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Abstract: The main aim of this paper is to study the cation fixation sites in montmorillonite after
heating at different temperatures. Montmorillonite was used to adsorb cations (Na+, Cu2+ and Li+)
in the solution, and the montmorillonite-adsorbed cations were heated at different temperatures
(unheated, 100 ◦C, 200 ◦C and 300 ◦C) for 25 h. Subsequently, the basal spacing of montmorillonite
treated at different temperatures was monitored by X-ray diffraction (XRD). The exchangeable
cationic content (Na+, Cu2+ and Li+) in montmorillonite was determined based on an inductively
coupled plasma emission spectrometer (ICP-OES). In addition, the stretching and bending vibration
changes in the OH group and the Si-O bond in montmorillonite were detected by Fourier transform
infrared spectroscopy (FTIR). The vibration changes were related to the cation fixation sites. The XRD
data showed that when the heating temperature reached 200 ◦C, the structure of montmorillonite
adsorbing Li+ and Cu2+ ions completely collapsed, but the layer spacing of montmorillonite adsorbing
Na+ decreased slightly, which indicated that Li+ and Cu2+ were more easily able to enter the crystal
structure. The ICP-OES results showed that the contents of exchangeable Na+, Cu2+ and Li+ in
montmorillonite decreased with the increase in heating temperature, and Li+ was more easily fixed
by montmorillonite than Na+ and Cu2+. The FTIR data showed that when montmorillonite adsorbed
with Li+ was heated at more than 200 ◦C, a new OH stretching vibration band appeared at 3971 cm−1,
which may be caused by the migration of Li+ into the octahedral vacancy to form a local trioctahedral
structure. Na+ has a large radius; it can only be fixed near the OH group and may not enter the
tetrahedron/octahedron of montmorillonite. The number of charges carried by Cu2+ is high and the
dehydration enthalpy of hydrated Cu2+ is high. When the heating temperature was greater than
200 ◦C, Cu2+ mainly entered the hexagonal cavity of the tetrahedron and caused slight changes in
the OH bending vibration. The vibration of the Si-O bond hardly changed after montmorillonite
adsorbed Na+, but the stretching vibration peak of the Si-O bond moved to the high value region
after adsorbing Cu2+ and Li+, which was speculated to be related to the migration of Cu2+ and Li+

into the crystal structure.

Keywords: montmorillonite; cation; thermal migration; infrared

1. Introduction

Montmorillonite is a typical layered silicate mineral, which is composed of two lay-
ers of silicon-oxygen tetrahedron and one layer of aluminium-oxygen octahedron. The
octahedron of montmorillonite has the following two types: one is dioctahedral and only
two-thirds of the cation coordination positions of the octahedron are filled with trivalent
central atoms; the other is trioctahedral and the cation coordination positions of the octa-
hedron are occupied by divalent cations [1–3]. The tetrahedral and octahedral layers of
montmorillonite have a considerable degree of ion substitution. Si4+ in the tetrahedral layer
can be replaced by Al3+ and Al3+ in the octahedral layer can be replaced by Fe3+, Fe2+, Mg2+,
etc., so that the structural unit layer has negative charges, which are balanced by exchange-
able cations between structural unit layers and at the edge of unit layer [4–6]. Heating
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montmorillonite at 200–300 ◦C would lead to the fixation of the exchangeable cations, the
reduction in interlayer charge and the irreversible collapse of the mineral structure layer,
behavior which is called the Hofmann-Klemen effect [7–9]. The final fixation sites of cations
in minerals in the Hofmann-Klemen effect have been studied for more than 70 years, with
no definitive answers [10,11]. There are three explanations for the Hofmann-Klemen effect,
as follows: (i) cations migrate into the hexagonal cavity of the tetrahedral sheet [12,13];
(ii) the cation enters the vacancy in the octahedral sheet through the hexagonal channel of
the tetrahedral sheet [14]; (iii) cation migration at both sites [15]. The exchangeable cations
would remove the bound water on the surface during heating, and cations with small radii
could be fixed in the mineral structure, resulting in the reduction in negative charge in the
mineral layer [4].

