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Abstract: This work reports the application of a biochar (BC) derived from eucalyptus wood chips to
remove pesticides (imidacloprid, acetamiprid and methomyl) from water. The pseudo-second order
kinetic adsorption model is the best fit describing the adsorption of pesticides on BC. Furthermore, the
Langmuir model correlated well with the adsorption isotherm data for acetamiprid and methomyl,
while the Freundlich model was selected to explain the adsorption of imidacloprid on BC. The
maximum adsorption capacities for methomyl, imidacloprid and acetamiprid on the BC material are
32.42, 14.75 and 4.87 mg g−1, respectively. The highest adsorption capacity of methomyl on the BC
surface could be the result of multilayer adsorption suggested by the adsorption isotherm studies,
with imidacloprid (or acetamiprid) monolayer being adsorbed on the BC surface. The structure,
functional groups of pesticides, including their polarity, all played an important role contributing
to the performance of biochar sorbent. Preferable interactions between the studied pesticides and
the BC surface may include π-π interactions and hydrogen bonding. The steric aromatic entity
in adsorbed imidacloprid and acetamiprid on the BC surface may hinder the possibility of other
pesticide molecules approaching the available sorption sites on the surface.

Keywords: biochar; eucalyptus wood chips; pesticides contaminated water; sorption; methomyl;
imidacloprid; acetamiprid

1. Introduction

Pesticides have been widely used to control unwanted pests, vector-borne diseases,
and weeds in public spaces, agricultural fields, and private gardens. However, the long-
term application of pesticides may leave toxic residues that may contaminate natural water
bodies (ground and surface water) adjacent to the application areas through leaching,
surface drainage, spray leftovers, spray drift and runoff [1]. The residual pesticides in
water reservoirs can be accumulated in aquatic and marine organisms’ food chain, raising
human health risks and the negative impact to ecological systems [2].

Neonicotinoids and carbamate pesticides have been commonly used for agricultural
and household activities. Being highly soluble in water [3,4] such pesticides have often
been found in the environment, e.g., ground and surface water [4–6]. Based on their toxic-
ity, neonicotinoids and carbamate pesticides are classified as Class II and Class III [7] for
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neonicotinoids pesticides and Class I (restricted-use pesticide) for carbamate pesticides [8]
by the United States Environmental Protection Agency (US EPA). Regulated by the EU
and US EPA, the permissible concentrations of an individual pesticide in the ground and
surface water should be in the limit of 0.1 µg L−1. If there are more than one pesticide, the
total concentration of all pesticides should be equal to or below 0.5 µg L−1. Nevertheless,
the concentrations of pesticide residue in ground water, surface water and soil were found
to be much higher than the permissible level (ranging from several µg L−1 to more than
hundred µg L−1), as shown in Table 1 [5,6,9–13]. The residual pesticides are not only toxic,
but also highly persistent and, potentially bio-accumulative [14,15]. Hence, the removal
of pesticides from water generally required advanced water purification technologies,
i.e., biological oxidation, ozone and chemical oxidation, Fenton and Fenton coupled with
photolysis, solid-phase extraction, advanced oxidation processes, membrane filtration, and
adsorption. Several methods required complicated system setup which increased the cost
and generated secondary, perhaps more toxic, contaminant products [16]. On the other
hand, simple adsorption processes have been known as energy- and cost-efficient technolo-
gies without the requirement of advanced setup [17–19]. Hence, developments of low-cost
and high-performance sorbents seemed to be the key to practical adsorption applications.

Table 1. Detection of acetamiprid, imidacloprid and methomyl pesticides in the environment.

Pesticides Contamination Area Concentration (µg L−1) References

Acetamiprid Wetlands Up to 225 [5]
Acetamiprid Water reservoirs Up to 7.7 [9]
Imidacloprid Surface water 320 [6]
Imidacloprid Surface water Up to 3.29 [10]
Imidacloprid Soil Up to 60 [11]

Methomyl Ground water 10 [12]
Methomyl Strawberry farm canal 30 [13]

