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Abstract: Iron- and steelmaking processes create slags, valuable by-products. Industrial utilisation of
slag as a lower-value secondary mineral source has been established for decades. Slag heat recovery
is an ongoing research topic and has the potential to maximise energy efficiency in iron and steel
production. Heat recuperation aims to tap the unused thermal recycling potential of molten slags.
This short communication expands the concept for the utilisation of recovered heat for producing
torrefied biomass and biogas. The torrefaction process is linked with slag heat recovery and via the
BASE method with enhanced blast furnace operation. Such a combination reduces CO2 emissions
significantly in ironmaking processes. Assuming a coke consumption of 350 kg coke per tonne of
hot metal and replacing it with 5% torrefied biomass injected as PC with an additional 100 m3/tHM

biogas injection, the BF’s CO2 emission related to the coke can be lowered by 7.9% to 108 kg/tHM.
In such a manner, the recovered slag heat can directly contribute to CO2-footprint reduction and
improve the circular economy and metallurgical sustainability.

Keywords: slag heat recovery; blast furnace; coke substitution; torrefaction; sustainability

1. Introduction

Iron- and steelmaking processes create slags, valuable by-products. Industrial utilisa-
tion of slag as a lower value secondary mineral source has been established for decades.
Current research focuses on, e.g., the recovery of non-ferrous metals such as chromium
via leaching [1] and the carbonisation of slags for carbon capture and storage (CCS) [2].
Slag heat recovery has been a well-studied, ongoing research topic for many decades and
has the potential to maximise energy efficiency in iron and steel production. Nevertheless,
the utilisation of such heat has not yet directly contributed to CO2-mitigation methods
such as linking it with torrefied biomass (TB) and biogas preparation for partial blast
furnace (BF) coke replacement. The present work is a continuation of previous work [3]
describing slag heat recovery and, briefly, three utilisation possibilities: (1) heating of BF
hot stoves, (2) syngas production via the high-temperature Winkler process, and (3) drying
of biomass. This short communication depicts the drying of biomass and expands it by
low-temperature pyrolysis to obtain torrefied biomass and biogas.

2. Description of the Slag Heat Recovery Concept

The recovery of heat from slags has been a global problem for many decades and has
already been addressed by many institutions and projects [4]. In general, the industrial
application was impeded either due to technical difficulties (e.g., low heat-recovery effi-
ciency, insufficient vitrification of blast furnace slag) or due to missing economic feasibility.
While technical difficulties can be overcome, the economic context can only change with
politically induced changes such as the EU taxonomy introduced by the European green
deal and CO2 emission trading systems (EU ETS) introducing the cost for each tonne of
emitted CO2 gas. Table 1 gives an overview of the main slag heat recovery approaches.
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Table 1. Summary of slag heat recovery concepts (further developed from [4]).

Technology Developer Source Efficiency Capacity Pros Cons

Rotating
drum

Sumitomo, [5] 50–60% 50 t/h - robust
- limited wear of drums
- high productivity

- low temperature of heated water
- limited to crystalline solidificationNKK, [6] 40% -

JFE, [7] 34% 60 t/h

Mechanical
stirring

Kawasaki, [8] 59% -
- can be combined with slag ladle
- decentral heat recovery away from

slag-generating vessel

- consecutive heat capture with inert gas
and then with water

- high wear of rodSumitomo, [9] 50% 30 t/h

Air blasting NKK and Mitsubishi, [5] 40–50% 60 t/h
- safe and easy handling
- fine, granular product
- suitable for high quenching rates
- high productivity

- high efficiency is questionable
- high electrical energy demand for hot

blastMitsubishi, [10] 81% 80 t/h

Spinning
disc/cup

Sumitomo, [11] 50–60% 50 t/h - robust, as wear is limited to disc/cup
- safe handling
- high quenching rates

- wear of copper disc/cup
- low mass flows towards cup/disc limit

productivity

CSIRO, [12] 80% 18–30 t/h
British Steel, [6] 60% 40 t/h

Primetals, [13] 70% 30–40 t/h

Steel sphere
injection Paul Wurth, [14] - 150 t/h

- high productivity
- able to cope with flow peaks of 4 t/min
- robust and suitable for industrial operations

