantly change the bulk
composition and results in the enrichment of K that affected the CIA values [9,82]. In order
to eliminate the influence of diagenetic K-metasomatism on CIA value, a ternary diagram
of Al2O3 − (CaO* + Na2O) − K2O (A-CN-K ternary diagram) proposed by Nesbitt and
Young [87] can be adopted. In the A-CN-K ternary diagram (Figure 7), solid line (line 1)
represents the best-fit straight line through these mudstones, and its intersection with the
Pl-Kfs join indicating the composition of the un-weathered source rock which possibly
derived from the UCC, while the dash lines with arrows (line 2) representing predicted
weathering trends of un-weathered UCC rocks without the enrichment of K. It extends
upwards parallel to the A-CN until it intersects with the A-K join, then follows the A-K
join until to the A apex. In addition, a K-corrected CIA (CIAcorrected = Al2O3mol/(Al2O3mol
+ CaO*mol + Na2Omol) × (100 − 11.5) can be accepted to evaluate the chemical weathering
excluding the K-metasomatism. The value of 11.5 represents the molecular percent of K2O
of the un-weathered source rocks as plotted in Figure 7. All the CIAcorrected values for these
rock samples are in the range of 48.19–63.69 (Table S1). The values below the worldwide
average shale CIA values of ca. 70–75 indicate fresh or slightly chemical weathered process,
which could exhibit weak effect on the variations of these rocks during the diagenetic
process [88].

In summary, the mudstones samples collected in this study can be utilized to deduce
the signature of source rock or tectonic setting.
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5.2. Sedimentary Provenance

As discussed above, these mudstones exhibit a signature of UCC-derived source origin
through the UCC-normalized elemental patterns (Figure 6). Though all the mudstones
exhibit variable SiO2 content and Al2O3 content, the Al2O3/SiO2 ratios are varying from
0.19–0.26, indicating signatures of non-intense alteration, low rock maturity and proximal
provenance [89,90]. In addition, various major and trace element provenance diagrams
for clastic sediments have been erected by previous studies. The La/Th values of these
mudstones varying in the range of 2.66–4.24, while the Hf content is in the range of
1.70–6.26 ppm. On the La/Th-Hf diagram (Figure 8a; [91]), the mudstone samples are
dominantly plotted in the same area indicating a felsic source. Discriminated from the
binary diagram of Th/Sc-Zr/Sc (Figure 8b; [92]), all the mudstones also exhibit uniform
geochemical indices that, similarly to felsic, featured upper continental crust. In particular,
the average Zr content for all the mudstone samples is 193.04 ppm, which is also close to
that of the average upper continental crust [93], further indicating the felsic featured upper
continental crust provenance without the recycling of old sediments.

Minerals 2022, 12, x  11 of 18 
 

 

In summary, the mudstones samples collected in this study can be utilized to deduce 
the signature of source rock or tectonic setting. 

 
Figure 7. A–CN–K ternary diagrams for rock samples in this study. Abbreviations: Ka—kaolinite; 
Chl—chlorite; Gi—Gibbsite; Sm—smectite; Mu-muscovite; Pl—plagioclase; Kfs—K-feldspar. 

5.2. Sedimentary Provenance 
As discussed above, these mudstones exhibit a signature of UCC-derived source 

origin through the UCC-normalized elemental patterns (Figure 6). Though all the mud-
stones exhibit variable SiO2 content and Al2O3 content, the Al2O3/SiO2 ratios are varying 
from 0.19–0.26, indicating signatures of non-intense alteration, low rock maturity and 
proximal provenance [89,90]. In addition, various major and trace element provenance 
diagrams for clastic sediments have been erected by previous studies. The La/Th values 
of these mudstones varying in the range of 2.66–4.24, while the Hf content is in the range 
of 1.70–6.26 ppm. On the La/Th-Hf diagram (Figure 8a; [91]), the mudstone samples are 
dominantly plotted in the same area indicating a felsic source. Discriminated from the 
binary diagram of Th/Sc-Zr/Sc (Figure 8b; [92]), all the mudstones also exhibit uniform 
geochemical indices that, similarly to felsic, featured upper continental crust. In particu-
lar, the average Zr content for all the mudstone samples is 193.04 ppm, which is also close 
to that of the average upper continental crust [93], further indicating the felsic featured 
upper continental crust provenance without the recycling of old sediments. 

 
Figure 8. Discrimination binary diagrams of La/Th vs. Hf (a) and Th/Sc vs. Zr/Sc (b) illustrating 
sedimentary provenance of the mudstones/silty mudstones collected from the Shizigou Formation 
and the Qigequan Formation in the Yuejin-II area. 

Figure 8. Discrimination binary diagrams of La/Th vs. Hf (a) and Th/Sc vs. Zr/Sc (b) illustrating
sedimentary provenance of the mudstones/silty mudstones collected from the Shizigou Formation
and the Qigequan Formation in the Yuejin-II area.



Minerals 2022, 12, 658 11 of 17

5.3. Sedimentary Environment
5.3.1. Paleo-Salinity

Geochemical indicators to distinguish the paleo-salinity usually include the Sr, Ba
contents and the Sr/Ba ratio [94,95]. The Sr/Ba value for sediments deposited in the fresh
water is usually less than 1, while that deposited in the salted water usually greater than 1.
The mudstones from the Qigequan Formation exhibit Sr/Ba value in the range of 0.40–1.02,
while that of the mudstones from the Shizigou Formation vary within the range of 0.06–0.88,
except one sample collected at 425 m with a value of 1.44 (Figure 5). The Sr/Ba value for all
the rocks indicates the fresh water is crucial for the sedimentation, without the input of
salty water.