Sorbent productions from recycling and utilizing wood residues and agricultural
wastes are economical solutions and sustainable alternatives for wastewater remediation by
using low-cost, non-toxic, and naturally abundant starting materials. Biochar, a co-product
from biomass pyrolysis in a closed system with limited oxygen supply, has recently been
used as an efficient sorbent for the removal of organic pollutants in water such as dyes,
pharmaceuticals, and pesticides [20]. Various types of agricultural wastes and wood, such
as oak wood [21], rice straw [22], grape pomace [23], peanut fiber [24], coconut shell [25]
and soybeans [26], have been utilized as raw parent materials for the production of low-cost
biochar materials, which were used to decontaminate pesticides in wastewater. Note that
eucalyptus is one of the most globally planted woods to supply the paper and furniture
industry [27]. Undersized eucalyptus woodchip, including residues such as barks and
leaves, may be applied as solid fuel, producing low-cost heat for boilers and steam turbines.
With their plentiful amount, eucalyptus residues can be alternatively utilized as raw parent
materials for biochar production, instead of burning all of them for generating heat and
greenhouse gases (GHGs). Previous works reported the application of biochar-derived from
eucalyptus residues for the treatment of wastewater containing heavy metal contaminants,
such as U (VI) [28], Cr (VI) [29], As [30], Cd (II) [31], Ni(II) and Pb(II) [32]. Fernandes and
coworkers utilized eucalyptus derived biochar to remove aqueous fluoxetine [33]. There
have been a limited number of reports that demonstrated effective sorbents derived from
eucalyptus residues. From the literature, a eucalyptus bark biochar sorbent was applied in
the removal of atrazine or imidacloprid pesticides from water [22]. Additional reports on
the adsorption capacity of pesticides over biochar produced from undersized eucalyptus
woodchip should add more research input that could be used as evidence to promote the
conversion of abundant biomass to high-value products and the circular economy business.

In this study, three pesticides (acetamiprid, imidacloprid, and methomyl) were em-
ployed, due to their extensive use, in a comparative adsorption study over a eucalyptus
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wood biochar sorbent. The adsorption experiments were systematically carried out in aque-
ous media to determine the optimal sorbent loading, adsorption kinetics, and isotherms, as
well as the maximum adsorption capacities of pesticides on the biochar. The adsorption
capacities are varied depending on the electrostatic interactions between the biochar surface
and the pesticides’ chemical entity. The isothermal adsorption behavior of each pesticide on
the biochar surface, as well as the structure and polarity of pesticides, are key parameters
linked to the performance of the biochar sorbent. Possible hydrogen bonding and π-π
interactions between the investigated biochar material and pesticides are discussed, as well
as the adsorption preferences of polar pesticides on the biochar surface.

2. Materials and Methods
2.1. Chemicals and Materials

Acetamiprid (Phoenix Rich, 20% w v−1), imidacloprid (Saima chemical, 70%WG), and
methomyl (HEBEI ENGE BIOTECH, 97%TC; 970 g kg−1) are of commercial grade and are
used as received without further purification. The structures and physical properties of
pesticides studied are listed in Table 2. Double-distilled water was used as a solvent. Biochar
(BC) and pyrolyzed eucalyptus woodchips were supplied by the Faculty of Engineering,
Chiang Mai University, Thailand. Prior to use, the BC sample was dried, ground and sieved
with a stainless-steel mesh size of 80 (particle size < 177 µm).

Table 2. Characteristics of pesticides. a HA: Hydrogen bonding acceptor index; b HD: hydrogen
bonding donor index.

Pesticide Acetamiprid Imidacloprid Methomyl

Molecular formula C10H11ClN4 C9H10ClN5O2 C5H10N2O2S

Structure formula
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USA). A powder X-ray diffractometer (Bruker, D2 Phaser, Billerica, MA, USA), equipped 
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Log Kow 0.80 0.57 0.60
pKa 0.70 1.56, 11.12 13.27

Water solubility (g L−1) 4.2 0.610 57.9
HA a 4 4 4
HD b 0 1 1

Molecular weight (g mol−1) 222.7 255.7 162.2

2.2. BC Characterization

The chemical composition of BC (carbon C, nitrogen N, hydrogen H and sulfur S)
was analyzed using a CNHS analyzer (LECO Corporation, CHNS 628, St. Joseph, MI,
USA). A powder X-ray diffractometer (Bruker, D2 Phaser, Billerica, MA, USA), equipped
with a Cu-Kα radiation source, was used to identify crystalline phases in the BC material
at diffraction angles (2-Theta) ranging from 10◦ to 80◦. A Raman spectrometer (Horiba,
XploRa Plus, Kyoto, Japan), operated with a 532 nm wavelength laser, was utilized to
study the structural carbon components in the BC sample. The morphology of the BC
and its corresponding elemental compositions was determined on a scanning electron
microscope (SEM, Hitachi, SU800, Tokyo, Japan) equipped with energy dispersive X-ray
spectroscopy. The BC sample was lightly deposited on a carbon tape, later being coated
with Pt prior to SEM measurements. An Fourier-transform infrared (FTIR) spectropho-
tometer (Thermo Electron Corporation, Nicolet 6700, Madison, WI, USA) was employed
to analyze the chemical composition of the BC sample using the KBr pellet method at
a measured wavenumber between 680 and 4000 cm−1. The Brunauer–Emmett–Teller
(BET, Micromeritics, ASAP 2026, Micromeritics, Norcross, GA, USA) surface analysis, N2
adsorption-desorption was performed at 77 K, while the sample was degassed for 12 h at
200 ◦C prior to the adsorption-desorption measurement.
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2.3. Adsorption