- blast furnace slag vitrification did not
reach >95 vol.%

Vibrating
chute

RWTH Aachen, and Z&J
Technologies, [3] 42% 16 t/h

- robust
- higher temperatures of thermal oil vs. water

- wear of copper chute
- limited productivity
- difficult handling of thermal oil
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The approach for dry heat recovery depicted in Figure 1 was investigated at RWTH
Aachen University, Aachen, Germany [15,16], and has recently been shown in detail [3];
therefore, the process is only briefly described below. In general, the process involves
capturing energy from metallurgical slags by using an indirect cooling system with water
or thermal oil and transmitting the slag’s heat energy to subsequent heat exchangers for
utilisation. The apparatus consists of two main modules and a facultative slag tundish. The
first module cools liquid slag from tapping temperature (e.g., 1450 ◦C) to below the blast
furnace slag’s glass transition temperature, which is around 850 ◦C. The heat is extracted via
conduction from the bottom side of the slag (Primary Heat Exchanger, PHE) with a copper
plate and via convection and radiation from the slag’s upside via copper pipes (Secondary
Heat Exchanger, SHE). When the slag leaves the first module in a solid amorphous state, it
enters the second module, where it cools down to local ambient temperature via convection
in bulk (Tertiary Heat Exchanger, THE).
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Figure 1. Scheme of the process concept [3].

These two modules, including the slag tundish, were tested at a lab scale, and their
energy recuperation was quantified [3] with a total thermal recuperation of 42%, consid-
ering a latent heat capacity of 1.7 GJ/t. The measured recuperation indicates a recovery
equal to 0.7 GJ/t slag. Electrical energy input has to be considered due to the vibrating
unit and was quantified to be 0.3 × 10−2 GJelectrical/t slag and, respectively, 0.4% of the
recovered slag heat. The demonstrator tests were conducted with lab-scale slag amounts
of 10 kg each and yielded >95 vol.% amorphous content for BF slag [3]. It was observed
that the BF slag chemical composition did not significantly affect the slag heat recovery in
the CaO/SiO2 range between 1.0 and 1.3 [16]. Specific heat losses are expected to decrease
during upscaling, and the heat recovery might be further influenced by slag chemistry
when the process is applied on, e.g., Brazilian charcoal blast furnaces with acidic BF slags.

3. Production of Torrefied Biomass and Biogas

Biomass is an organic material that can be derived from either plants or animals and is
not of fossil origin. Due to its organic nature, plant biomass can be produced from various
sources such as agricultural residues or food-processing wastes. When considering biomass
for (re-)introduction in ironmaking to replace coal, the differences between biomass and
fossil coal need to be pointed out. A suitable general specification for biomass is difficult.
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Principally, all biomass could be used, but minimising the differences to fossil coal reduces
the possible negative impacts on the BF operations. To buffer such differences between
biomass and coal, the pyrolysis process needs to be adapted. In the following, the basic
differences of biomass to coal are listed ([17], p. 61):

• Higher oxygen content (~40%);
• Lower carbon content (40–60%);
• Lower sulphur content (<0.1% S);
• Higher chlorine and alkali (particularly potassium) content in herbaceous biomass

(grasses, straws);
• Low ash contents possible (<2%), depending on source very broad (0.1–25%);
• Lower heating values;
• Much lower bulk density;
• More fibrous and less friable structure;
• C/H and O/C ratios indicate the expected release.

Pyrolysis is a thermal process that decomposes carbon-containing material under
an atmosphere with low or no levels of oxygen, hence an air–fuel equivalent ratio λ ≈ 0.
Depending on the process temperature, three categories of pyrolysis are defined: low-
temperatures pyrolysis at <500 ◦C, mid-temperature pyrolysis at 500–800 ◦C, and high-
temperature pyrolysis at >800 ◦C. Torrefaction is low-temperature pyrolysis at <320 ◦C and
produces solid, liquid, and gaseous products. Depending on the processing speed, slow,
fast, and flash pyrolysis are distinguished and result in different ratios and yields of solid,
liquid, and gaseous products [18].

