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Abstract: The use of ceramic solid particle technology in TES-integrated CSP plants offers a high solar-
to-electricity ratio and enhanced storage densities, thanks to their high operational temperatures
and wide temperature ranges. Metallurgical slags with composition similar to that of the state-
of-art bauxite particles can be used as a sustainable and economical secondary raw material to
prepare solid particles. In this study, the as-received state and the high-temperature phase and
microstructural changes of two fayalite slags from copper and lead production were elucidated
by XRD and SEM/EDS methods in a comparative manner. Solid particles were prepared from
slags by the oil dropping method, with subsequent heat treatment. Solar-thermal-application-
related functional properties of slag particles, such as heat capacity, absorptance, and thermophysical
properties, were evaluated by differential scanning calorimetry (DSC), spectrophotometer, heating
microscope, and high-temperature compressive tests, respectively. Owing to the formation of more
stable Fe-rich phase components and less amount of glassy phase, copper slag is found to be a more
promising secondary resource than lead slag in terms of material and functional properties.

Keywords: concentrating solar power; heat storage; solar energy; metallurgical slags; secondary re-
sources

1. Introduction

Significant and continuous increase in the energy demand combined with a scarcity of
fossil fuels and increasing CO, emissions have necessitated the use of efficient renewable
and sustainable energy resources [1]. One of the most promising renewable energy tech-
nologies is concentrating solar power (CSP), where solar irradiation is used for electricity
production [2]. Moreover, through the integration of thermal energy storage (TES) systems,
which overcome the drawbacks of off-sun conditions, higher potential applicability of CSP
plants with enhanced solar-to-electricity ratios has been reported [3,4]. The most mature
TES-integrated CSP plants are using molten salt mixtures, which allows a maximum op-
eration temperature of 600 °C due to the thermal stability limits of the solar salt [5]. The
need of higher operation temperatures with a larger temperature span to achieve enhanced
conversion efficiencies and storage densities and low storage costs has induced the use of
the solar particle technology [6].

High-temperature stable ceramic particles can be used up to 1000 °C as both solar heat
transfer and storage mediums, promising higher storage densities at low costs. Natural
materials, such as granite and quartzite in pellet or rock form, as well as manufactured
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ceramics, such as refractory bricks based on oxides and carbonates, have been used in
commercial applications previously [7]. Recently, extensive research has been conducted
by many groups for the use of fracking industry proppants as solar heat storage materials
and promising results have been reported [8]. Al,O3, SiO,, Fe;O3, and TiO, are the main
constituents of these particles, which can also be found in the electric arc furnace slags of
metal ores or secondary raw materials. According to a recent report, metallurgical slags
are being produced at a massive rate of over 750 Mt/year [9]. If such a large amount of
waste material with a mineralogy similar to existing proppant technology is used as an
added-value product for solar energy applications, a “zero waste valorization” supply
chain can be established between industrial production and “green” energy technology
with a reduced environmental impact.

There have been already some laboratory-scale studies investigating the thermophysi-
cal and structural properties of slags originating from the steel making industry reporting
promising thermal stability and heat capacity [10,11]. In a study conducted by Wang et al.,
high wear resistance of steel slags was reported in addition to thermal properties [12].
Moreover, a steel slag was examined in the Julich solar power plant and initial promising
results were reported recently [13]. Faik et al. examined fly ash and asbestos containing
wastes as thermal storage materials and concluded that their use is promising if they are
well crystallized [14]. A study conducted by Navara et al., using material database soft-
ware, showed the high potential of copper and steel making slags owing to their superior
thermal properties and lower cost with respect to solar salt [15]. In a recent study, copper
slag was examined as the heat storage medium for packed bed systems and propitious
properties, such as high heat capacity, thermal conductivity, and temperature stability, were
revealed [16]. Although there are many studies dealing with the evaluation of slags as a
heat storage medium, to the best of our knowledge, there is no study available in the open
literature focusing on the preparation of slag solid particles to be used as both solar heat
transfer and storage mediums, where solar heat is also directly absorbed. In this study, we
employ copper and lead slags as raw materials for solar absorber particles generated by oil
dropping with subsequent sintering. These engineered particles produced from slags were
characterized in terms of their CSP-relevant properties, such as solar absorptance, heat
capacity, and thermal-mechanical stability. Required material properties and processing
routes are suggested for the use of slags as solar absorber and storage particles.