Batch experiments were performed at 25 ◦C and a pH of 7, using a thermostat shaker
at an agitation speed of 150 rpm. A certain mass of BC (0.5–5 g L−1) was introduced to a
polypropylene bottle filled with 200 mL of a 50 ppm pesticide (aq). Equilibrium studies
were performed by shaking the suspension containing BC and pesticide for specific time
intervals (maximum of 6 h). Then, the supernatants were separated by simple filtering
through a cellulose acetate syringe filter with a pore size of 0.45 µm, and the equilibrium
pesticide concentrations after adsorption with BC were determined. The same batch
experiment was carried out for 12 h without BC in the system in order to confirm negligible
removal of pesticides due to cohesion forces between the pesticide and the container. The
pesticide removal efficiencies were measured in triplicates for each condition using the
following protocol. Firstly, the UV-Vis absorption spectrum of each aqueous pesticide
solution was recorded on a UV-Vis Spectrophotometer (Thermo Scientific, GENESYS 10S,
Waltham, MA, USA), while aqueous acetamiprid, imidacloprid, and methomyl gave their
λmax as 246 nm, 270 nm, and 234 nm, respectively. The concentrations of the aqueous
pesticide solutions before and after BC treatments were evaluated using the calibration
relations of absorbance and concentration data after constructing a calibration curve based
on the Lambert–Beer law. The removal efficiency of each pesticide by BC [25] was calculated
from the following equation:

Removal efficiency (%) = ((C0 − Ce)/C0) × 100 (1)

where C0 and Ce are the initial and equilibrium concentration (ppm) of pesticide before and
after adsorption, respectively.

The amount of pesticide adsorbed at equilibrium (qe, mg g−1) was calculated by
Equation (2),

qe = ((C0 − Ce)/V)/m (2)

where V is the volume of pesticide aqueous solution (L), and m is the weight of biochar (g).

2.4. Sorption Isotherms

Sorption equilibrium was performed at 25 ◦C with pesticide concentration ranging
from 10 ppm to 200 ppm at sorbent dosages of 5 g L−1 for acetamiprid and methomyl
and 0.5 g L−1 for imidacloprid. The experimental procedures were conducted similarly to
the above batch experiments, except that the suspensions were agitated for 6 h to ensure
that adsorption processes reached equilibria. Two-parameter isotherms, the Langmuir
and Freundlich adsorption models and three-parameter adsorption isotherm models, Sips
and Redlich–Peterson, were used to examine the adsorption behavior of the pesticide on
the biochar surface. Notably, the Langmuir isotherm can be used to describe adsorption
processes based on the assumption that the adsorption process occurs at the specific homo-
geneous sites on the surface of the sorbent, implying that it is a monolayer adsorption [34].
The equation of the Langmuir isotherm is described as follows:

qe = (qmax KL Ce)/(1 + KL Ce) (3)

where Ce is the equilibrium concentration (ppm); qe is the amount of adsorbed pesti-
cide per unit mass of sorbent at equilibrium (mg g−1); qmax is the maximum adsorp-
tion capacity (mg g−1); and KL is the Langmuir isotherm constant (L m−1) related to the
adsorption energy.

In addition, the Freundlich isotherm is an empirical equation assuming that the
adsorption process happens with the heterogeneous surface via a multilayer adsorption
mechanism [35]. The Freundlich adsorption equation is given as follows:

qe = KF (Ce)1/n (4)

where KF is the affinity coefficient (L mg−1) and n is the Freundlich exponential coefficient.
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On the other hand, the Sips model [36] (or Langmuir–Freundlich adsorption isotherm)
was developed to overcome the disadvantage of the Freundlich model. At high and low
adsorbate concentrations, the Sips isotherm approaches the Langmuir and Freundlich
isotherms [37], respectively. The equation of the Sips isotherm is given below:

qe = qmax,s KsCe
n

s/(1 + KsCe
n

s) (5)

where Ks is the Sips isotherm model constant (L mg−1); qmax,s is the Sips isotherm maximum
adsorption capacity (mg g−1), and ns is the Sips isotherm model exponent. Likewise, the
Redlich–Peterson isotherm model [38] is a combination of the Langmuir and Freundlich
isotherms. The Redlich–Peterson equation can be described as in the following equation:

qe = KRPCe/(1 + aRPCe
β) (6)

where KRP (L g−1) and aRP (L mg−1)−β are Redlich–Peterson isotherm constants and β is
the Redlich–Peterson isotherm exponent, which lies between 0 and 1.