Lithium ion (Li+) is one of the most common elements in the interlayer of mont-
morillonite and its ionic radius is small enough [4]. Relevant studies showed that the
Hofmann-Klemen effect is likely caused by the interlayer Li+ migration into the lattice
structure [4,9]. It is common to study the migration behavior of Li+ in heated montmoril-
lonite. Luca et al. [13] used the 57Fe nucleus probe to detect the electronic disturbance of
montmorillonite during heating. The results showed that Li+ would not enter the octahedral
site. Gournis et al. [14] studied the lattice structure of lithium-saturated montmorillonite
before and after heat treatment at 300 ◦C with neutron diffraction. The diffraction pattern
showed that some Li were fixed in the octahedral sheet, and the rest remained in the
interlayer space. Ebina et al. [15] calculated based on density functional theory (DFT)
that Li+ in montmorillonite could migrate from the interlayer to the hexagonal cavity and
the octahedral site when heated at 250–350 ◦C; the mobility is 60% and 40%, respectively.
In addition, other scholars have studied the thermal migration behavior of other cations
(Ni2+, Zn2+, Mg2+, Cd2+) [4,13,16–18], but there is still great controversy about whether the
cations are fixed in the hexagonal cavity of the tetrahedral sheet or the previously vacant
octahedral vacancy. Therefore, in this paper, three cations (Li+ with controversial fixed
sites, Cu2+ with a similar radius to Li+ and Na+ with the same valence as Li+) are selected
to explore the thermal migration behavior of interlayer cations in montmorillonite.

A large number of studies have used infrared spectroscopy to detect the fixed position
of cations in clay [12,13,19]. When the molecule is irradiated with infrared light, the
chemical bonds or functional groups in the molecule undergo vibration absorption. The
absorption frequencies of different kinds of chemical bonds or functional groups are
different; they would be in different positions in the infrared spectra, so as to obtain
the information of internal chemical bonds or functional groups of clay minerals [20–22].
Fourier transform infrared spectroscopy (FTIR) has been widely used in the study of
clay minerals.

Previous studies on the thermal migration behavior of single cations in clay have
made some progress, but there are few studies on the fixed sites of different kinds of cations
in montmorillonite [16,23,24]. Comparing the research results of different authors, it can
be observed that the mineral structure, radius and charge of cations affect the cationic
migration sites in clay minerals [7,23,25]. Therefore, based on infrared spectroscopy, the
thermal migration behavior of different cations in montmorillonite was investigated in this
study. The aim is to provide further reference information for the possible thermosetting
sites of exchangeable cations in montmorillonite and to explore the influence of the types
of cations on their thermosetting sites in clay minerals.

2. Experimental Section
2.1. Sample Preparation

The montmorillonite used in this study was purchased from Xianding Biotechnology
Co., Ltd. (Shanghai, China). The Li+ solution, Na+ solution and Cu2+ solution used in the
experiment were prepared from Li2SO4 (AR), Na2SO4 (AR) and CuSO4 (AR), respectively.

In order to remove the soluble impurities in montmorillonite, it was repeatedly washed
with deionized water three times, then dried in an oven at 60 ◦C for 12 h and grinded into
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powder in a mortar for standby. In order to prepare Li+, Na+ and Cu2+ montmorillonite
(Li-MT, Na-MT and Cu-MT), 2.00 g of montmorillonite was immersed in 50 mL of Li+

(1 M), Na+ (1 M) and Cu2+ (1 M) solution, respectively, placed in an oscillator for about
2 h (50 r/min), and then the solid and liquid were separated by a filter. The separated
solid was naturally dried at 20–25 ◦C. Through the above operations, a total of 4 groups of
samples (Mt0, Mt100, Mt200 and Mt300) were prepared. Referring to the relevant literature,
each group of samples was heated at a given temperature for 25 h (e.g., Mt0 for unheated
samples and Mt100 for heating at 100 ◦C) [8,12,20].

2.2. Characterization

X-ray diffraction (XRD) was used to characterize the mineral composition in the sam-
ple, using an XRD-6100 (Shimadzu, Japan) with Cu-Kα radiation (λ = 0.412 nm) operating
at 60 kV and 40 mA, with a 2θ scan range of 2◦ to 90◦ and scan rate of 4◦/min.

The content of the exchangeable cations (Cu2+, Na+ and Li+) in the sample was
determined by extraction with ammonium acetate solution (1 M) at pH 7. In step 1, 25 mg
sample was dispersed in 5 mL of ethanol, then 5 mL of ammonium acetate solution was
added, and the extract was collected after standing for 24 h. In step 2, 5 mL of deionized
water was added to the remaining solid and the extract was collected after 24 h. In step 3,
Step 1 and Step 2 were repeated three times. In step 4, the extracts of the same sample
were mixed and the cation concentration in the solution was determined by the inductively
coupled plasma emission spectrometer (ICP-OES, Agilent 5110, Santa Clara, CA, USA) [19].