2. Materials and Methods
2.1. Synthesis of the Slags

Two different metallurgical fayalite slags were used in this study. Slag 1 is a by-product
generated in a copper recycling shaft furnace and is commonly used as an aggregate for
building applications [17]. Slag 2 is a by-product of the lead industry, and it was produced
in a Queneau-Schuhmann-Lurgi reactor (QSL reactor). In this reactor, lead concentrates
containing lead sulfides and end-of-life material are smelted in an oxidation zone to remove
sulfur and in a subsequent reduction zone, carbon carriers are injected to reduce lead
oxides to recover lead [18]. The slags were water granulated after the pyrometallurgical
treatments and ground before the investigation in a planetary mono mill (Pulverisette 6,
Fritsch, Germany) and sieved with a 50 pm mesh.

2.2. Particle Production

The oil dropping method was used to prepare functional particles from slags. First,
35 wt.% of as-received slag powders and 65 wt.% of aqueous agar solution (1% agar) were
ground in an agate mortar and mixed at 95 °C to form a stable suspension, which was
then transported by a peristaltic pump; cooled down to 60 °C; and dropped into 10 °C
pre-cooled rapeseed oil, where gelation of agar was induced and spherical particles with
a diameter of about 2 mm were generated. The particles were removed from the oil bath
and rinsed with DI water. Subsequent drying occurred at RT for 24 h and then in a drying
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chamber at 80 °C for 48 h. Afterward, the particles were sintered in air in a resistor-heated
chamber furnace for 2 h at 1150 °C and 1100 °C for slag 1 and slag 2, respectively.

2.3. Characterization Methods

The initial phase content of the slags and the phase changes at elevated temperatures
were monitored by X-ray powder diffraction (XRD; D8 Advance, Bruker AXS, Billerica,
MA, USA). A quantification of the amorphous content of as-received slags was performed
using the Rietveld profile fitting method. For this purpose, powder mixtures were prepared
with 20 wt.% of calcium fluoride (CaF;) as the internal standard and added to the slags.
The diffraction patterns were fitted by Bruker’s Topas 5.0 software with a spiked weight
ratio of CaF,. Microstructural and chemical analyses were performed by scanning electron
microscopy (Ultra 55, Zeiss, Germany) and energy-dispersive spectroscopy (EDS; UltiMate,
Oxford, UK). The weight changes and thermal reactions of slags were analyzed under a
flowing synthetic air atmosphere (80% Ny, 20% Oy; flow rate 10 mL/min) by simultaneous
thermal analysis (STA 409 EF3 Jupiter, Netzsch, Germany).

After manufacturing engineered particles from slag powders, sintering-related volume
effects and suitable temperatures were determined by in situ optical shape detection in a
heating microscope (L74/HS /1600, Linseis, Germany). Thermal softening under an applied
uniaxial mechanical load was measured with a universal testing system (UTS, Zwick-Roell,
Germany). Particles were placed between two parallel plates heated under a constant load
where the displacement was recorded as a function of temperature. Repetition of STA
and softening temperature analyses ensured the reproducibility of plotted data. The room
temperature hardness of sintered slag particles was measured by Vickers indentation (VT
2000, Clemex Technology Inc., Quebec, Canada).

Optical properties and absorptance of the particles produced from slags have been
measured by Perkin Elmer Lambda 950 Spectrometer according to the method described
by Gobereit et al. [19]. Evaluation of solar weighting absorptance (American Society for
Testing and Materials (ASTM) 173d) was performed in the range of wavelengths from 320
to 2500 nm. The heat capacity of the slag particles was determined by an mHTC 96 Setaram
drop calorimeter (DKSH, North Shore, New Zealand) with a DSC sample carrier under an
inert atmosphere (He) with a heating rate of 4 K/min. The heating rate was determined in
previous measurements of Cp for pure substances, e.g., Ca(NO3); [20], where the results of
Cp measured on different devices with different heating rates have been compared. The
mass of measured samples was around 1000 mg. The reference material used (x-Al,O3,
NIST Standard Reference Material SRM 720, with purity 99.95%) had a mass similar to that
of the samples. Calibration and baseline measurements were performed before and after
each sample. The uncertainty of obtained heat capacity values by this methodology is 5%.

2.4. Modeling

Thermodynamic modeling was carried out using FactSage™ 8.0 using the pure
substances (FactPS 8.0) and oxide (FToxid 8.0) databases. For the models, oxygen partial
pressure and temperature were used as the main variables to predict and understand
experimental results. Origin® 2020 was also used as a graphing tool.

3. Results and Discussion
3.1. Characterization of as-Received Slags and Their High-Temperature Behavior
3.1.1. Microstructure and Phase Content of the as-Received Slags

Metallurgical slags exhibit specific microstructures with a complex mineralogy de-
pending on their deposition condition, aging, smelting conditions, and subsequent cooling
rates [21]. This necessitates a comprehensive characterization highlighting the details of the
microstructure and phase components and their distribution at the initial condition (in the
initial state), as well as at elevated temperatures for their use in solar thermal applications.