5.3.2. Paleo-Redox Conditions

The redox conditions during sedimentation could affect the solubility and occurrence
state of redox-sensitive trace elements. Thus, through signatures of these redox-sensitive
trace elements in sediments, the redox conditions can be discussed [96–98]. The U, Mo,
Cr, V and Co are easier to make soluble under oxidation conditions and insoluble un-
der reduction conditions. In oxic settings, these elements usually exist as dissolved and
migratable ion species of uranyl ion (UO2+

2 ), molybdate ion (MoO2−
4 ), chromate anion

(CrO2−
4 ), vanadate oxyanions (HVO2−

4 and H2VO−
4 ) and Co2+, respectively. In the oxygen

poor environment, these elements tend to become authigenically enriched with almost no
migration during diagenesis [97,99–103]. The Ni, Cu, Zn and Cd are generally precipitated
under oxygen deficit conditions, while in the oxygen-rich environment, they are becoming
more soluble. Several parameters to discriminate the redox conditions of the water during
the sedimentation have been established by Jones and Manning [104], including U/Th,
V/Cr and Ni/Co values. Except for the absorbed U-rich mudstones, the other mudstones
from the Qigequan or Shizigou Formation exhibit relatively narrow variations of U/Th
(<0.75) ratios indicating the overall oxygen-rich water during sedimentation. The V/Cr
and Ni/Co values of these mudstones from the Qigequan Formation (V/Cr: 1.12–1.44,
with average of 1.26, Ni/Co: 2.03–2.75, with average of 2.53) and the Shizigou Formation
(V/Cr: 0.77–1.67, with average of 1.19, Ni/Co: 2.02–3.05, with average of 2.61) also indicate
oxygen-rich water during sedimentation.

5.3.3. Paleoclimatic Conditions

As one of the methods of paleoclimate discrimination, element geochemistry, such
as major/trace elements or ratios of Cu, Sr/Cu, Al2O3/MgO and FeO/MnO provide
significant information. The Cu is mainly transported into sediments by organic matter,
so it is often used as an ideal indicator to discuss organic matter flux [97]. The Sr/Cu
ratio between 1.3 and 5.0 indicates a warm and humid climate, while the value greater
than 5.0 indicates an arid climate [105]. The FeO/MnO ratio is also indicative of climate
variations. The content of Mn is relatively high in arid environment and low in relatively
humid conditions, while Fe is easy to precipitate rapidly with Fe(OH) colloid in humid
environment. Therefore, the high value of FeO/MnO ratio in sediments corresponds to
warm and humid climate, while the low value is the response of dry and hot climate [94].
All the Sr/Cu values for these rocks are greater than 5, indicating the overall arid climate. In
general, the high Cu contents indicate more organic carbon, representing relatively humid
and reductive conditions. As shown in Figure 5, the industrial uranium (red filled bars)
and uranium anomaly horizons (pink filled bars) generally occur at the area of decrease
in Cu content, indicating the redox boundaries. The industrial uranium horizons exhibit
relatively extensive decrease in the Cu content when compared to the anomaly horizons.
The corresponding variations of FeO/MnO ratios indicate alternated relatively dry and
relatively humid climates (Figure 5).
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5.4. Implications for Uranium Mineralization

The post-Neogene sediments in southwestern Qaidam Basin have not experienced
strong alteration, exhibiting low maturity and proximal provenance signature, with dom-
inantly braided delta front deposition and sand body development. On the whole, the
paleoclimatic conditions during the depositional stage from the Shizigou Formation to the
Qigequan Formation in the Yuejin-II area were arid, favorable for the sedimentation of large
volume of uranium rich materials. However, there existed periods of relative humidity and
relative drought in the overall drought situation. In the relative humid period, strata with
reduced agents were deposited, while in the relative dry period, uranium-carried felsic
rocks eroded and were transported to the inner basin, and deposited as part of oxidized
strata. The uranium-containing oxidized strata laid the foundation for further sandstone-
type uranium mineralization. Between the Oligocene and Quaternary, the Qaidam Basin
underwent contraction, accompanied by the formation of series of NWW-SEE compres-
sional anticlines [106,107]. The uplifted anticlines formed under the influence of neotectonic
movement promoted development of the slopes and tectonic windows, which are crucial
for the migration of oxygen-rich fluids [108,109]. The oxygen-rich fluids migrated along
the permeable layers, and extracted the hexavalent uranium and transported in the form
of uranyl ion (UO2+

2 ). When the oxygen-uranium rich fluids infiltrated into the reductive
sand body formed under braided river environment, these uranyl ions were reduced to
tetravalent uranium and deposited in the form of uranium compounds. Large scale and
centrally distributed reductive sand bodies provides favorable ore storage space for certain
scale of sandstone-type uranium mineralization in the Yuejin-II area.

6. Conclusions

(1) The Shizigou Formation and Qigequan Formation exhibit signatures of non-intense
alteration, low rock maturity and proximal provenance, with dominantly braided
delta front deposition and sand body development.

(2) The overall arid paleoclimatic conditions controlled the sedimentation of large volume
of uranium rich materials. The period of relative humidity prompted the sedimen-
tation of reduced agents. The neotectonic-induced slopes and tectonic windows
provided pathways for oxygen-rich fluids that infiltrated along permeable layers
and extracted the hexavalent uranium and transported in the form of uranyl ion
(UO2+

2 ). When the oxygen-uranium rich fluids entered the reductive sand body, the
hexavalent uranium was reduced to tetravalent uranium and deposited in the form of
uranium compounds.

(3) Large scale and centrally distributed reductive sand bodies provided favorable ore
storage space for certain scale of sandstone-type uranium mineralization in the
Yuejin-II area.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/min12050658/s1, Table S1. Major, trace and rare earth concentra-
tions of the whole-rock samples collected from the Yuejin-II area.
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