The torrefied biomass (TB) contains volatile matter, which affects its characteristics
by destroying its fibre structure. This makes the TB brittle, hence easier to grind and
hydrophobic. Wet biomass (WB) has a heating value of around 8.3 MJ/kg if clean wood is
considered. This value increases to 19 MJ/kg via drying and to 21.7 MJ/kg for torrefaction
while releasing biogas. If processed at higher temperatures, it can reach values of 30 MJ/kg
for charcoal [19]. The chemistry of TB depends on process temperature, oxygen content,
and raw material used. The desired effects are increasing carbon content, decreasing oxygen
content, and increasing calorific value. It was found [17] that the desired impact is large at
high pyrolysis temperatures and negligible at low temperatures between 200 and 350 ◦C.

The main components of biogas from the torrefaction process are 29–47 vol.% CO and
8–20 vol.% H2 [20]. Biogas can have heating values similar to wet biomass of 8 MJ/kg and
is usually conceptualised for providing heat in the drying step [6]. It might be sufficient for
the torrefaction heat demand, depending on the initial moisture content.

4. Utilisation of Recuperated Thermal Energy

Coke in blast furnace ironmaking mainly contributes to CO2 emissions related to coal
coking and iron ore reduction. Table 2 shows the specific CO2 emissions during blast
furnace ironmaking in the account of coke. Based on an average coke consumption and a
generic direct CO2 emission of coking, the coke-induced emissions are around 1.4 t/t hot
metal.

Table 2. Coke related CO2 emissions at the blast furnace.

Parameter Value Unit

Blast furnace coke consumption rate 350 kg/tHM
1

CO2 emission via coking 270 kg/tcoke
2

CO2 emission via coke gasification in BF 3 3667 kg/tcoke
CO2 emission via coking and coke gasification 3937 kg/tcoke

CO2 emission of coke per hot metal 1378 kg/tHM
1 Hot Metal. 2 [21]. 3 C to CO2 conversion, excluding the impact of heating energy and excluding ash content.

Certain biomasses can be considered carbon-neutral depending on their origin, even
when used as fuel [22]. The biomass plants captured the same amount or more of CO2 dur-
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ing their lifetime as during induration, which sums to a net-zero CO2 emission. Therefore,
any substitution rate of coke by biomass reduces the blast furnace’s CO2 footprint by that
relative amount of biomass used. The direct use of wet or dried biomass is less favourable
due to its low physical and energetic density and the fact that its physical strength is
insufficient to carry the blast furnace burden [23]. Their utilisation requires preparation by
torrefaction or pyrolysis to produce TB or charcoal, respectively [17]. Torrefying biomass
and injecting it as a pulverised coal (PC) alternative into the enhanced blast furnaces is
an option to partially replace the specific consumption of coke. Furthermore, the coke
consumption can be lowered with the injection of biogas as syngas [18] partially replacing
or in addition to the hot blast, which is only carrying sensible heat. Such biogas injection
and its effects can be compared to BF top gas recycling [24–27]. Usually, biogas is used
for wet biomass drying and would reduce specific ironmaking CO2 emissions if injected
into an enhanced BF. Alternatively, such biogas can be suitable as reducing gas in direct
reduction processes such as Midrex, HyL/Energiron, and Hyfor, and torrefied biomass in
SL/RN, Fastmet, Circofer, etc.

Before torrefied biomass and biogas can be considered for utilisation in the blast
furnace, the energy supply by slag heat recovery has to be matched with the energy
demand for torrefaction. Table 3 depicts the provided slag heat, recovered slag heat, and
torrefaction energy demand. WB with an exemplary ash content of 0.5% and 50% moisture
content requires 1.3 GJ/t WB and yields 0.37 t TB from 1 t WB [19]. Combining the energy
demand with the recovered slag heat, 200 kg TB can be produced per 1 tonne of slag,
respectively, 60 kg TB per tonne HM. Considering the specific coke consumption of 350
kg/t HM in Table 1, the TB produced with BF slag heat of this theoretical calculation could
replace 17% of the coke for the same BF yielding 300 kg of slag per tonne HM.