SEM micrographs of both slags in the as-received powder condition are represented
in Figure 1.
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Figure 1. SEM micrographs of as-received (a) slag 1 and (b) slag 2.

Figure 1 reveals the morphology of as-received slags after pyrometallurgical treatment
in a comparative manner. Similar non-uniform microstructures and irregular chunky
fragments are observed in both of the slags in the initial condition, which may be caused
by the rapid cooling after the smelting process [21]. The low element contrast of the SEM
images indicates that both slags are chemically homogeneous. Moreover, both slags exhibit
a broad particle size distribution from sub-micron up to 50 um. The fraction of bigger
fragments is higher in the case of slag 1. In any case, grinding/milling of as-received slags
is considered necessary for processing of engineered particles.

Qualitative phase analysis of the slags in the as-received form has been performed by
XRD in a comparative manner, as given in Figure 2.
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Figure 2. XRD diffractograms of as-received slags.

Broad diffraction humps in the XRD patterns of both slags reveal the poor crystallinity
(dominant glassy, X-ray amorphous nature) of the slags. This is typical for metallurgical
slags because of rapid cooling rates in the subsequent granulation step, which helps the
landfilling or posterior valorization of the slags as a secondary construction material.
Figure 2 also reveals the difference in the phase content of both slags. Fayalite (Fe;SiOy,
ICDD PDF #34-0178) is a major crystalline phase of slag 1, which is co-existing with a phase
matching well the diffraction pattern and lattice parameters of a spinel-type Fe—Al oxide
(FeAl,O4; ICDD PDF #34-0192). Similarly, the main phase component of slag 2 is matching
well the spinel-type Fe-Zn oxide (ZnFe,O4, ICDD PDF #01-1109). Therefore, the spinels are
referred to as “Fe—Al spinel” and “Fe—Zn spinel,” although their cation content most likely
does not reflect the model stoichiometries. Pb (ICDD PDF #04-0686) is found as the second
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phase in slag 2, evidently a residuum of the smelting process. Beyond different crystalline
phase components, X-ray amorphous content of the slags were estimated by Rietveld
refinement. As-received slag 1 and slag 2 contain about 76 and 95 wt.% of non-crystalline
phases, respectively.

3.1.2. Phase Formation at Elevated Temperatures Elucidated by XRD/STA

Varying phase components and crystallinity evidently result in different levels of
thermal stability and different high-temperature behaviors of the slags. The thermal
stability of slags at the operation temperature range of solar thermal plants is crucial for
their applicability. Therefore, the phase formation and stability at elevated temperatures
were investigated in detail.

Simultaneous thermal analyses (STA) were used to monitor the thermal evolution of
slags in the temperature range of 25-1200 °C in a simulated air atmosphere (80 vol% N,
20 vol% Oy). To capture irreversible and reversible thermal events, two subsequent runs
were performed. DSC as well as thermogravimetric analysis (TGA) curves from the first
and second STA runs are plotted in Figures 3 and 4, respectively.
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Figure 3. DSC/TGA analysis of slag 1; heating rate 10 K/min.
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Figure 4. DSC/TGA analysis of slag 2; heating rate 10 K/min.



Minerals 2022, 12,121

6 of 18

DSC signals reveal that both slags undergo several reactions upon first heating, which
may be originating from crystallization, oxidation, and phase transformations. Slag 1
shows a relatively broad exothermic signal between 400 and 1000 °C. Superposed is a broad
peak with the maximum at 575 °C, followed by a small shoulder with the maximum at
715 °C. A further exothermic event between 950 and 1050 °C can be assigned to a weak
peak at 1015 °C. A small endothermic peak is observed at about 1140 °C, which could
be associated with the latent heat of fusion. Simultaneously, the TGA measurement in
Figure 3 indicates a significant sigmoidal mass increase of around 5.5 wt.% during the first
run in the temperature range of 400-1000 °C. (equivalent to 1.72 mol O, absorption per
1 kg slag). Both curves of the second STA run show way fewer features, i.e., no significant
exothermic events. Only the weak endothermic event at 1140 °C seems to occur again.
Considering STA measurements, it can be assumed that the broad exothermic signal as well
as exothermic peaks reflect oxidation and related crystallization whereas an endothermic
peak at around 1140 °C may be indicative of partial melting.