The infrared spectra were obtained on a Fourier transform infrared spectra analyzer
(PerkinElmer FTIR, Spectrum Two, Waltham, MA, USA) equipped with a DTGS detector.
The samples to be tested (2 mg sample and 200 mg KBr) were prepared by KBr tablet
pressing technology [8,19]. The samples were tested in the range of 4000–450 cm−1. The
scanning times of each sample were 128 cm−1 and the resolution was 4 cm−1.

The infrared spectra were usually divided into the following three regions: near
infrared (NIR), medium infrared (MIR) and far infrared (FIR). The spectral vibrations
of clay minerals in NIR (12,000–4000 cm−1) include combination and overtone modes
of the fundamental vibrations. The combined mode refers to the addition of two or
more basic modes, and the overtone mode appears when a basic mode is excited by two
or more quantum simultaneously [20]. The combination and overtone modes of water
molecules appear at 5500–4500 cm−1 and 7100–6000 cm−1, respectively. In clay minerals, the
combination mode (vOH + σOH) and overtone mode (2vOH) of structural hydroxyl groups
appear near 5000–4000 cm−1 and 7000 cm−1, respectively [20]. There are few studies on
montmorillonite FIR (400–10 cm−1), mainly because it has no significant absorption bands
in the region of 120–50 cm−1 [20]. The thermal migration of cations in montmorillonite
is mainly studied based on the vibration changes of OH groups, Si-O and Al-O in the
mid-infrared region (4000–400 cm−1) [20]. The vibration forms of OH groups include
stretching vibration (vOH) and bending vibration (σOH); the spectral regions are 3750–3000
and 950–600 cm−1, respectively. The stretching vibration of Si-O and Al-O is located at
1200–700 cm−1, and the bending vibration of Si-O and Al-O occurs in the spectral region of
600–400 cm−1 [20].

Compared with NIR and FIR, MIR spectroscopy is more commonly used to study the
mineral structure [26–28]. In addition, FTIR spectrometers collected in the MIR region are
relatively cheap and available in most laboratories [20]. Therefore, in this experiment, the
MIR spectroscopy was analyzed in detail to identify the fixed sites of exchangeable cations.

3. Results and Discussion
3.1. XRD Analysis

The montmorillonite used in this study has high purity and contains only a small
amount of quartz and other impurities, and the XRD diffraction is shown in Figure 1.
All the diffractions include both the basal reflections and the general hk diffractions of
the montmorillonite. The characteristic of the basal reflection varies with the hydration
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state of minerals. The general hk diffractions (marked with asterisks) are the structural
characteristics of the montmorillonite layers themselves, which do not depend on interlayer
hydration [11,25]. Moreover, the XRD patterns of montmorillonite after heating at different
temperatures were studied. The hk-bank positions are the same in any sample and no new
peaks that may be related to the new crystal structure were observed; whereas the basal
reflection changes in the peak position.

Figure 1. XRD patterns of montmorillonite.

The basal spacing of montmorillonite corresponds to its hydrated structure where
hydrated cations are located in the interlayer space. Furthermore, the basal reflection peaks
of montmorillonite are related to its chemical composition and the type of exchangeable
cations [29]. The d001 spacing of unheated samples (Cu-Mt0, Na-Mt0 and Li-Mt0) were all
in the range 13.1–14.4 Å (Table 1). The value of Li-Mt0 (13.1 Å) was slightly smaller than
that of Na-Mt0 (14.4 Å) and Cu-Mt0 (14.1 Å), which was because the hydration degree of
Cu2+ and Na+ was higher than that of Li+ [30]. Therefore, the interlayer spacing of Cu2+

and Na+ in the mineral interlayer was larger than that of Na+ in the interlayers.