3. Results and Discussion
3.1. Characterization of Eucalyptus Wood Biochar

Table 3 summarizes the bulk concentration of C, H, N and S elements in the eucalyptus
woodchip derived biochar (BC), and its surface properties. The elemental analysis data
suggested that the BC material contains a high carbon content (83.7%), which is consistent
with the typical carbon content (75–87%) reported for the eucalyptus-derived biochar
samples prepared under pyrolytic temperature ranging from 450 ◦C to 950 ◦C [39,40].

Table 3. Physiochemical characteristics of the eucalyptus wood-derived biochar. a BET specific
surface area; b Total pore volume (P/P0 = 0.989); c average pore diameter (4V/A by BET).

Elemental Compositions (% wt.) SSA a

(m2 g−1)
Vp

b

(cm3 g−1)
Dp

c

(nm)C H N S

83.7 ± 0.02 1.73 ± 0.25 0.74 ± 0.01 0.04 ± 0.01 4.02 ± 0.01 0.0084 8.36

The BET specific surface area of the BC sample is 4.02 m2 g−1, which is quite comparable
to those of poultry litter, green waste from plant pruning, grass, switchgrass, and tea waste-
derived biochar (<10 m2 g−1) produced at the temperature range of 400–500 ◦C [41–45].
As seen in Figure 1a, the N2 adsorption-desorption isotherm of the eucalyptus woodchip
derived BC exhibits an open hysteresis loop at low p/p0 [46]. According to the IUPAC
classification, the N2 adsorption/desorption plot belongs to type IV with a well-defined
plateau and a type H1 hysteresis loop, suggesting that the BC has a rigid mesoporous
structure [47] with an average pore diameter of 8.36 nm and a pore volume of 0.008 cm3 g−1.
Several works demonstrated that mesoporous biochar materials, though having low surface
areas (<10 m2 g−1), were effective sorbents in the removal of various pesticides from
water [43,48,49]. The SEM image (in Figure 1b) provides evidence of the porous solid
structure in the carbonaceous skeleton, with a rough and irregular surface and remaining
tube-like structures similar to its parent material (Figure 1b). From the microstructure, BC
has a porous surface texture with pore sizes ranging from 2.06 to 3.38 µm in the same range
as biochar derived from eucalyptus wood [32].
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Figure 1. (a) N2 adsorption-desorption isotherm of eucalyptus wood-derived biochar (BC), (b) SEM
image and (c) corresponding EDX spectrum of the BC and (d) Powder XRD pattern of the BC. Note
that, the observed Pt content found in (c) comes from the SEM coating.

Furthermore, energy dispersive X-ray (EDX) analyses (Figure 1c) indicate the carbon
rich BC surface (86.0% wt.), being in excellent agreement with CNHS analysis data. Other
minor elements found on the BC’s surface include O (7.1%), K (0.9%), Cu (0.4%)), and Ca
(0.3%). Possible minerals in the BC samples are oxides and/or carbonates of potassium,
copper and calcium originating from the eucalyptus woodchips. In the PXRD pattern of
BC (Figure 1d) a broad peak with low intensity corresponds to amorphous carbon (23.0◦),
while sharp peaks are attributed mainly to the calcite (CaCO3) phase, according to the Joint
Committee on Powder Diffraction Standards (JCPDS) database [50]. No XRD peaks for
other minerals such as oxides of K or Cu were observed, possibly due to the low crystallinity
of other phases (if any) and the high background of amorphous carbon [51]. The small
amount of Ca in the BC material and well-defined diffraction peaks corresponding to
the calcite phase (CaCO3) may imply that BC contains a trace amount of calcite with a
sufficiently high crystallinity. The presence of calcite in biochar materials was previously
reported when eucalyptus wood, corncob, pineapple peel [52], canola straw, corn straw,
soybean straw and peanut straw [53] were used as feedstocks.

The Raman spectrum of the BC material in Figure 2a shows three typical peak re-
lated aromatic and graphitic hydrocarbons, so called D, G and 2D bands. The D band
at 1300–1400 cm−1 attributed to the disorders or defects in the sp2 structure of graphene
originated form the formation of sp3 carbon atoms because of the presence of amorphous
carbon, heteroatoms, and vacancies [54]. The G band at 1500–1600 cm−1 is related to an
ordered graphitic lattice of sp2 carbon atoms, indicating a graphitic structure [55]. Addi-
tionally, the 2D band in the region of 2600 cm−1 referred to the second-order of the D band,
which is characteristic of graphene structures [56] and its intensity frequently correlates
with the number of material layers [57]. The obtained ID/IG intensity ratio of 0.71 indicated
that the G band corresponding to graphitic structure was dominant, implying that the BC
has a main proportion of ordered graphitic carbons. In Figure 2b, an intense IR peak at
3420 cm−1 is correlated to the stretching vibration of the OH groups in alcohol, phenol, and
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carboxylic groups [58]. The peak at 2850–2920 cm−1 is attributed to aliphatic components
(C-H, CH2 or CH3) of the hemicellulose and cellulose, whereas the IR peak at 1634 cm−1