Table 3. Energy balance of slag heat recovery and biomass torrefaction.

Parameter Value Unit

Slag volume 300 kg/tHM
Slag heat 1 1.7 GJ/tslag

Slag heat recovery yield 1 42 %
Recovered slag heat 1 0.7 GJ/tslag
Recovered slag heat 1 0.2 GJ/tHM

Energy required for drying and torrefaction 2 1.3 GJ/tWB
Torrefaction mass yield wet biomass to torrefied biomass 2 37 %

Energy required for drying and torrefaction 2 3.5 GJ/tTB
TB producible with recovered slag heat 0.20 tTB/tslag
TB producible with recovered slag heat 0.06 tTB/tHM
TB producible with recovered slag heat 17 % (tTB/tcoke)

1 Values based on [3]. 2 Values based on [19].

Table 4 demonstrates the theoretical impact of partially replacing 5% of 350 kg coke per
tonne hot metal with TB and additionally injecting it to PC (+17.5 kgTB/tHM) together with
biogas injection of, e.g., 100 m3/tHM. Typical oxygen content in the blast due to TB are 25%,
and combined biogas injection is between 30 and 40%, resulting in a flame temperature
around 2117 ◦C [18]. The presented exemplary coke-replacement rates with TB and biogas
of Table 4 are independent of mass and energy balances and need further investigation
with case studies. The considered TB [18] has a moisture content of 2.3 wt.%, ash content of
0.6 wt.%, volatile matter of 6.0 wt.%, and a carbon value (Cfix) of 88.3 wt.%. The considered
biogas has H2 of 35.7 vol.%, CO of 37.1 vol.%, CO2 of 9.7 vol.%, H2O of 4.0 vol.%, N2 of
13.5 vol.%, and no CH4 [18].
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Table 4. Description of the CO2-saving potential of an enhanced blast furnace in relation to Table 1
using torrefied biomass and biogas.

Parameter Value Unit

Rate of coke substituted by TB as PC 5 %
Coke substituted by 5% TB as PC −18 kg/tHM
Coke substituted biogas injection into BF 1 −10 kg/tHM
Combined coke substitution by TB and biogas −28 kg/tHM
CO2 reduction by combined substitution with TB and biogas 2 −108 kg/tHM
Relative CO2 emission abatement via TB and biogas −7.9 %

1 Value estimation based on [18,28] with exemplary injection rates of 100 m3/tHM. 2 Value calculated by assuming
coke’s CO2 footprint described in Table 1.

Figure 2 depicts the integration of slag heat recovery, torrefaction, TB, and biogas
injection into the BF via the BASE control method [18].
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5. Conclusions

Heat recuperation taps the currently unused thermal-recycling potential of molten
slags. This short communication expands the concept of the utilisation of recovered heat
for biomass torrefaction producing torrefied biomass and biogas. This work shows the link
between the torrefaction process and slag heat recovery via the BASE method [18] with an
enhanced blast furnace operation. Such a combination significantly reduces CO2 emissions
in the ironmaking processes.

Assuming a coke consumption of 350 kg coke per tonne of hot metal and replacing it
with 5% torrefied biomass injected as PC with an additional 100 m3/tHM biogas injection,
the BF’s CO2 emission related to the coke can be lowered by 7.9% to 108 kg/tHM. In such a
manner, the recovered slag heat can directly contribute to CO2 footprint reduction, further
improving the circular economy and sustainability of the metallurgical processes.

6. Patents

DE102014109762A1: Wärmetauscher sowie Vorrichtung und Verfahren zur
Energierückgewinnung. Inventor: Sebastian Buzga, Markus Hansen; Assignee: Z&J
Technologies GmbH, Application: 11 July 2014; Publication: 14 January 2016.
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