Table 1. The d001 diffraction values of samples at different temperatures.

d001 (Å)

Heating Temperature (◦C) Cu-Mt Na-Mt Li-Mt

unheated 14.1 14.4 13.1

100 ◦C 12.5 12.6 12.5

200 ◦C 9.7 12.6 9.9

300 ◦C 9.6 12.6 9.5

The d001 values of samples treated at 100 ◦C decreased slightly compared with un-
heated samples (Table 1). When the heating temperature was 200 ◦C, the layer spacings
of Cu-Mt and Li-Mt were reduced to <10 Å, which was consistent with the thickness of
the completely collapsed montmorillonite layer [11,25]. However, the layer spacing of
Na-Mt was 12.6 Å, which indicated that the heat treatment would not lead to the complete
collapse of the Na-Mt structure. There is an interaction between interlayer cations and the
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aluminosilicate surface. The interlayer cation is positively charged and the aluminosilicate
surface is negatively charged, which can produce electrostatic interactions [30,31]. When
the cations were heated into the mineral crystal structure, it could reduce the negative
charge carried by the aluminosilicate layers and reduce the spacing of mineral layers. It
was inferred from the d001 values that Li+ and Cu2+ were more easily able to enter the
mineral crystal structure than Na+.

3.2. Exchangeable Cation Content

The contents of exchangeable Cu2+, Na+ and Li+ in the extract of montmorillonite
heated at different temperatures were showed in Table 2. Compared with the exchangeable
Cu2+ content in Cu-Mt0, Cu-Mt100, Cu-Mt200 and Cu-Mt300 decreased to 86.7%, 82.2%
and 79.3%, respectively. The exchangeable Na+ in Na-Mt100, Na-Mt200 and Na-Mt300
decreased to 93.2%, 87.9% and 85.8% of Na-Mt0, respectively. The exchangeable Li+ in Li-
Mt100, Li-Mt200 and Li-Mt300 decreased to 88.5%, 75.3% and 58.9% of Li-Mt0, respectively.
The results showed that the content of exchangeable Cu2+, Na+ and Li+ in montmoril-
lonite decreased with the increase in temperature. When heated to 100 ◦C, the content of
exchangeable Na+ in montmorillonite changed little, while the content of exchangeable
Cu2+ and Li+ decreased greatly. Further, when heated to 200 ◦C and 300 ◦C, the decrease
rate of exchangeable Li+ in montmorillonite was significantly higher than that of Na+ and
Cu2+. In conclusion, Li+ was able to be fixed easier by montmorillonite than Cu2+ and Na+

during heating.

Table 2. Concentration of Cu2+, Na+ and Li+ in the extract.

Concentration (mg/L)

Heating Temperature (◦C) Cu-Mt Na-Mt Li-Mt

unheated 374.0 162.5 66.9

100 ◦C 324.5 151.4 59.2

200 ◦C 307.4 142.9 50.4

300 ◦C 296.4 139.5 39.4

3.3. FTIR Analysis
3.3.1. OH Stretching Vibrations

The FTIR spectra of unheated samples (Na-Mt0, Cu-Mt0 and Li-Mt0) showed an obvi-
ous absorption band near 3627 cm−1, which was the OH group stretching vibration band
coordinated with the central atom in the octahedron (Figure 2A–C). The stretching vibration
of the OH group in montmorillonite is mainly affected by the following two factors: one
is the nature of the central atom coordinated with hydroxyl in the octahedron; the other
is isomorphism in the crystal. The top oxygen (Oap) of the tetrahedron can produce local
negative charges. When the cations move into the crystal structure, which will neutralize
the negative charges, it affects the stretching vibration of hydroxyl [19,32]. During the heat-
ing of Na-Mt, the stretching vibration band of OH remained near 3627 cm−1 (Figure 2A).
No displacement was detected in Cu-Mt100, and minimal displacement was observed
in Cu-Mt200 and Cu-Mt300, ranging from 3627 to 3631 cm−1, respectively (Figure 2B).
The stretching vibration change in OH in Li-Mt during heating was obviously different
from that of Na-Mt and Cu-Mt. When heated to 100 ◦C, Li-MT did not change; when
the temperature continued to rise, the OH stretching vibration bands of Li-Mt200 and
Li-Mt300 moved to 3635 cm−1 and 3640 cm−1, respectively, and a new absorption band
appeared at 3671 cm−1 (Figure 2C). According to reports in the relevant literature, during
the heating process of Li-Mt, hydrated Li+ can dehydrate into the empty octahedral site
of montmorillonite to form a local trioctahedral structure (AlMgLiOH), resulting in a new
OH stretching vibration band at 3671 cm−1 [19,20]. The experimental results showed that
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Li+ could enter the octahedral structure of montmorillonite, while Cu2+ and Na+ did not
enter the octahedral structure of montmorillonite during heating.

Figure 2. FTIR spectra of samples in OH stretching vibrations. (A) Na-Mt in different temperatures;
(B) Cu-Mt in different temperatures; (C) Li-Mt in different temperatures.

