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Abstract: Extracting valuable elements from coal gangue is an important method for the utilization
of coal gangue. In order to obtain the suitable technological conditions and the acid leaching kinetic
model of leaching aluminum and iron ions from high-iron and low-aluminum coal gangue, the effects
of calcination temperature, calcination time, and acid types on the leaching results of aluminum and
iron ions are studied. The results show that when the gangue is calcined at 675 ◦C for 1 h, then the
calcined gangue powder is leached by 6 mol/L hydrochloric acid at 93 ◦C for 4 h, the leaching ratio
of iron ions is more than 90%, and that of aluminum ions is more than 60%. Furthermore, the acid
leaching kinetic equations at 30 ◦C, 50 ◦C, 70 ◦C, and 90 ◦C are studied by three kinetic models, and
the apparent activation energies of the reactions are calculated by the Arrhenius formula. The results
show that the leaching behavior of aluminum and iron ions conformed to the “mixing control” model
equation: “(1 − x)−1/3 − 1 + 1/3ln(1 − x) = kt + b”. The apparent activation energies of aluminum
and iron ions are 55.5 kJ/mol and 55.8 kJ/mol, respectively. All these indicate that the acid leaching
process is controlled by the “mixing control”.

Keywords: high iron content coal gangue; acid leaching; extraction of aluminum and iron ions; acid
leaching kinetic

1. Introduction

Coal gangue is the waste produced by the coal industry [1], which accounts for
10–20% of the raw coal output [2]. Due to the massive accumulation of coal gangue, it
has polluted the atmosphere, water, and soil [3], occupied land, and affected the safety
of the ecological environment [4]. The resource utilization of coal gangue is conducive
to decreasing its ecological damage and enhancing industrial added value. The common
ways to utilize gangue include mine backfilling [5], brick making [6,7], road paving [8],
cement making [9], etc. However, these methods cannot make use of coal gangue for high-
value-added applications, so it is imperative to research a method of efficient development
and comprehensive utilization of coal gangue [10,11].

High-value-added applications of coal gangues include the preparation of molec-
ular sieves [12], the preparation of adsorbents [13], the extraction of elements such as
aluminum and silicon [14], and the preparation of products using extracted materials such
as Al(OH)3 [15], Al2O3 [16,17], AlCl3 [18], A12(SO4)3 [19], polyaluminium chloride [20],
Na2SiO3, and SiO2 [21]. Most coal gangues used in these studies have low iron content, so
the purity and whiteness of the prepared products are high.

The increase in iron content in coal gangue will increase the probability of iron entering
the products, which will affect its application fields, and even make it difficult to carry out
fine processing directly [22]. In Liupanshui, Guizhou Province, China, more than 10 million
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tons of coal gangue are produced every year, and coupled with years of accumulation,
the current amount of coal gangue is more than 180 million tons. The components of coal
gangue in this area are different from those in other areas, and its main feature is that it is
rich in iron. Therefore, it cannot be used in areas requiring product purity and whiteness.

Generally, aluminum and iron elements from coal gangue can be extracted to prepare
Al(OH)3, Al2O3, Fe2O3, and composite coagulant [23,24]. There are various methods for
the extraction of aluminum and iron ions, such as acid leaching and alkali leaching [25–28].

With these methods, the extraction ratios of aluminum and iron elements are affected
not only by the process conditions, but also by the kinds of minerals. However, the
components of gangue vary from place to place, so these existing technologies cannot
be copied and applied directly. Therefore, it is necessary to explore the optimal leaching
process conditions.

In this work, the components, phases, morphology, and the thermal–chemical prop-
erties of the coal gangue from Liupanshui are analyzed by XRF, XRD, SEM, and TG-DSC,
respectively. The suitable process conditions of extracting aluminum and iron ions are
obtained. Three control models in the “unreacted core shrinkage model” (USCM) are
used to fit the leaching kinetics of aluminum and iron ions in the acid leaching process
of hydrochloric acid. The results show that “the mixed control” model can explain the
leaching kinetics of coal gangue samples effectively.

