Steady-State Microstructures of Quartz Revisited: Evaluation of Stress States in Deformation Experiments Using a Solid-Medium Apparatus
Abstract
:1. Introduction
2. Deformation Apparatus
3. Experimental Setup
4. Principle of Stress Measurements
5. Experimental Results
5.1. Pressure Stepping Test
5.2. Heating Test
5.3. Constant Strain Rate Test
6. Microstructural Observation
7. Discussion
7.1. Internal Friction in Solid Confining Medium
7.2. Flow Stress of Wet Quartz
7.3. Re-Evaluation of Masuda and Fujimura’s (1981) Experiments
7.4. Implications of Microstructural observations
8. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Griggs, D.T. Hydrolytic weakening of quartz and other silicates. J. R. Astron. Soc. 1967, 14, 19–31. [Google Scholar] [CrossRef][Green Version]
- Kronenberg, A.K.; Tullis, J. Flow strengths of quartz aggregates: Grain size and pressure effects due to hydrolytic weakening. J. Geophys. Res. 1984, 89, 4281–4297. [Google Scholar] [CrossRef]
- Fukuda, J.; Shimizu, I. Theoretical estimation of quartz dislocation creep: Comparison with experimental creep data and extrapolation of flow laws with water fugacity correction to natural conditions. J. Geophys. Res. 2017, 122, 5956–5971. [Google Scholar] [CrossRef]
- Masuda, T.; Fujimura, A. Microstructural development of fine-grained quartz aggregates by syntectonic recrystallization. Tectonophysics 1981, 72, 105–128. [Google Scholar] [CrossRef]
- Kumazawa, M.; Shimizu, I. Development of the first solid-medium apparatus in Japan: A historical review. Jpn. J. Struct. Geol. 2006, 49, 5–14, (In Japanese with English Abstract). [Google Scholar]
- Tullis, T.; Tullis, J. Experimental rock deformation techniques. In Mineral and Rock Deformation: Laboratory Studies (Geophysical Monograph Series 36); Hobbs, B.E., Heard, H.C., Eds.; American Geophysical Union: Washington, DC, USA, 1986; pp. 297–324. [Google Scholar]
- Gleason, G.C.; Tullis, J. A flow law for dislocation creep of quartz aggregates determined with the molten salt cell. Tectonophysics 1995, 247, 1–23. [Google Scholar] [CrossRef]
- Chernak, L.J.; Hirth, G.; Selverstone, J.; Tullis, J. Effect of aqueous and carbonic fluids on the dislocation creep strength of quartz. J. Geophys. Res. 2009, 114, B04201. [Google Scholar] [CrossRef]
- Tullis, J.; Christie, J.M.; Griggs, D.T. Microstructures and preferred orientations of experimentally deformed quartzites. Geol. Soc. Am. Bull. 1973, 84, 297–314. [Google Scholar] [CrossRef]
- Heilbronner, R.; Tullis, J. Evolution of c axis pole figures and grain size during dynamic recrystallization: Results from experimentally sheared quartzite. J. Geophys. Res. 2006, 111, B10202. [Google Scholar] [CrossRef]
- Richter, B.; Stünitz, H.; Heilbronner, R. The brittle-to-viscous transition in polycrystalline quartz: An experimental study. J. Struct. Geol. 2018, 114, 1–21. [Google Scholar] [CrossRef][Green Version]
- Hirth, G.; Tullis, J. Dislocation creep regimes in quartz aggregates. J. Struct. Geol. 1992, 14, 145–159. [Google Scholar] [CrossRef]
- Stipp, M.; Tullis, J. The recrystallized grain size piezometers for quartz. Geophys. Res. Lett. 2003, 30, 2088. [Google Scholar] [CrossRef][Green Version]
- Stipp, M.; Tullis, J.; Behrens, H. Effect of water on the dislocation creep microstructure and flow stress of quartz and implications for the recrystallized grain size piezometer. J. Geophys. Res. 2006, 111, B04201. [Google Scholar] [CrossRef][Green Version]
- Nachlas, W.O.; Hirth, G. Experimental constraints on the role of dynamic recrystallization on resetting the Ti-in-quartz thermobarometer. J. Geophys. Res. 2015, 20, 8120–8137. [Google Scholar] [CrossRef]
- Luan, F.C.; Paterson, M.S. Preparation and deformation of synthetic aggregates of quartz. J. Geophys. Res. 1992, 97, 301–320. [Google Scholar] [CrossRef]