It was shown that the cations entering the hexagonal cavity of clay minerals cause
the OH stretching vibration band to move to a higher value [19,20]. For samples Li-Mt0,
Na-Mt0 and Cu-Mt0, the charge imbalance in montmorillonite tetrahedral structure is
caused by Oap. When montmorillonite has a dioctahedral structure, OH and Oap interact
in the form of a hydrogen bond to form OH···Oap, and the interaction between O and H
in OH is weakened [19]. When the cations migrate into the crystal structure, the negative
charge of Oap is balanced, the interaction between OH and Oap is weakened, and the
interaction between O and H in OH is enhanced, resulting in the movement of vOH to a
higher wavelength [19].

The movement of the OH stretching band is related to the properties (radius and
charge) of interlayer cations. The radii of Cu2+, Na+ and Li+ are 0.72 Å, 0.95 Å and 0.68 Å,
respectively [19,33]. Compared with Li+ and Cu2+, Na+ has a larger radius, which makes it
unable to enter the hexagonal cavity/vacancy octahedron of montmorillonite. The radius
difference between Li+ and Cu2+ is small, but the dehydration enthalpy of hydrated Cu2+

(−502 kcal mol−1) is higher than that of hydrated Li+ (−124 kcal mol−1); that is, hydrated
Cu2+ ions are more difficult to dehydrate into the tetrahedral/octahedral structure of the
crystal [20,23].

3.3.2. OH Bending Vibrations

The bending vibration of OH can further provide supplementary data for the migration
behavior of cations during montmorillonite heating. The FTIR spectra of unheated samples
(Li-Mt0, Na-Mt0 and Cu-Mt0) showed that there were obvious absorption bands near
797 cm−1, 844 cm−1 and 912 cm−1 (Figure 3A–C), which presumably correspond to the OH
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group bending absorption bands of FeMgOH, AlMgOH and AlAlOH in minerals [34–36].
The absorption band at 629 cm−1 may be caused by silicate impurities in the sample.

Figure 3. FTIR spectra of samples in OH bending vibrations (marked with green dotted line), Si-O
stretching vibrations (marked with red dotted line) and Si-O bending vibrations (marked with blue
dotted line). (A) Na-Mt in different temperatures; (B) Cu-Mt in different temperatures; (C) Li-Mt in
different temperatures.

During the heating process of Na-Mt, the bending vibration of OH did not change sig-
nificantly, and only the strength allocated to AlMgOH and AlAlOH in Na-Mt300 decreased
slightly (Figure 3A). The radius of Na+ is larger and its hydrated ions cannot enter the
hexagonal cavity of tetrahedron after dehydration, but the layer spacing of montmorillonite
decreases when heated to 300 ◦C, making Na+ closer to the OH group, resulting in weak
changes in the OH bending vibration band. Compared with Cu-Mt0, the OH bending
vibration of Cu-Mt100 did not change (Figure 3B). When the heating temperature was
further increased, the OH bending vibration band of Cu-Mt was weakened, the vibration
peak of AlMgOH of Cu-Mt200 moved from 844 to 868 cm−1 and the AlAlOH moved from
912 to 925 cm−1. The vibration peak of AlMgOH of Cu-Mt300 appeared at 868 cm−1 and
that of AlAlOH appeared at 925 cm−1 (Figure 3B). Cu2+ can enter the hexagonal cavity of
the tetrahedron during heating. The coulombic repulsion forces of Cu2+ may change the
direction of the dipole moment of the OH group, thus interfering with the deformation
vibration of the OH group. The infrared spectra of Li-Mt showed that when heated to
200 ◦C and 300 ◦C, the spectral peaks of AlMgOH appeared near 850 cm−1 and the bending
vibration of OH in AlAlOH was hardly observed (Figure 3C). The results showed that
Li+ may migrate to the hexagonal cavity of the tetrahedron. According to the stretching
vibration results of OH in Figure 2C, the migration site of Li+ is not singular and can exist
in the tetrahedron and octahedron. Skoubris et al. [35] reported that during the heating
process of montmorillonite, the hydrated Li+ between layers first migrated to the hexagonal
cavity after dehydration, and then entered the vacancy octahedral site. In conclusion,
Na+ cannot enter the hexagonal cavity during montmorillonite heating, but Cu2+ and Li+

can enter.
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3.3.3. Si-O Vibrations

The interlayer cations in minerals migrate into the hexagonal cavities and/or the
octahedral vacancies, which changes the stretching vibration and bending vibration of Si-O
in the tetrahedral structure. The layer charge of minerals is balanced with the migration of
cations, so that the mineral structure of montmorillonite is close to pyrophyllite (typical
non-charged dioctahedral mineral) [33,37].