2. Experimental Section
2.1. Materials

The coal gangue came from Wangjiazhai Coal Mine of Liupanshui, Guizhou Province,
China, which was made into powder of less than 160 mesh. Sulfuric acid and hydrochlo-
ric acid were the analytical reagents, from Chongqing Chuandong Chemical Co., Ltd.
Chongqing, China.

2.2. Procedure

As shown in Figure 1, the gangue was crushed and passed through a 160-mesh sieve,
then calcined at a high temperature for a certain time to obtain the calcined powder;
then, the calcined powder was acid-leached by sulfuric acid or hydrochloric acid at the
solid:liquid ratio of 1:3.5, at a temperature of 93 ◦C, and the stirring speed of 1000 r/min for
1–7 h. After the acid leaching had completed, suction filtration, washing, and drying were
carried out. According to the quantity of the filter residue and its chemical components,
the extraction ratios of aluminum and iron ions were calculated by the following formulas:

yield of residue = (m2 ÷m1) × 100% (1)

x = [(m1 × w1% −m2×w2%) ÷m1w1%] × 100% (2)

where “m1” is the quantity of the calcined powder before leaching, “m2” is the quantity
of the filter residue, “w1%” is the mass fraction of aluminum or iron ions in the calcined
gangue powder, and “w2%” is the mass fraction of aluminum or iron ions in the filter
residue. The compositions of calcined powder before and after acid leaching were detected
by XRF, and the concentration of filtrate was calculated accordingly. Then, the USCM was
adopted to analyze the leaching kinetics of aluminum and iron ions, and the apparent
activation energies were calculated.

A 6100 type X-ray diffraction instrument (XRD, Shimadzu Company, Japan) was
used for CuKα (λ for Kα = 1.54059 Å), 2θ = 3◦–65◦, with a step width of 0.02◦. The
primary chemical elemental components were determined by a Supermini200 type X-ray
fluorescence spectrometer (XRF, Rigaku Company, Tokyo, Japan). The morphology of
the products was identified by a Zeiss EVO18-type scanning electron microscope (SEM,
Jena, Germany). The thermal–chemical properties of coal gangue were characterized by a
SDT−Q600 type thermal analyzer (TG-DSC, TA Company, Boston, MA, USA), and analyses
were performed under the air atmosphere at a constant flow rate of 100 mL/min, where
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the sensitivity of the microbalance was 0.1 µg, the accuracy of temperature measurement
was 0.1 ◦C, and the heating rate was 20 ◦C/min.
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Figure 1. Flow chart of the experiments.

2.3. Instrumentation and Characterization
3. Results and Discussion
3.1. Chemical Components of the Coal Gangue

As shown in Table 1, the contents of SiO2, Al2O3, and Fe2O3 in the gangue accounted
for 75.55% of the total quantity. Compared with the coal gangue in other parts of China, the
content of the iron element in the sample is higher, whereas the content of the aluminum
element is lower.

Table 1. Main components of the coal gangue.

Components wt/%

SiO2 42.18
Al2O3 20.43
Fe2O3 11.94
CaO 2.95
MgO 1.61
MnO 0.25
P2O5 0.30
TiO2 3.77

S 0.54
K2O 1.24

Na2O 0.40
FC and Loss 14.39

3.2. XRD Analysis of the Coal Gangue

As seen from Figure 2, the coal gangue is a multiphase mixture [29], and the main
phases in the coal gangue are kaolinite, quartz, brookite, montmorillonite, pyrite, and
siderite [30], in which kaolinite and quartz are the main components. As shown in Table 1,
the iron content is high, but the peaks of the iron-containing materials are lower, which
indicates that the crystallinity of the iron-containing materials is low.