- Rutter, E.H.; Brodie, K.H. Experimental intracrystalline plastic flow in hot-pressed synthetic quartzite prepared from Brazilian quartz crystals. J. Struct. Geol. 2004, 26, 259–270. [Google Scholar] [CrossRef]
- Rutter, E.H.; Brodie, K.H. Experimental grain size-sensitive flow of hot-pressed Brazilian quartz aggregates. J. Struct. Geol. 2004, 26, 2011–2023. [Google Scholar] [CrossRef]
- Mainprice, D.; Paterson, M.S. Experimental deformation of flint in axial compression. Geol. Soc. Lond. Spec. Publ. 2005, 245, 251–276. [Google Scholar] [CrossRef]
- Takahashi, M.; Nagahama, H.; Masuda, T.; Fujimura, A. Fractal analysis of experimentally, dynamically recrystallized quartz grains and its possible application as a strain rate meter. J. Struct. Geol. 1998, 20, 269–275. [Google Scholar] [CrossRef]
- Shimizu, I. Theories and applicability of grain size piezometers: The role of dynamic recrystallization mechanisms. J. Struct. Geol. 2008, 30, 899–917. [Google Scholar] [CrossRef]
- Shimizu, I. Steady-state grain size in dynamic recrystallization of minerals. In Recrystallization; Sztwiertnia, K., Ed.; InTech: Rijeka, Croatia, 2012; pp. 371–386. Available online: http://www.intechopen.com/books/recrystallization/steady-state-grain-size-in-dynamic-recrystallization-of-minerals (accessed on 7 March 2012). [CrossRef][Green Version]
- Shimizu, I. A stochastic model of grain size distribution during dynamic recrystallization. Phil. Mag. A 1999, 79, 1217–1231. [Google Scholar] [CrossRef]
- Shimizu, I. Stress and temperature dependence of recrystallized grain size: A subgrain misorientation model. Geophys. Res. Lett. 1998, 25, 4237–4240. [Google Scholar] [CrossRef]
- Masuda, T. A microstructural sequence of quartz schists in central Shikoku, south-west Japan. Tectonophysics 1982, 83, 329–345. [Google Scholar] [CrossRef]
- Tagami, M.; Takeshita, T. c-Axis fabrics and microstructures in quartz schist from the Sambagawa metamorphic belt, central Shikoku, Japan. J. Struct. Geol. 1998, 20, 1549–1568. [Google Scholar] [CrossRef]
- Shimizu, I. Rheological profile across the NE Japan interplate megathrust in the source region of the 2011 Mw9.0 Tohoku-oki earthquake. Earth Planets Space 2014, 66, 73. [Google Scholar] [CrossRef][Green Version]
- Kohlstedt, D.L.; Evans, B.; Mackwell, S.J. Strength of the lithosphere: Constraints imposed by laboratory experiments. J. Geophys. Res. 1995, 100, 17587–17602. [Google Scholar] [CrossRef]
- Hirth, G.; Tullis, J. The brittle-plastic transition in experimentally deformed quartz aggregates. J. Geophys. Res. 1994, 99, 11731–11747. [Google Scholar] [CrossRef]
- Gleason, G.C.; Tullis, J. Improving flow laws and piezometers for quartz and feldspar aggregates. Geophys. Res. Lett. 1993, 20, 2111–2114. [Google Scholar] [CrossRef]
- Tingle, T.N.; Green, H.W.; Young, T.E.; Koczynski, T.A. Improvements to Griggs-type apparatus for mechanical testing at high pressure and temperatures. Pure Appl. Geophys. 1993, 141, 523–543. [Google Scholar] [CrossRef]
- Holyoke III, C.W.; Kronenberg, A.K. Accurate differential stress measurement using the molten salt cell and solid salt assemblies in the Griggs apparatus with applications to strength, piezometers and rheology. Tectonophysics 2010, 494, 17–31. [Google Scholar] [CrossRef]
- Kido, M.; Muto, J.; Nagahama, H. Method for correction of differential stress calculations from experiments using the solid salt assembly in a Griggs-type deformation apparatus. Tectonophysics 2016, 672, 170–176. [Google Scholar] [CrossRef]
- Iida, K.; Tsukahara, H.; Kumazawa, M.; Kobayashi, Y.; Suzuki, I.; Kasahara, J. Deformation of dunite at slow strain rates under high temperature and pressure. J. Soc. Mater. Sci. Jap. 1971, 20, 179–184. (In Japanese) [Google Scholar] [CrossRef]
- Tsukahara, H.; Yamazaki, Y. Preferred lattice orientation in partially melted fayalite aggregate at high temperature. J. Geol. Soc. Jap. 1976, 82, 751–756. [Google Scholar] [CrossRef][Green Version]