corresponds to the aromatic carbon (C=C) and carbonyl (C=O) vibration in the carboxylic
acid groups [59]. The vibrational bands at 1400 cm−1 and 870 cm−1 could be related to the
O-C-O asymmetric stretching of carboxylate groups and aromatic C-H bending [60]. The
presence of surface functional groups in BC, i.e., hydroxyl, phenolic, and carboxylic groups,
can provide bonding sites for the adsorption of pollutants through a hydrogen bonding
interaction [61]. It should provide a concise and precise description of the experimental
results, their interpretation, as well as the experimental conclusions that can be drawn.
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Figure 2. (a) Raman, (b) FTIR spectra of the BC. The D and G band in the Raman spectrum correlate
to graphitic structures and defected graphitic structures, respectively, and (c) effect of adsorbent
dosage on removal efficiencies of pesticides in an aqueous media (Conditions: 100 mL of aqueous
solution of pesticide, pH = 7, 25 ◦C, 6 h).

3.2. Adsorption Test
3.2.1. Effect of Adsorbent Dosage

The optimal dosage of sorbent is an essential parameter for determining the adsorption
capacity for a known initial concentration in a batch sorption experiment. The effect of
BC sorbent dosage on sorption are illustrated in Figure 2c. The adsorbent dosage in
this study was varied from 1 g L−1 to 7 g L−1 for methomyl and imidacloprid, while
the adsorbent dosage for imidacloprid removal was varied from 0.4 g L−1 to 7 g L−1.
To ensure the adsorption process reached an equilibrium, the removal efficiencies of all
pesticides were determined after 6 h of adsorption. Experimental results showed that the
removal efficiencies increased slightly with increasing sorbent dosage, possibly due to an
enhancement in adsorbent surface area and the availability of more sites for adsorption [62].
Interestingly, removal efficiencies for methomyl and acetamiprid reached the highest
values of 52.29% and 16.00%, respectively, at an adsorbent loading of 5 g L−1. However,
the removal efficiencies of methomyl and acetamiprid were not significantly improved
when the adsorbent loading was increased to 7 g L−1. In contrast, the imidacloprid
removal efficiency was 7.25% at a sorbent loading of 0.4 g L−1, and it then reached 10.11%
at a sorbent loading of 0.5 g L−1. Similar to the above two pesticides, no significant
improvement was found in the removal efficiency of imidacloprid when the adsorbent
loading was increased up to 5–7 g L−1 (10–14 times of 0.5 g L−1). The adsorption of
the pesticides reached steady values after further increasing a higher amount of sorbent,
possibly due to saturation coverage on the adsorption sites [63]. Thus, adsorbent loadings
of 5 g L−1 for methomyl and acetamiprid and 0.5 g L−1 for imidacloprid were chosen to
study the adsorption isotherms and adsorption kinetics of the pesticide removal in aqueous
media by the BC material.

3.2.2. Adsorption Isotherm

From the adsorption isotherms in Figures 3 and 4, the equilibrium concentrations
(Ce) of methomyl were found to be lower than the those from other pesticide treatments
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due to the higher adsorption capacity of methomyl of the BC surface. Fitted curves of
the adsorption isotherms computed by the two- and three parameter adsorption models,
are included in Figures 3 and 4, respectively, whereas the information obtained from
fitting the experimental data of pesticide adsorption is given in Table 4. In addition, the
other two-parameter isotherms (Dubinin–Radushkevich and Temkin) were also tested
and the fitted curves including the isotherm parameters are presented in Figure S1 and
Table S1. Amongst two-parameter isotherm models, the Freundlich model provides a good
description of imidacloprid adsorption with a higher correlation coefficient (R2) of 0.9770
than that of the Langmuir model (R2 > 0.9750). The results indicate that the BC has a
heterogeneous distribution of surface energy for imidacloprid adsorption [64]. In contrast,
the Langmuir isotherm (R2 > 0.975) fits the experimental adsorption data of acetamiprid and
methomyl better than the Freundlich isotherm according to the values of R2, suggesting the
monolayer with the uniform heat of adsorption without interaction between the pesticide
adsorbed molecules [65]. Furthermore, the maximum adsorption capacities calculated from
the Langmuir model are 32.42, 14.75, and 4.78 mg g−1 for methomyl, imidacloprid and
acetamiprid, respectively. Three-parameter isotherms, Sips and Redlich–Peterson, were
also tested to amplify the R2 and for their fittingness to explain the pesticide adsorption
on BC.