Minerals 2022, 12, 215 4 of 16

Minerals 2022, 12, x FOR PEER REVIEW 4 of 18 
 

 

Table 1. Main components of the coal gangue. 

Components wt/% 

SiO2 42.18 

Al2O3 20.43 

Fe2O3 11.94 

CaO 2.95 

MgO 1.61 

MnO 0.25 

P2O5 0.30 

TiO2 3.77 

S 0.54 

K2O 1.24 

Na2O 0.40 

FC and Loss 14.39 

3.2. XRD Analysis of the Coal Gangue 

As seen from Figure 2, the coal gangue is a multiphase mixture [29], and the main 

phases in the coal gangue are kaolinite, quartz, brookite, montmorillonite, pyrite, and si-

derite [30], in which kaolinite and quartz are the main components. As shown in Table 1, 

the iron content is high, but the peaks of the iron-containing materials are lower, which 

indicates that the crystallinity of the iron-containing materials is low. 

 

Figure 2. XRD spectrum of coal gangue powder. 

3.3. Morphology Analysis of the Coal Gangue 

It can be seen from Figure 3 that the coal gangue powders are spherical with an une-

ven particle size. The maximum particle size is more than 30 μm, whereas the minimum 

is about 1 μm. 

Figure 2. XRD spectrum of coal gangue powder.

3.3. Morphology Analysis of the Coal Gangue

It can be seen from Figure 3 that the coal gangue powders are spherical with an uneven
particle size. The maximum particle size is more than 30 µm, whereas the minimum is
about 1 µm.
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Figure 3. SEM image of raw gangue powders.

3.4. TG-DSC Analyses of the Coal Gangue

In order to obtain a suitable thermal activation temperature range, the thermal analyses
of coal gangue were carried out by TG-DSC. The results are shown in Figure 4.

In Figure 4, the endothermic valley between 100 and 400 ◦C is mainly caused by
the dehydration of water in coal gangue, but the quantity loss is not obvious within this
temperature range, which indicates that the content of crystal water in the coal gangue is
low. The exothermic peak near 598 ◦C is mainly caused by the combustion exothermic of
coal, pyrite, and other components. When the temperature is higher than 500 ◦C, kaolinite
begins to decompose into metakaolin [31,32], which is an endothermic reaction. The
equation is as follows:

Al2Si2O5(OH)4 (kaolinite)→ Al2O3·2SiO2 (metakaolin) + 2H2O ↑ (3)

The combustion of pyrite is an exothermic reaction, and the reaction is as follows:

4FeS2 (pyrite) + 11O2 → 2Fe2O3 + 8SO2 (4)
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Figure 4. TG – DSC chart of the coal gangue.

Overall, the total heat release is larger than the heat absorption, which exhibits an
exothermic peak. On the TG curve, the quantity decreases significantly for the combustion
of coal and pyrite which produce CO2, SO2, H2O, and other volatile substance products [33].
Meanwhile, siderite is decomposed into FexOy, CO2, or CO, and the volatilizations lead to
the quantity loss. When the temperature exceeds 650 ◦C, kaolin, pyrite, siderite, and other
substances have basically produced decomposition, so the quantity is almost unchanged.
The low exothermic peak near 800 ◦C is formed by the continuous combustion and heat
release of the residual coal in the coal gangue [34]. The endothermic valley between 900
and 1000 ◦C is attributed to metakaolin, which is endothermically decomposed into spinel
and amorphous silica [35,36]. The main reaction is as follows:

2Al2O3·SiO2 (metakaolin)→ Al4Si3O12 (spinel) + SiO2 (amorphous silica) (5)

3.5. Phase Analyses of the Calcined Powders at Different Temperatures

As shown in Figure 5, kaolinite and other minerals can be decomposed completely
at 600–800 ◦C. Therefore, it is conducive to the activation of minerals and the combustion
of coal gangue components when enhancing the temperature appropriately. However,
too high a temperature will not only waste energy, but also lead to the transformations of
metakaolin and other substances into other phases.
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There are still crystal inert substances such as quartz and brookite, and the main
contents of these substances are silicon and titanium. The gangue rich in aluminum and
iron has been transformed into a highly active amorphous state [37], including amorphous
Al2O3 and SiO2. Therefore, coal gangue can be activated in the range of 625–750 ◦C.