- Nakashima, S.; Matayoshi, H.; Yuko, T.; Michibayashi, K.; Masuda, T.; Kuroki, N.; Yamagishi, H.; Ito, Y.; Nakamura, A. Infrared microspectroscopy analysis of water distribution in deformed and metamorphosed rocks. Tectonophysics 1995, 245, 263–276. [Google Scholar] [CrossRef]
- Paterson, M.S. The determination of hydroxyl by infrared absorption in quartz, silicate glasses and similar materials. Bull. Minéral. 1982, 105, 20–29. [Google Scholar] [CrossRef]
- Fukuda, J.; Shimizu, I. Water distribution in quartz schists of the Sanbagawa Metamorphic Belt, Japan: Infrared spectroscopic mapping and comparison of the calibrations proposed for determining water contents. Earth, Planet and Space 2019, 71, 136. [Google Scholar] [CrossRef]
- Edmond, J.M.; Paterson, M.S. Strength of solid pressure media and implications for high pressure apparatus. Contrib. Mineral. Petrol. 1971, 30, 141–160. [Google Scholar] [CrossRef]
- Moore, D.E.; Lockner, D.A. Crystallographic controls on the frictional behavior of dry and water-saturated sheet structure minerals. J. Geophys. Res. 2004, 109, 1–16. [Google Scholar] [CrossRef]
- Morrow, C.A.; Moore, D.E.; Lockner, D.A. The effect of mineral bond strength and adsorbed water on fault gouge frictional strength. Geophys. Res. Lett. 2000, 27, 815–818. [Google Scholar] [CrossRef][Green Version]
- Muto, J.; Hirth, G.; Heilbronner, R.; Tullis, J. Plastic anisotropy and fabric evolution in sheared and recrystallized quartz single crystals. J. Geophys. Res. 2011, 116, B02206. [Google Scholar] [CrossRef]
- Tokle, L.; Hirth, G.; Behr, W.M. Flow laws and fabric transitions in wet quartzite. Earth Planet. Sci. Lett. 2019, 505, 152–161. [Google Scholar] [CrossRef]
- Gleason, G.C.; Tullis, J.; Heidelbach, F. The role of dynamic recrystallization in the development of lattice preferred orientations in experimentally deformed quartz aggregates. J. Struct. Geol. 1993, 15, 1145–1168. [Google Scholar] [CrossRef]
- Green, H.W.; Griggs, D.T.; Christie, J.M. Syntectonic and annealing recrystallization of fine-grained quartz aggregates. In Experimental and Natural Rock Deformation: Laboratory Studies; Pualitsch, P., Ed.; Springer: Berlin, Germany, 1970; pp. 272–335. [Google Scholar]
- Sakai, T. Dynamic recrystallization of metailic materials. In Rheology of Solids and of the Earth; Karato, S.-I., Toriumi, M., Eds.; Oxford Univ. Press: New York, NY, USA, 1989; pp. 284–307. [Google Scholar]
Run | Experiment | T | ||||||
---|---|---|---|---|---|---|---|---|
[GPa] | [°C] | [s] | [GPa] | [GPa] | [GPa] | [%] | ||
S07 | pressure stepping test | 0–0.8 | 34 | |||||
heating test | 0.8 | 34–550 | ||||||
W01 | constant strain rate test | 0.56 | 800 | 0.20 | 0.30 | 0.30 | 14 | |
W02 | preheating (6.5 h) | 0.61 | 800 | |||||
constant strain rate test | 0.7 | 800 | 0.38 | 0.42 | 0.48 | 24 | ||
FL77207 | constant strain rate test | 0.4 | 800 | 0.6 | 0.7 | 0.8 | 30 | |
(0.4) | (0.5) | (0.6) | ||||||
FL761229 | constant strain rate test | 0.4 | 800 | 0.7 | 0.9 | 1.7 | 45 | |
(0.5) | (0.7) | (1.5) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shimizu, I.; Michibayashi, K. Steady-State Microstructures of Quartz Revisited: Evaluation of Stress States in Deformation Experiments Using a Solid-Medium Apparatus. Minerals 2022, 12, 329. https://doi.org/10.3390/min12030329
Shimizu I, Michibayashi K. Steady-State Microstructures of Quartz Revisited: Evaluation of Stress States in Deformation Experiments Using a Solid-Medium Apparatus. Minerals. 2022; 12(3):329. https://doi.org/10.3390/min12030329
Chicago/Turabian StyleShimizu, Ichiko, and Katsuyoshi Michibayashi. 2022. "Steady-State Microstructures of Quartz Revisited: Evaluation of Stress States in Deformation Experiments Using a Solid-Medium Apparatus" Minerals 12, no. 3: 329. https://doi.org/10.3390/min12030329