The Redlich–Peterson model gave the highest R2 for acetamiprid (0.9942) and methomyl
(0.9940) adsorption, implying that it is the better fitting model. However, it is unable to
simulate the adsorption behaviors because the values for β were greater than one for both
acetamiprid and methomyl adsorption [66]. Thus, the Sips model was well-fitted to all
pesticide adsorption data with R2 values greater than 0.9900, suggesting the heterogeneous
surface adsorption of pesticides on BC [36]. The value of ns obtained from the Sips isotherm
for methomyl adsorption was higher than one, suggesting that the Sips isotherm tended to
resemble the Freundlich model. This indicates the multilayered adsorption of methomyl
on the BC surface.
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Table 4. Parameter of adsorption isotherms for imidacloprid, acetamiprid and methomyl adsorption
on BC.

Models Isotherm Parameters
Pesticides

Imidacloprid Acetamiprid Methomyl

Two-parameter

Langmuir qmax (mg g−1) 14.75 4.78 32.42
KL (L mg−1) 0.0252 0.0014 0.0094

R2 0.9750 0.9936 0.9751

Freundlich KF (L mg−1) 1.6274 0.2356 0.6432
n 2.5783 1.8843 1.4391

R2 0.97 0.9760 0.9468

Three-parameter

Sips qm,s (mg g−1) 21.07 4.87 19.78
Ks (L mg−1) 0.0432 0.0149 0.0025

ns 0.6733 0.9836 1.5851
R2 0.9900 0.9940 0.9920

Redlich and Peterson KRP (L g−1) 0.6988 0.0637 0.2250
aRP (L mg−1)−β 0.1677 0.0081 4.1 × 10−7

β 0.7697 1.0934 2.9979
R2 0.9882 0.9942 0.9940

In contrast, the ns values from the Sips isotherm for imidacloprid and acetamiprid
are close to one, indicating that the adsorption behavior of imidacloprid and acetamiprid
on BC dominantly occurs through monolayer adsorption. Thus, it is clearly seen that the
Sips model gave the best fit of the experimental data based on the appropriate constants
and correlation coefficients, possibly due to its ability to predict wide ranges of adsorbate
concentration [36].

3.2.3. Adsorption Kinetics

The adsorption kinetics of pesticide adsorption on the BC material were studied
using the initial pesticide concentration of 50 ppm at 25 ◦C, sorbent dosages of 5 g L−1

(acetamiprid and methomyl) and 0.5 g L−1 (imidacloprid). Notably, as seen in Figure 2c,
it is unnecessary to use a high BC dosage for imidacloprid adsorption. The kinetics of
methomyl, imidacloprid, and acetamiprid adsorption on the eucalyptus wood-derived
BC (Figure 5) showed that adsorption of the pesticides rapidly occurred during the first
0.5 h, 2 h, and 3 h of adsorption for removal of imidacloprid, acetamiprid, and methomyl,
respectively, and were subsequently followed by a slower rate until equilibrium was
reached (at about 1 h for imidacloprid and 6 h for acetamiprid and methomyl). The fast
adsorption at the initial stage possibly resulted from the large amount of unoccupied active
sites on the biochar’s surface and the strong interaction force between pesticide molecules
and the surface functional groups of the sorbent [67]. The saturation of active sites and
weak interaction force possibly led to the sorption equilibrium after the adsorption process
was continuously carried out. To better understand the mechanism of pesticides adsorbed
on the BC, three non-linear kinetic models, namely pseudo-first order, pseudo-second order,
and Elovich, were applied to analyze the experimental data from the batch experiments.

Pseudo-first order (PFO) is given in Equation (7).

qt = qe (1 − e−kt) (7)

Pseud-second order (PSO) is given as:

qt = (k2qe
2t)/(1 + (k2qet)) (8)
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where k1 (h−1) is the PFO adsorption rate constant, k2 (g (mg h)−1 is the PSO rate constant,
qe and qt (mg g−1) are the amount adsorbed at equilibrium and the amount adsorbed at
time “t”, respectively [68,69].

The Elovich model can be described as in Equation (9).

qt = (1/β)ln(1 + αβt) (9)

where α is the initial adsorption rate of pesticide (mg (g h)−1), and β is the desorption
constant (g mg−1) [70].
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Figure 5. Adsorption kinetics of (a) imidacloprid, (b) acetamiprid and (c) methomyl on BC, respec-
tively, by fitting pseudo-first order, pseudo-second order and Elovich models.

The calculated constants of the three kinetic equations and the correlation coefficient
(R2) values under adsorption experiments with three different pesticides are presented in
Table 5. The R2 and the similarity of the experimental adsorption capacity (qe,exp) compared
to the calculated adsorption capacity (qe,cal) obtained by the kinetic models are typically
used to determine the validity of the kinetic models. As seen in Table 5, the PSO kinetic
model with the highest R2 values (0.98–0.99) can more correctly describe the adsorption
process of the three pesticides on the BC, and the calculated adsorption capacities (qe,cal)
for the PSO model matched well with the experimental adsorption capacities (qe,exp). Thus,
the adsorption mechanism of pesticides on BC in this study was possibly predominated
by chemisorption [71]. The higher α values compared with β constants from the Elovich
model in the adsorption of imidacloprid, acetamiprid, and methomyl indicated the higher
rate of adsorption than desorption, suggesting the viability of pesticide adsorption on the
BC [70].