Slag 2 exhibits similar exothermic reactions with two well-defined peaks, at 580 and
740 °C. TGA analysis also reveals a substantial mass increase of around 3.8 wt.% between
400 and 1000 °C, but to a lesser extent than that observed in slag 1 (Figure 4) (equivalent
to 1.19 mol O, absorption per 1 kg slag). Again, it can be seen that mass increase and
exothermic reactions due to the oxidation/crystallization do not take place upon second
heating, implying the complete oxidation and crystallization of thermodynamically stable
phases upon first heating except for a weak endothermic peak observed at 1090 °C, again
indicating partial melting. It is noteworthy that both slags reach their mass gain maxima
at about 1030 °C in both runs, followed by a minor mass loss up to 1200 °C. Assuming
oxidation, i.e., uptake of O,, as a source of mass gain, reduction, i.e., release of Oy, is a
plausible source of the minor mass loss beyond 1030 °C.

To monitor the phase evolution taking place at elevated temperatures indicated by
DSC/TGA analysis, annealed slags at 600, 800, and 1000 °C for 2 h were analyzed by XRD
in a comparative manner. Annealing-temperature-dependent phase components of slags 1
and 2 are given in Figures 5 and 6, respectively.

- @ Fe-Oxide (Hematite)
Slag #1 . # FeCrOxide (Spinel)

W Fe-Al-Oxide (Spinel}

A Anorthite
. . @ Cristobalite
ik Fayalite

XRD Intensity [a.u]

20 30 40 50 60 70 80
2-0 [deg] (Cu-Ka)

Figure 5. XRD profiles and co-existing crystalline phases of slag 1 after annealing for 2 h in air.
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Figure 6. XRD profiles and co-existing crystalline phases of slag 2 after annealing for 2 h in air.

As a general observation, Figure 5 reveals the disappearance of amorphous humps
and peak broadenings observed in the as-received condition (see Figure 2); both slags
appear fully crystalline at 800 °C. As-received materials, which were produced by water-
granulation of melts, are evidently far away from equilibrium and annealing at moderate
temperatures provides sufficient activation energy and diffusion kinetics for the progressive
crystallization of equilibrium phases. In slag 1, comprising fayalite and a spinel-type Fe—Al
oxide in the as-received condition, the formation of hematite (Fe,O3, ICDD #33-0664) and
a further spinel solid solution with lattice parameters close to chromite (FeCr,O4, ICDD
PDF #34-0140) were observed after sintering at 600 °C. Again, in order to discriminate this
spinel phase, it is referred to as “Fe—Cr spinel” in the following although its stoichiometry
will presumably incorporate all matching cations. A significant decrease in the fayalite-
corresponding peaks indicates the oxidation of fayalite into those more stable phases.
After sintering at 800 °C, the final phase composition does not exhibit fayalite but better
crystallized hematite and Fe-Cr spinel peaks have been noticed. After sintering at 1000 °C,
well-crystallized hematite, and Fe-Cr spinel were found in the structure indicated by well-
defined high-intensity peaks. Moreover, the first appearance of corresponding diffraction
peaks points to the crystallization of small amounts of cristobalite (SiO,, ICDD PDF #39-
1425) and anorthite (CaAl,Si,Og, ICDD# 41-1486) at elevated temperatures. The initial-
phase Fe—Al oxide can still be found, indicating its higher temperature stability compared
to fayalite. This temperature-dependent phase evaluation points out that the peak at 568 °C
observed in the DSC signal is corresponding to a fayalite-to-hematite reaction triggered by
the oxidation of FeZ* to Fe3*. Moreover, the formation of the Fe-Cr spinel, cristobalite, and
anorthite is linked to further exothermic signals recorded up to 1000 °C.

In the case of slag 2, no significant changes have been observed in the phase mixture
of slag 2 after sintering at 600 °C, other than oxidation of remaining Pb droplets into Pb
oxides, as represented in Figure 6.

It should be also noted that Pb oxide exhibited poor crystal quality entailed by peak
broadening and lower diffraction intensities, which may be indicating the start of its
dissolution in the amorphous phase. XRD diffractograms of slag 2 sintered at 800 °C
comprised of an Fe-Zn spinel with enhanced crystallinity and two newly formed phases:
gehlenite-type hardystonite (Ca;ZnSi, Oy, ICDD PDF #72-1603) and traces of an Fe-rich
pyroxene similar to esseneite (Ca(Fe,Al);SiO6 ICDD PDF #25-0143). When slag 2 is sintered
at 1000 °C, well-crystallized Fe—Zn spinel and hardystonite are found as leading phases. At
this temperature, pyroxene is not stable anymore and the formation of an andradite-type
garnet phase (ICDD PDF 10-0288) is observed instead. Considering these results, it can
be assumed that exothermic reactions designated by STA analysis are due to oxidation-
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induced, accelerated crystallization of the component Fe-Zn spinel and the formation of
new crystalline phases, such as hardystonite and garnet.

Beyond XRD-assisted phase analysis, EDS analysis was performed to reveal the
chemical composition of the slags in a comparative manner, as given in Table 1.