3.6. Analyses of the Leaching Effects with Different Acids

Two aliquots with masses of 10 g coal gangue powders were calcined at 750 ◦C for 2 h,
and then the powders were leached by 3.0 mol/L sulfuric acid and 6.0 mol/L hydrochloric
acid, respectively. The solid:liquid ratio was 1:3.5, and the whole process was stirred at
93 ◦C. After the acid leaching reactions, the solid:liquid mixtures were filtered, washed,
and dried. After that, the quantities of the filter residues were weighed to obtain the yields
of the residues. The results are presented in Figure 6.
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Figure 6. The effect of acid leaching time on the yield of residue.

As seen from Figure 6, the yields of residue decrease with the extension of time. The
yields of residue by sulfuric acid leaching are obviously higher than that of hydrochlo-
ric acid.

Hydrochloric acid is a common industrial waste acid, although its demand is not as
high as sulfuric acid; therefore, using hydrochloric acid could provide a certain reference
for industrial production. In addition, coal gangue contains calcium ions, and adding
sulfuric acid can easily produce CaSO4. The equation is as follows:

CaCO3 + H2SO4 = CaSO4 + H2O + CO2↑ (6)

CaSO4 is a substance which is slightly soluble in water. It is easy to cover the surface of
the particles and affect the diffusion of ions, which is not conducive to metal ion leaching.

The reaction of hydrochloric acid with CaCO3 produces CaCl2, which is soluble in
water and conducive to the dissolution of other ions. The equation is as follows:

CaCO3 + 2HCl = CaCl2 + H2O + CO2↑ (7)

In fact, hydrochloric acid is used very actively in the field of hydrometallurgy, which
is used to leach iron or aluminum from coal ash [38], fly ash [39], bauxite [40,41], red
mud [42], and coal gangue [43,44]. As can be seen from the results in Figure 6, the effect of
hydrochloric acid is significantly better than that of sulfuric acid, so hydrochloric acid was
chosen, and the time can be 3–7 h. In order to leach the gangue fully and save energy, the
leaching time was determined to be 4 h.
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The coal gangue was calcined at 750 ◦C for 2 h, and after leaching, the phase analyses
of the two acid-leached residues are shown in Figure 7.
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Figure 7. XRD spectra of the filter residue after acid leaching with different acids for 6 h.

As shown in Figure 7, the diffraction peaks of the intensity of the quartz and brookite
in the filter residue of the leached hydrochloric acid are higher than those of the sulfuric
acid, and because more aluminum and iron ions are dissolved by hydrochloric acid, the
higher the contents of the remaining quartz and brookite.

3.7. Effects of Calcination Temperature on the Yield of Residue

After the reactions, the reduction quantity was calculated. The results are shown in
Figure 8. When the calcination temperature was between 550 and 700 ◦C, the yield tended
to be stable, and the minimum yield was at 675 ◦C. However, when the calcination tempera-
ture was raised to 700–750 ◦C, the yield increased, indicating that the calcined temperature
affects the activity of aluminum and iron ions. In order to activate the aluminum and iron
components, as well as remove carbon as much as possible, 675 ◦C was selected as the
proper calcination temperature.
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3.8. Effect of Calcination Time on the Yield of Residue

The coal gangue powders were calcined at 675 ◦C for 30 min, 45 min, 60 min, 75 min,
90 min, 105 min, 120 min, and 135 min. The other conditions are the same as above, and
the results are shown in Figure 9.
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As shown in Figure 9, when the calcination time was 30–60 min, the yield of residue
decreased with the extension of time because the kaolinite, siderite, pyrite, etc., in the coal
gangue underwent chemical reactions to produce a large amount of amorphous Al2O3,
SiO2, and FexOy, which improved the activity of the calcined powder, thereby decreasing
the yield. When the time was extended more than 60 min, the activity of the calcined
powder decreased, which led to the increased yield. Therefore, the calcination time was
determined to be 1 h. The components of the acid-leached residue are displayed in Table 2.