Table 5. Kinetic parameters of the PFO, PSO and Elovich models for adsorption of imidacloprid,
acetamiprid and methomyl on the eucalyptus wood-derived biochar. qe,exp: experimental adsorption
capacity and qe,cal: calculated adsorption capacity (mg g−1).

Pesticides qe,exp

PFO Model PSO Model Elovich Model

qe,cal
k1

(h−1) R2 qe,cal
k2

(g (mg h)−1) R2 α

(mg (g h)−1)
β

(g mg−1) R2

Imidacloprid 10.01 9.74 5.6075 0.9495 10.95 0.73912 0.9791 3.66 × 102 0.5468 0.8964
Acetamiprid 1.46 1.42 0.9167 0.9666 1.49 0.6251 0.9787 3.38 2.6609 0.9666
Methomyl 5.96 5.83 1.1147 0.9800 6.06 0.2034 0.9915 21.59 0.7333 0.9645

3.2.4. Adsorption Rate-Controlling Mechanism

The adsorption-rate-control mechanism of pesticides on the BC was studied by using
the liquid film-diffusion (LFD) model, Equation (10), and the intra-particle diffusion (IPD)
model, Equation (11).

qt = kipd ·t1/2 + C (10)

ln(1 − F) = −klfd · t (11)
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where
F = qt/qe (12)

kipd is the rate constant of the IPD model (mg g−1 h0.5), C is the concentration (mg g−1)
which corresponds to the boundary layer thickness and klfd is the equilibrium fractional
attainment (h−1) [72,73].

The liquid film-diffusion and intra-particle diffusion modeling of the experimental
data are shown in Figure 6a,b, and the calculated parameters are summarized in Table 6.
As seen in Figure 6a, the non-linear relationship between qt and t1/2 was observed in IPD
modeling in all pesticide adsorption systems, and the fitting curves did not pass through
the origin. It indicates that several processes may be controlling the pesticide adsorption
in this study [67]. Furthermore, R2 values for the liquid film-diffusion model were higher
than those for the intra-particle diffusion model. It indicates that film diffusion is the
main rate-limiting step and contribution to external surface adsorption or instantaneous
adsorption of pesticides [74]. The high C values suggested a large thickness of the film
diffusion layers, possibly indicating the higher adsorption capability of imidacloprid and
methomyl than that of acetamiprid on the BC sorbent.
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Figure 6. (a) Intra-particle diffusion model and (b) liquid film diffusion model fitting for the adsorp-
tion of imidacloprid (IMI), methomyl (MET) and acetamiprid (ACE) on the BC material.

Table 6. The kinetic parameters of the LFD and IPD models for imidacloprid (IMI), acetamiprid
(ACE) and methomyl (MET) adsorption on BC.

Pesticides

LFD Model IPD Model

Klfd
(h−1) R2 kipd

(mg g−1 h0.5)
C

(mg g−1) R2

Imidacloprid 3.447 0.9578 4.519 4.954 0.7365
Acetamiprid 0.715 0.9797 0.4702 0.041 0.8993
Methomyl 0.776 0.9941 1.710 2.253 0.8513

3.2.5. Adsorption Mechanism

As seen in Figure 7, the FTIR spectrum of the BC before adsorption showed the
characteristic absorption peaks of OH (3420 cm−1) and C=C, C=O (broad peak around
1600 cm−1). After adsorption with pesticides, the relative peak intensities corresponding
to C=C, C=O shifted to a higher wavenumber after the adsorption of methomyl and
acetamiprid, whereas those peaks slightly switched to a lower wavenumber after the
adsorption of imidacloprid.

Kow values usually reflect the polarity of pesticides and high Log Kow pesticides (low
polarity) tend to be less soluble in water [78]. Thus, based on Log Kow values (imidacloprid
(0.57), methomyl (0.60) and acetamiprid (0.80)), acetamiprid should be preferably adsorbed
on the BC surface, compared with imidacloprid and methomyl. However, adsorption test
results showed that BC is an effective sorbent for the relatively polar pesticides (imida-
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cloprid and methomyl), possibly due to the contribution of the density of polar moieties
on the BC [79] surface. The presence of polar groups (hydroxyl and carboxyl groups) on
BC (observed by FTIR) should promote adsorption of pesticides with high polarity being
supported on the sorbent surface. Furthermore, the π-π interaction between the aromatic
carbon of the BC and the pyridine rings of imidacloprid and acetamiprid molecules may
block and hinder other molecules from assessing the binding site at the external surface of
the BC, resulting in lower adsorption capacities than those of methomyl.
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That may result from the interaction between aromatic derivatives present in the BC
and pesticide molecules through the π-π interaction [75–77] formed between the pyridine
rings (in imidacloprid and acetamiprid) and N-H (in methomyl), as proposed in Scheme 1.
Another possible interaction is the OH (in alcohol, phenol, and carboxyl groups) and C=O
(in carboxyl groups) on the BC surface interacting with the pesticide molecules by an
H-bonding interaction, as illustrated in Scheme 2.
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3.2.6. Comparative Sorption Capacities of Pesticides on Various Sorbents