Table 1. Chemical composition of slags 1 and 2 in as-received and annealed conditions.

at. % o Fe Si Zn Al Ca Mg Na Mn Cr Pb K As Sb
Slag 1
As received 550 196 129 1.9 4.8 2.3 1.5 0.9 0.4 0.5 - - - -
600 °C 619 182 94 1.7 3.8 1.8 1.2 0.9 0.4 0.5 - - - -
800 °C 611 195 93 1.6 3.7 1.8 1.3 0.7 0.4 0.5 - - - -
1000 °C 639 174 8.6 1.7 3.5 1.8 1.3 0.8 0.4 0.5 - - - -
Slag 2
As received 619 112 95 5.6 1.8 4.7 0.5 2.8 0.2 - 0.8 0.6 0.3 0.2
600 °C 625 113 8.8 5.6 15 4.4 0.5 3.2 0.2 - 0.8 0.6 0.3 0.3
800 °C 628 104 98 5.1 1.9 4.9 0.5 2.5 0.2 - 0.8 0.5 0.4 0.2
1000 °C 627 10.6 7.8 6.3 15 4.6 0.4 3.5 0.2 - 12 0.7 0.2 0.2

Slag 1 in the as-prepared condition has a lower oxygen content, which prompts higher
oxygen absorption rates, consistent with TGA analysis. Already by sintering at 600 °C,
a significant amount of oxidation has taken place leading to hematite formation. In the
case of slag 2, the initial oxygen content is relatively higher and the oxidation rate is
relatively lower than those of slag 1, which is also in parallel with TGA findings. Sintering
at higher temperatures does not increase the oxygen content of the slags further, implying
the formation of stable phases. This was also confirmed by mass change plots reaching the
steady state by 1000 °C, represented in TGA analysis.

In the light of STA, XRD, and EDS analyses, it can be concluded that slags with a
complex phase structure and poor crystallinity can be converted into the thermally stable
phase components with enhanced crystal quality by irreversible oxidation, which promotes
their use in high-temperature solar energy applications.

3.1.3. Slag Modeling

Several studies have been carried out on fayalitic slags due to their importance in
non-ferrous metallurgy because the reaction between Si and Fe prevents the reduction of
iron during the pyrometallurgical process [22-24]. Fayalite is a compound that is only stable
at high temperatures for oxygen partial pressures lower than 10~1° bar, which evidences
that oxygen partial pressures and chemical composition play a central role in the physical
properties of these slags [22,25,26].

Regarding the chemical composition of the slags in the as-received condition (Table 1),
models carried out with FactSage showed that fayalite phases are present at high tem-
peratures only for the oxygen partial pressure lower than 10~ bar in the case of slag 1
(Figure 7a). However, modeling predicts that there will not be any fayalite precipitation for
slag 2 (Figure 7c). The phase analysis of the as-received slags (Figure 2) and the TGA-DSC
results (Figures 3 and 4) serve to understand the industrial conditions of these slags.
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Figure 7. Phase formation as a function of (a) pO, for slag 1 (at 1000 °C), (b) temperature for log
(pO3) = —15 bar for slag 1, (c) pO; for slag 2 (at 1000 °C), and (d) temperature for log (pO;) = —14
bar for slag 2.

The presence of fayalite and ferric spinel phases in slag 1 shows that the smelting
process took place with pO, of 10~'° bar, and the model for this oxygen partial pressure
in Figure 7b exhibits that water granulation froze the slag structure at around 1000 °C,
transforming 70% of the remaining liquid into a glass phase, which is in good accordance
with the 75 wt.% amorphous content calculated by the Rietveld method.

The role of oxygen has been the key to understand the formation of the crystalline
phase. As shown in Figure 8, during cooling at equilibrium conditions, the slags can
theoretically absorb up to 1.8 mol and 1.15 mol O; per kg of slag 1 and slag 2, respectively.
These values are also in perfect correlation with TGA results, where the amorphous, fay-
alite, and magnetite-type spinel phases are fully oxidized during annealing. Close to the
slag melting point, the oxidation behavior is inverted and the slags re-release oxygen (see
Figures 3 and 4). Due to its amphoteric characteristic, iron is leading this oxygen absorp-
tion/release behavior at high temperatures, varying with Fe>* /F3* species. Regarding slag
2, the oxidation exceeds theoretical limits, which could be explained by the oxidation of Pb
droplets trapped in the slag, as shown in Figure 2. This oxidation is also reported by the
XRD profiles between 600 and 1000 °C in Figure 6.
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0 1200
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Figure 8. Theoretical O, absorption in slag 1 (a) and slag 2 (b).
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It can be appreciated that oxygen controls the microstructure and the melting point of
fayalitic slags if the temperature is fixed and the model is studied regarding the influence
of oxygen partial pressures as shown in Figure 7a and c for slag 1 and slag 2 at 1000 °C,
respectively. Each cycle of cooling and heating in air/oxygen atmosphere will gradually
move the equilibrium to full oxidation where hematite and spinel phases are stable at
high temperatures, and thus slags become more refractory due to an increase in their
melting points.