The Si-O stretching vibration peaks of Na-Mt0, Cu-Mt0 and Li-Mt0 were all located
near 1035 cm−1 (Figure 3). After heating, the Si-O stretching vibration of the Na-Mt
series hardly changed (Figure 3A). Compared with Cu-Mt0, the Si-O band of Cu-Mt100
had no movement; when heated to 200 ◦C, the Si-O peak value moved from 1035 cm−1

to 1049 cm−1; when heated to 200 ◦C, the Si-O band widened and the peak moved to
1050 cm−1 (Figure 3B). During the heating process of montmorillonite, the change trend
of Li-Mt and Cu-Mt was similar. The Si-O stretching vibration band of Li-Mt100 was
located near 1037 cm−1 and its movement could be ignored (Figure 3C). The vibration
peaks of Li-Mt200 and Li-Mt300 were 1051 cm−1 and 1053 cm−1, respectively. During the
heating process, the structure of montmorillonite became similar to pyrophyllite due to the
migration of interlayer Cu2+ and Li+ (the Si-O stretching vibration peak of pyrophyllite
was near 1049 cm−1) [37].

The bending vibration bands of Si-O-Al and Si-O-Si of montmorillonite were located
at 520 cm−1 and 467 cm−1, respectively (Figure 3). During heating, the absorption bands of
Na-Mt and Li-Mt did not change. Then, when heated to 200 ◦C, the Si-O bending vibration
intensity of Cu-Mt decreased significantly. Compared with Cu-Mt, Li-Mt had no significant
change, which may be due to its smaller valence state.

It was concluded that the cationic thermal migration in montmorillonite changes
the bond length and Si-Obasal-Si bond angle of the Si-O bond. Cu-Mt and Li-Mt change
differently during heating, mainly due to the different fixation sites of Cu2+ and Li+ [38].
Even if Cu2+ and Li+ are located at the same site (for example, in a hexagonal cavity of a
tetrahedron), their disturbance to Si-O is different. Compared with the divalent cations at
the same site in the mineral structure, the electric field intensity of the monovalent cations
is lower, so the disturbance to the Si-O bending vibration band is smaller [25,39].

4. Conclusions

In this paper, montmorillonite samples were characterized based on XRD, ICP-OES
and FTIR in order to study the thermal migration of cations in the interlayer. The XRD data
showed that Li+ and Cu2+ were more easily able to enter the crystal structure. This was
because when the heating temperature reached 200 ◦C, the layer spacings of Cu-Mt and
Li-Mt were <10 Å, which was the layer spacing of completely collapsed montmorillonite,
while the layer spacing of Na-Mt was only slightly reduced. Moreover, based on the study
data of exchangeable cations in montmorillonite, the fixed content of cations increases as
the temperature increases. In addition, Li+ was more easily fixed by montmorillonite than
Cu2+ and Na+.

It was found that the radius and charge of exchangeable cations affect their fixed
sites in montmorillonite after heating. A new OH stretching vibration band at 3971 cm−1

was observed in the heated Li-Mt200 and Li-Mt300, indicating that Li+ migrated to the
octahedral vacancy and formed a local trioctahedral structure (AlMgLiOH). The radius of
Cu2+ is similar to that of Li+, but Cu2+ can only migrate into the hexagonal cavity of the
tetrahedron because the charges carried by Cu2+ are higher and the dehydration enthalpy
of hydrated Cu2+ is higher than that of hydrated Li+. Na+ has a large radius and cannot
penetrate the tetrahedron/octahedron. After heating and dehydration, interlayer hydrated
Na+ could only be fixed near the OH group, causing slight changes in the bending vibration
band of the OH group. The vibration results of the Si-O bond showed that Na-Mt hardly
changes with the temperature increase. When Cu-Mt and Li-Mt were heated to 200 ◦C, the
stretching vibration peak of the Si-O bond moved to the higher wavenumber region. In
addition, the Si-O bond bending vibration bands of Na-Mt and Li-Mt did not change, but
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the absorption band strength of Cu-Mt decreased, which may be due to the higher valence
state of Cu2+ than that of Li+.
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