The adsorption capacities of three pesticides on BC from our study were compared
with various adsorbents and they are reported in Table 7. The adsorption capacity of imida-
cloprid over BC is comparable to that of biochar derived from peanut shells, although the
specific surface area of woodchip derived BC (in our study) is 130% smaller. Furthermore,
the adsorption capacity of acetamiprid over BC is in the same range as that of bentonite
and kaolin [80] clays.

Table 7. Langmuir adsorption capacities of the eucalyptus wood-derived biochar compared with
previously reported carbon-based adsorbents from various raw parent materials.

Adsorbent Pesticide Temp.
(◦C)

Conc. Range
(ppm)

Adsorption
Capacity
(mg g−1)

Surface
Area

(m2 g−1)

Adsorption Capacity
per Surface Area

(mg g2)
Ref.

Eucalyptus wood Imidacloprid 25 10–200 14.75 4.02 3.669 This work
Peanut shell Imidacloprid 25 2.5–30 18.17 534.83 0.034 [81]

KOH-magnetic sugarcane bagasse Imidacloprid 25 10–200 313.00 660 0.4742 [82]
KOH-magnetic corncob Imidacloprid 25 10–200 410.00 192.30 2.1321 [83]

Eucalyptus wood Acetamiprid 25 10–200 4.78 4.02 1.1891 This work
KOH-tangerine peel Acetamiprid 25 0.01–1 37.51 697.80 0.038 [84]

FeCl3-pistachio shells Acetamiprid 22 ± 2 - 86.10 1158.70 0.0743 [85]

Eucalyptus wood Methomyl 25 10–200 32.42 4.02 8.065 This work
H3P4-cotton stalks Methomyl 25 - 72.85 1600.00 0.0455 [86]

Carbon xerogel Methomyl 25 20–100 15.2 212.20 0.0716 [87]

Notably, the surface areas of those clays are higher than that of the BC. Interestingly,
the adsorption capacity of methomyl over BC is higher than that of carbon xerogel, as
it has ca. 50-fold of the BC surface area. It is worth noting that the adsorption capacity
per unit surface area of the BC for three pesticide removal in our study is also higher
than the reported activated biochar materials produced from agricultural waste. Previous
work suggested that biochar with a small surface area could provide a high adsorption
capacity per unit surface area for pesticide removal because the three-dimensional swelling
of biochar occurs in an aqueous environment, and the adsorbates are adsorbed and imbibed
at the adsorption sites [40]. Thus, the low-cost and woodchip derived biochar in this work
has shown great promise as an effective sorbent for aqueous pesticide removal. It is highly
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possible that well-controlled surface functionalization or activation of the biochar materials
would further enhance the adsorption capacity of emerging pollutants in wastewater.

4. Conclusions

Woodchip derived biochar material has been applied as a sorbent to remove imida-
cloprid, acetamiprid, or methomyl from water. The maximum adsorption capacities of
pesticides on the biochar can be described in the order of highest to lowest from methomyl
to imidacloprid to acetamiprid. Evidence has suggested that the polar functional groups
on the biochar surface (hydroxyl and carboxyl groups), and π-π interactions between the
pesticides and aromatic carbons in the biochar could be responsible for the high adsorption
capacity of the pesticide on the solid sorbent. The chemisorption processes obeyed the
pseudo-second order model, and the film-diffusion was the main rate-limiting step for
the adsorption of all pesticides in the aqueous media. The adsorption isotherms on the
biochar were better described by the Langmuir model for acetamiprid and methomyl,
whereas the Freundlich model is fitted well with the imidacloprid adsorption data. Further
improvement of the adsorption capacity of pesticides on the biochar may be carried out by
conducting surface functionalization of the solid sorbent. However, the functionalization
method may increase the production cost of the modified biochar, hence it is impractical
for large scale utilization such as in wastewater treatment plants.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/min12050528/s1, Figure S1. Dubini–Redushkevich adsorption
isotherms for (a) imidacloprid, (b) actamiprid and (c) methomyl on BC, respectively; Table S1.
Dubinin–Radushkevich and Temkin isotherm parameters for imidacloprid, acetamiprid and methomyl
on BC. References [88,89] are cited in the supplementary materials.
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