Slag 1 exhibits hematite as the dominant phase without the co-existing amorphous
phase, as confirmed in XRD diffractograms after sintering at high temperatures (see
Figure 5), which is only possible for fully oxidized samples (see Figure 7a for pO, higher
than 1-x 107° bar). This oxidation also explains why slag samples do not release the same
oxygen amount at high temperatures during the second heating STA cycle (see Figure 3).
According to the modeling of melting point and viscosity, at industrial condition, slag 1
presents a narrow liquid/solid transition between 900 and 1075 °C with a fast drop in vis-
cosity (see Figure 9a). For a higher oxidation state, the liquid /solid transition is expanded
perhaps physically as a formation of amorphous phases around spinel and hematite crystals
where the melting point is far beyond 1200 °C.

p02=10'15 bar solidiquid transition P°2=‘|°-3 bar solidHiquid transition
100% = = 20 100%
90% 418 90% -
80% | [ 80%
70% - 148 £ 70%] @
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Figure 9. Thermodynamic modeling of liquid fraction and viscosity for slag 1 (a) pO, =1 x 10~1% bar
and (b) pO; =1 x 103 bar.

Slag 2 depicts a similar behavior to slag 1. However, due to its different chemical
composition, mainly a lower content of Fe, this sample can absorb less oxygen and the slag
exhibits a broad solid-liquid transition and a higher melting point at industrial conditions
(see Figure 10a). As shown in Figure 10b, the melting point increases under more oxidative
conditions but the formation of liquid/glassy phases is several times higher than slag
1, comparing the temperature range of 800-1000 °C, which is also consistent with the
calculated 95 wt.% amorphous content obtained by Rietveld profile fitting. These wide
transition ranges can be physically translated into more significant glassy phases and a
completely different dilatation and thermal behavior.
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Figure 10. Thermodynamic modeling of the liquid fraction and viscosity for slag 2 (a)
pO2 =1 X 10~ bar and (b) PO =1 x 1045 bar.

3.1.4. Preparation and Assessment of Slag-Derived Particles for Solar Thermal Processes

After the analyses of slags’ material properties and high-temperature behavior, the
solar energy absorber particle candidates were prepared by the oil dropping method, with
a diameter around 1 mm, similar to that of commercial absorber particles. To determine the
optimum sintering temperature to achieve dense particles before they reach their melting
temperature, a heating microscope was used.

Heating Microscopy

The dropped particles were heated from RT to 1200 °C to monitor in situ shape
changes taking place during the sintering. The relative height of the slag particles was
evaluated as a function of increasing sintering temperature in a comparative manner, as
given in Figure 11.
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Figure 11. The relative change in the diameters of the slag particles at elevated temperatures measured
by optical dilatometry.

Figure 11 points to the distinct trend of relative height change for both slag particles
upon heating up to 1200 °C. The onset temperature of sintering for slag 1 is around
1050 °C. Heating above 1150 °C causes a sudden volume increase, which may be due to
the partial melting and blow up of the more viscous, SiO,-rich, slag, which has been also
indicated in the FactSage model and STA analysis. Since partial melting at this stage may
result in undesired bubbles in the particles, the maximum sintering temperature has been
determined as 1150 °C for slag 1. In the case of slag 2, sintering starts earlier, at around
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950 °C, as can be seen in Figure 11. As the temperature reaches a value above 1100 °C,
due to the melting of the slag particle and progressive wetting of the sample holder with
low viscosity, relative SiO,-lean melt is detected in the dilatometer experiment. Therefore,
1100 °C is determined as the maximum feasible sintering temperature for slag 2 to ensure
densely sintered particles in conserved spherical form. Here, it is also worth mentioning
that slag 2 exhibited an obvious height increase around 650 °C, which may be due to
decomposition of Pb oxide and consistent with the FactSage model and STA /XRD analyses
(see above).

Phase and Microstructural Analysis of Sintered Particles

In Section 3.1.2, we performed a parametric study regarding the phase components at
elevated temperatures up to 1000 °C. However, in the light of optical dilatometry results,
higher temperatures than 1000 °C were applied for the sintering of slag particles to ensure
well-consolidated end products. Therefore, slag 1 particles and slag 2 particles were also
investigated after sintering at 1150 and 1100 °C in terms of their final phase mixture, as
given in Figure 12.
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Figure 12. XRD diffractograms of end products prepared from slags 1 and 2.