Table 2. Main components of the residue.

Components wt/%

SiO2 76.95
Al2O3 10.37
Fe2O3 1.00
CaO 0.05
MgO 0.22
TiO2 6.22
MnO 0.04
P2O5 0.06

S 0.01
K2O 1.01

Na2O 0.38
FC and others 3.69

As seen from Table 2, the primary acid-leached filter residue contained 76.95% of
SiO2 and 10.37% of Al2O3. According to the calculations, 91% of iron ions and 66% of
aluminum ions have been leached, and the concentration of AlCl3 is 94.26 g/L and that
of FeCl3 is 73.13 g/L. The mixed liquid containing aluminum and iron can be used to
prepare composite coagulants, or to prepare alumina and iron oxide by a step precipitation
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method. The residue is mainly silicon- and titanium-containing material, which can be
used to prepare other products such as zeolites [45], silica, TiO2, etc.

3.9. Morphology Analysis of Filter Residue

As shown in Figure 10, the particle sizes of the acid-leached filter residues are smaller
than that of the ore coal gangue powder, and the largest particle size is about 20 µm. It
can also be seen that due to the leaching of iron and aluminum ions, the residue particles
become loose, showing flakes and crumbs.
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3.10. Analysis of Leaching Kinetics

The components of coal gangue are very complex, in which iron oxide comes from
FeCO3 and pyrite, as well as other amorphous iron compounds; aluminum primarily comes
from amorphous alumina produced by the decomposition of kaolinite. In the leaching
process, acid molecules diffuse into the voids or cracks of quartz or amorphous SiO2, and
then react with aluminum and iron oxides. With the reactions, products come out from
the residual solid layers, and the reaction interface continues to shrink to the core of the
mineral particles. Simultaneously, the residual solid layer continues to thicken, and some
solid layers may form debris and peel off under stirring. Therefore, the “USCM” is used to
describe the leaching kinetics of aluminum and iron ions [46–48].

The reaction model of the leaching process is shown in Figure 11.
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Figure 11. Schematic diagram of acid leaching process.

Assuming that the calcined coal gangue powder particles are approximately spherical,
and the leaching process is controlled by the “solid film diffusion control”, the leaching
kinetic equation is as follows:

1 − 2/3x − (1 − x)2/3 = k1t + b1 (8)



Minerals 2022, 12, 215 10 of 16

If the control step is the “interface chemical reaction control”, the equation is as follows:

1 − (1 − x)1/3 = k2t + b2 (9)

When the leaching process is jointly controlled by the “solid film diffusion control”
and the “interface chemical reaction control” together, it is called the “mixing control”, and
the equation is [49]:

(1 − x)−1/3 − 1 + 1/3ln(1 − x) = k3t + b3 (10)

where “k1” is the solid–liquid diffusion rate constant, “k2” is the rate constant of interfacial
chemical reaction, “k3” is the rate constant of mixing control reaction, “x” is the leaching
ratio, “t” is the leaching time, and “b1, b2 and b3” are the constant terms.

