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Certain elements are essential to the growth and health of living organisms with
specific biochemical functions in their metabolic processes. However, these elements can
become toxic when their amounts exceed certain thresholds. Therefore, the environmental
levels of various trace elements in soil, water, or sediment are of major concern due to
their dose-dependent effects on living organisms. The aim of this Special Collection is
to bring researchers from different fields together, involving biogeochemistry and eco-
toxicology in various environmental media, in order to provide a more comprehensive
understanding of the environmental fate of trace elements in their biogeochemical cycles
for different ecosystems.

In this context, several contributions have been made to study the presence and ef-
fect of trace elements in different environmental sinks. In the soil system, Horváth and
co-authors [1] monitored the contamination levels and executed a comparative assess-
ment of soil properties and dwelling mesofauna in a mid-sized Hungarian city in two
different years, and they found a correlation between specific chemical parameters and
soil microarthropods. Pan and co-authors [2] studied the concentrations of potentially
toxic elements in 27 surface soil samples from areas where coal-mining activities ceased
nine years ago (Guizhou Province, China). Cadmium was the only element that showed a
mean concentration higher than the national soil quality standard, with levels that could
be harmful to live organisms. Korzeniowska and Krąż [3] studied heavy metal pollution
caused by anthropogenic activities in the natural Tatra National Park (Poland). They ob-
served the presence of Cd and Pb from human activities and noted that with the increase in
the altitude of the terrain, the concentration of metals in soils decreased. Sutkowska and
co-authors [4] defined pollution indices as an efficient tool for distinguishing anthropogenic
soil pollution and geogenic contamination in two polish areas differing in geological setting
and type of land use. In the attempts to establish remediation techniques for polluted soils,
Baek and co-authors [5] evaluated the feasibility of using a practical chemical washing
method for the removal of fluorine from an enriched soil, and they stated that chemical
washing might not be effective for remediating soils containing chemically stable forms of
fluorine. Aguilar-Garrido and co-authors [6] evaluated the potential remediation of peat in
different As-polluted soils by assessing the decrease of As solubility and its toxicity through
bioassays. Peat addition decreased As mobility, but less effective in buffering As pollution
was observed in calcareous soils. Moreover, Zaragüeta and co-authors [7] observed that
the use of sewage sludge, which can be used as an organic amendment in agricultural soils,
increased the concentration of some trace metals in the soil, in bioavailable forms, and in the
crop. Interesting results also presented in the work done by Yang and co-authors [8], who
studied the adsorption behavior of p-arsanilic acid (ASA), a kind of organic arsenic feed
additive that contains the arsenic group in a chemical structure, on three kinds of pure iron
oxides and nine soils to elucidate its implication for contaminated soils. Their findings help
to understand the environmental transportation behavior of organoarsenicals by evaluating
the potential hazards associated with the usage of organic arsenic feed additives. Last
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but not least, in studies done with soil fractions, Suazo-Hernández and co-authors [9]
analyzed the effect of metal (Cu, Ag) engineered nanoparticles on phosphorous availability
in an agricultural Andisol and observed that the incorporation of the studied nanoparticles
into the selected soil generated an increase in P retention, which may affect agricultural
crop production.

Several studies were focused on the anthropopressure on sediments; Warta River stud-
ied by Jaskuła and co-authors [10] and Wigry Lake surveyed by Kostka and Leśniak [11],
both located in Poland, showed signs of heavy metal pollution. In Warta River, the third-
longest river in Poland, heavy metal contaminated sediments can act as point sources
in urbanized areas and fluvial processes. The results obtained from Wigry Lake showed
signs of metal pollution, mainly by Pb, although it is located in a pristine region. In the
same line, the work performed by Ramírez-Pérez and co-authors [12] investigated the
geochemistry, enrichment, and pollution of trace metals in anoxic sediments, pointing to a
possible ecotoxicological risk to organisms for Pb, Cu and Zn in superficial sediment layers
in the San Simon Bay (Spain), contaminated in the surface mainly due to anthropogenic
inputs, especially in the case of Pb, reflecting the enormous human pressure on these
ecosystems. Huang and co-authors [13] studied the causes of copper and other common
heavy metals input in sediments of irrigation canals in Taiwan province (China). They
observed that sediments were polluted mainly due to the highest masses of pollutants
released into drainage wastewater of the county and the return flow from irrigation, and
the illegal discharge of wastewater. Dinis and co-authors [14] assessed the ecological risk
of cadmium in karst lake sediment at Yelang reservoir in Guizhou province (China), also
incorporating an ecotoxicology approach, and found strong to extremely strong ecological
risks of Cd in sediments, but low ecotoxicology for the organism investigated, due, mainly,
to water properties (pH, and Ca and Mg content). Matabane and co-authors [15] did a
sequential extraction and risk assessment of potentially toxic elements in river sediments
of Blood River (South Africa), to assess a possible trend of mobilization of these elements
from sediment to water, they found a high toxicity-risk level, which could cause a threat to
organisms dwelling in sediments and local residents via consumption of crops irrigated
with the polluted river water. Finally, the sediment research is completed by a review article
of Nawrot and co-authors [16], which provides different methods in assessing the status
of the trace metal contamination in sediments affected by anthropogenic interference by
applying geochemical and ecotoxicological assessment and classification indices.

In water systems, two contributions determined pollutants in Russia: Menshikova
and co-authors [17] analyzed the water balance at the Kachkanar Mining and Processing
Plant tailings dump (Russia, Ural Region), and they highlighted that increasing the volume
of seepage discharge will lead to an increase in natural water pollution within the area.
Novikov and co-authors [18] identified the chemical composition of water from natural
springs near large cities in the Arctic region of Russia, which is used instead of tap water.
They found hazardous pollutants exceeding Russian hygienic limits in half of the tested
waters. Interesting findings were also shown by Moskovchenko and co-authors [19],
who studied the chemical composition of snow from Tyumen (Russia), which allowed
for a quantitative determination of pollutants deposited from the atmosphere. With this
determination, they identified the most polluted parts of the city, which were in the
center and along the roads with the most intensive traffic. Kozina and co-authors [20]
studied the conditions of sedimentation in the Caspian Sea, taking into account lithological,
mineralogical and geochemical data and observed that hydrogen sulfide contamination,
recorded in the bottom layer of the water column of the deep-water basins, affects the
formation of authigenic sulfides, sulfates and carbonates associated with the activity of
sulfate-reducing bacteria.

The research in water systems was completed by Fedoročková and co-authors [21],
who designed and verified a laboratory method for the testing of alkaline, magnesite-
based reactive materials for permeable reactive barriers to remove heavy metals from
contaminated groundwaters.
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Above mentioned studies especially focused on the effect and distribution of heavy
metals investigated in soil, sediment and water systems and demonstrated that several
regions in the World present potential risks from trace element pollution. Furthermore,
different ecological approaches (indices, ecotoxicological studies, geochemistry), different
forms of pollutants (nanoparticles, bulk metals, organic metals) and potential remediation
or techniques for trace element pollution controls are also illustrated in this volume and
provide a thorough comprehension of the status, control, and remediation of elemental
pollution in the ecosystems under anthropogenic disturbances.

Conflicts of Interest: The authors declare no conflict of interest.
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