Both particles produced from slags exhibit a well-crystalline nature with narrow and
high-intensity diffraction peaks. The end product derived from slag 1 comprises mainly
hematite, which is Fe—Cr spinel accompanied by anorthite and cristobalite. Here, it is
worth highlighting that the Fe—Al spinel, one of the starting phase components stable after
sintering at 1000 °C (see Figure 2), is no longer present at this temperature. It may be
diffused into Fe—Cr spinel and/or decomposed to hematite. Moreover, the presence of two
different stable ferric phases may be due to the relatively high Fe content in the as-received
condition and may be beneficial for the absorption properties. Figure 12 also represents the
end product of slag 2, which comprises Fe-Zn spinel and hardystonite. The intermediate
compounds, garnet and pyroxene, which appeared at around 800 and 1000 °C, are not
stable at elevated temperatures. No crystalline Pb-containing phases have been detected.
There are some low-intensity peaks located at ~32, 38, and 48 degrees, which could not be
identified and may be corresponding to a phase containing Pb.

Slags have a complex mineralogy and phase components in the as-received state as
well as after sintering. There may be some remaining less crystallized and glassy parts
that cannot be detected by XRD. Therefore, end products prepared from slags were also
analyzed by SEM and EDS, as given in Figures 13 and 14, respectively. Corresponding
phase components of slag 1 particles sintered at 1150 °C and slag 2 particles sintered at
1100 °C as given in Tables 2 and 3, respectively.
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Figure 14. EDS mapping of slag 2 particles sintered at 1100 °C.
Table 2. Corresponding phase components of slag 1 particles sintered at 1150 °C.
o Fe Si Zn Cr Mg Al Ca Na Phase
1 57.5 25.3 0.05 6.4 2.0 4 3.7 0.05 1 Fe—Cr spinel
2 59.7 37.6 0.6 0.1 0.1 0.2 14 0.2 0.1 Hematite
3 68.9 1.2 27.8 0.3 0 0.3 1 0.3 0.2 Cristobalite
4 64.5 2 17 0.2 0 0.2 10 53 0.9 Anorthite
5 66.5 2.5 20.8 0.3 0.05 0.7 5.3 3.3 0.6 Glass
Table 3. Corresponding phase components of slag 2 particles sintered at 1100 °C.
at.% (0] Fe Zn Si Al Pb Mg Na Ca As Sb Phase
1 56.9 23.8 10.3 3.6 11 0.37 0.9 22 0.57 0.26 - Fe—-Zn spinel
2 60.8 1.1 6.1 15.1 0.95 0.45 0.7 2.45 12 0.15 0.2 Hardystonite
3 63.2 8.9 1 9.4 2.55 0.55 0.05 0.5 10 0.35 3.5 Glass
4 65.5 3.3 0.6 18.8 3 24 0.1 1.6 3.6 0.7 0.4 Glass
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Consistent with the XRD findings, the main crystal phases were determined as Fe-Cr
oxide encapsulating certain amounts of Zn, Al, Mg, and hematite, as can be seen in the
particles labeled as 1 and 2, respectively. The darker crystals embedded in the matrix and
labeled as 3 may be corresponding to cristobalite in parallel with XRD findings. Moreover,
the region labeled as 4 exhibits high Al and Ca content with a stoichiometry similar to that
of the anorthite crystals, revealed also in XRD analysis. The surrounding green matrix, as
in point 5, corresponds to the glass phase with a lack of crystallinity entrapping Fe, Si, Zn,
Al, Mg, Na, and Ca.

Slag 2 particles exhibited a similar microstructure with a glassy matrix and Fe including
crystals. Consistent with XRD findings, as the main phase, Fe-Zn particles labeled as 1 were
detected. Moreover, hardystonite crystals were also confirmed, as can be seen in the region
labeled as 2. A significant amount of surrounding glassy matrix was observed in the case of
slag 2 particles and exhibited two different compositions, labeled 3 and 4, respectively. The
former is rich in terms of Ca, and the latter is in terms of Pb, which indicates as revealed
by XRD findings that after the decomposition of PbO, Pb was integrated into the glass
phase structure.

Thermal-Mechanical Properties

Polished cross sections of slag particles were also used to measure the Vickers hardness
by the indentation method. Hardness is considered a suitable indicator for abrasion
resistance of cold particles during bulk transportation/feeding. The average hardness of 10
measurement points was determined as 663 and 530 HV for slag 1 and slag 2, respectively.
The higher hardness of slag 1 is presumably due to the lesser glass phase content, as also
revealed by SEM analysis (Figure 13), and comparable with the hardness values of the
commercial ceramic particles used in the solar receiver applications [6,8].