In order to determine the control type of hydrochloric acid leaching reactions, the
extraction ratios of aluminum and iron ions changing with temperature and time were
assessed. The temperature increased from 303.15 K to 363.15 K with a step of 20 K, the
time was from 10 min to 5 h, the H+ concentration is 6 mol/L, and the stirring speed was
1000 r/min. Since the contents of calcium and magnesium ions in coal the gangue were
very low (Cao 0.05%, MgO 0.22%), and TiO2 (6.22%) did not react with dilute hydrochloric
acid, we ignored the effects of calcium, magnesium, and titanium ions on leaching. The
results are shown in Figures 12 and 13.
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A trial method is used to substitute the obtained results into the kinetic equations of
the different control steps, plotting 1 − 2/3x − (1 − x)2/3, 1 − (1 − x)1/3 and (1 − x)−1/3 −
1 + 1/3ln(1 − x) versus t, respectively, and then using these three models to fit the obtained
data linearly. The results of aluminum ions are shown in Figures 14–16, and so the iron
ions are shown in Figures 17–19.
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As can be seen from the fitting equations and the R2 values of these three mathematical
models, whether aluminum ion leaching or iron ion leaching, the R2 values of the mixing
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control equation at 30 ◦C, 50 ◦C, 70 ◦C, and 90 ◦C were all better than that of single “solid
film diffusion control” or “interface chemical reaction control”, and were all closer to 1.
Therefore, hydrochloric acid leaching aluminum and iron ions kinetic equations from the
calcined coal gangue powder are all accord with the “mixing control” models.

3.11. Calculation of the Apparent Activation Energy

To obtain the activation energies of aluminum and iron ions extraction under hydrochlo-
ric acid leaching conditions, the Arrhenius formula was used to determine the apparent
activation energies of the leaching experiments. According to the Arrhenius formula:

k = Ae−Ea/RT (11)

lnk = −Ea/RT + lnA (12)

where “k” is the apparent reaction rate constant, “Ea” is the apparent activation energy,
kJ/mol, “R” is the molar gas constant, 8.314 J/(mol K), and “A” is a constant. The fitting
curves of lnk−1/T of aluminum and iron ions are shown in Figures 20 and 21. The apparent
activation energies can be calculated from the slope of the fitting equations based on
Arrhenius formula, where the slope is −Ea/RT and the intercept is lnA.
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As seen from Figure 20, the correlation fitting degree of the lnk−1/T curve (R2 = 0.95901)
obtained from the “mixing control” fitting is significantly better than that of the diffusion
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of solid film control (R2 = 0.91902) and interfacial chemical reaction control (R2 = 0.79103).
Similarly, the correlation coefficient R2 of the iron ions fitting equation using the “mixing
control” model is also better than that of the other two models (Figure 21), which further
indicates that the leaching ratios of aluminum and iron ions from calcined coal gangue
powder by hydrochloric acid leaching are both affected by the “mixing control”.

According to Figures 20 and 21, we can derive:

lnk(Al) = −6675.7400/T + 14.30627 (13)

lnk(Fe) = −6712.34419/T + 15.81136 (14)

Ea(Al) = 6675.7400R = 55.5 × 103 J/mol = 55.5 kJ/mol (15)

Ea(Fe) = 6712.3442R = 55.8 × 103 J/mol = 55.8 kJ/mol (16)

The apparent activation energies of aluminum and iron ion leaching are 55.5 kJ/mol
and 55.8 kJ/mol, respectively.

4. Conclusions

In the study of extracting aluminum and iron ions from coal gangue, the proper
conditions were obtained when the gangue powder was less than 160 mesh, the calcination
temperature was 675 ◦C, the time was 60 min, and the calcined coal gangue was leached by
6 mol/L hydrochloric acid at 93 ◦C for 4 h, where the leaching ratio of iron ions was 91%
and that of aluminum ions was 66%.

The process of leaching aluminum and iron ions from the calcined coal gangue powder
with hydrochloric acid conforms to the kinetic model: (1 − x)−1/3 − 1 + 1/3ln(1 − x) =
k3t + b3. According to the Arrhenius equation, the apparent activation energies of the
leaching reactions of aluminum and iron are 55.5 kJ/mol and 55.8 kJ/mol, respectively. The
leaching process of aluminum and iron ions are controlled by the “mixing control”.
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