The glassy phase content of the particles is considered relevant for the softening and
viscous flow of the particles, which may result in poor shape stability and also the sticking
of particles at elevated temperatures supposed to be reached in CSP plants. In particular, in
storage containers, particles are piled up and, depending on their position, face substantial
isostatic forces. To mimic this scenario qualitatively and determine critical temperatures,
the high-temperature compression behavior of single particles was tested. For this, particles
were uniaxially loaded with a controlled force of 30 N and the temperature-dependent
cross-head displacement was recorded (Figure 15). Both slags show a linear displacement
first, which is evidently due to linear thermal expansion only. A significant deviation
from linearity is observed for slag 1 at about 740 °C and for slag 2 at about 720 °C. This
“creeping” indicates the initial softening of particles, presumably caused by glass transition
or even partial melting of amorphous phases. Mechanical destabilization by bulk softening
is indicated by an abrupt loss of applied pressure and dropping displacement curves.
Whereas slag 1 retains some stability up to about 870 °C, slag 2 abruptly softens at about
805 °C. The higher thermal-mechanical stability of slag 1 is owing to the more stable
phase components with a less glassy matrix, comparable with the values of commercial
particles [27].
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Figure 15. Temperature-dependent deformation behavior of slags under controlled uniaxial forces.

Optical Properties

The absorptance spectra in the range of 320-2000 nm of two slags sintered at 1000 °C
for 2 h are plotted in Figure 16, along with a schematic representation of the normal solar
irradiance. Both slags exhibit a good absorptance in the important spectral range between
400 and 900 nm.

100%

50% -

Solar Absorbance

300 500 700 900 1100 1300 1500 1700 1900 2100 2300 2500
Al nm

Figure 16. Solar absorptance of the slags sintered at 1000 °C and normalized solar irradiance
(dashed line).

The solar weighted absorptance has been calculated according to ASTM 173d stan-
dards as 0.81 and 0.79 for slags 1 and 2, respectively. The slightly higher absorptance of
copper slags is consistent with their relatively higher Fe content and darker coloring. A
significant decrease at higher wavelengths is observed, which can be modified easily by
pigment addition or can be used as selective lower absorption in the near-infrared region
to reduce the emission losses [19].

Heat Capacity

Temperature-dependent heat capacities of both slags sintered at 1000 °C were mea-
sured within 3 cycles up to 1000 °C. The measured values were averaged and plotted as
given in Figure 17.
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Figure 17. Heat capacity of the slags as a function of temperature.

Heat capacity is an important property to ensure enhanced storage densities. Figure 16
reveals that slag 1 reaches up to 1.2 J/g-K at elevated temperatures, which is highly
promising and comparable with the commercial solar absorber particles [6,8]. At each
temperature, slag 2 has a lower heat capacity with respect to slag 1. Starting from 800 °C,
there is a sharp increase in the heat capacity of slag 2 due to the partial melting of slag
2. The same behavior can be seen from optical dilatometry results (Figure 11) and in the
FactSage model, which can have a negative influence on the stability of slag particles by
continuous thermal cycling. Therefore, the maximum application temperature of slag
2 can be considered as around 800 °C. The high heat capacity and the thermal stability
of slag 1 make it a better candidate for solar heat storage. This comparative incipient
study indicates the potential use of copper slags as raw materials for engineered particles
as solar heat transfer and storage mediums. However, due to the heterogenous nature
of metallurgical slags, which may vary even from sample to sample of the same batch,
properties presented in this work should be considered only as a trend; large-scale particle
production and application will require examination of different raw material sources and
possible definition of a compositional window to ensure reproducible functional properties
as well as optimized and stable production parameters.

4. Conclusions

Two metallurgical slags were analyzed in terms of the physico-chemical properties
essential for application as absorber or heat storage particles in concentrated solar power
receivers. Good solar absorbance is due to the formation of “black” Fe-rich spinel-type
phases during annealing-related oxidation and re-crystallization of both starting materials,
where observed thermal effects and phase formations are consistent with those predicted
by thermodynamical modeling. A clear outperformance of a fayalite-type slag, however,
was observed for all other key properties. The much lower amorphous content in sin-
tered fayalite slag results in superior high-temperature phase and mechanical stability.
Experimental results suggest that particles fabricated from such kind of slags can be oper-
ated at temperatures in the required 1000 °C range and promise to be a sustainable and
cost-efficient substitute for state-of-the-art bauxite-type solar absorber particles. Moreover,
results suggest that simple chemical modification of slags, e.g., by blending in other oxide
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waste materials during smelting, may be used for microstructure design to further improve
thermal and optical properties.
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