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Abstract: The traditional Fast Marching Method (FMM) based on the finite-difference scheme can
solve the traveltime of first arrivals; however, the accuracy and efficiency of FMM are usually affected
by the finite-difference schemes and grid size. The Vidale finite-difference scheme and double-
grid technology are adopted to replace the traditional first-order and second-order finite-difference
schemes in this paper to improve the computation accuracy and efficiency. The traditional FMM does
not provide the corresponding raypath calculation methods, and in view of the interoperability of
FMM and the linear travel time interpolation (LTI) method, we introduce the linear interpolation
method into FMM ray tracing to compute the raypath and take into consideration the secondary
source located inside the grid cell to improve the accuracy and stability of the raypath calculation.
With these measures and the application of the multistage approach, we successfully completed
the improved Multistage FMM (MFMM) ray tracing, which can track first arrivals and any type
of primary and multiple reflection waves. Through the theoretical and actual field model tests,
the computation accuracy and efficiency of the improved MFMM are proven to be higher than
that under traditional first-order and second-order finite-difference schemes, the correctness and
effectiveness of the interpolation method for raypath calculation are verified, and the improved
MFMM has demonstrated good adaptability and stability for complex models. The improvements for
the MFMM in this paper are successfully applied in two-dimensional cases and need to be extended
to three-dimensional situations.

Keywords: fast marching method; finite-difference; linear interpolation; multistage approach;
ray tracing

1. Introduction

Ray tracing is widely used in various fields of seismic exploration, providing an
effective means for pre-stack migration, velocity analysis, and tomography. With the
successful application of Kirchhoff integral pre-stack depth migration in complex structure
imaging, many grid-based ray tracing methods are developed rapidly, and the finite-
difference ray tracing method [1,2] is one of the most representative algorithms.

Vidale [1] uses the finite-difference method to solve the eikonal equation and computes
the traveltime by the box expansion method, but it always loses stability in the media with
drastic changes in velocity, and the box expansion process does not conform to the law
of wavefront propagation. Several scholars have improved this method [3–5]. Based on
the upwind finite-difference scheme, Sethian [6] first proposes the Fast Marching Method
(FMM) to compute the first arrivals traveltime, and the wavefront expansion conforms
to the propagation law of seismic wave, then Sethian [7] and Popovici [8] improve this
method. FMM has the advantages of high precision, high efficiency, good flexibility, and
unconditional stability [6]. Rawlinson and Sambridge [9,10] propose the multistage ap-
proach to realize the multi-seismic phase tracing of Multistage FMM (MFMM) and point
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out that the second-order finite-difference scheme can ensure the computation accuracy
and efficiency of the traveltime to a certain extent; meanwhile, using the refined grids near
the seismic source can also improve the traveltime computation accuracy. In particular,
the proposed Multi-Stencils FMM (MSFM) [11] significantly improves the computation
accuracy of FMM. Several scholars have presented improved methods for higher accu-
racy and efficiency [12–15], which have been proven to be effective for the first arrivals
traveltime computation.

When using the finite-difference method to compute the global-discrete traveltime
field, if the ray directions are computed at the same time, it is necessary to compute the
ray vectors of all grid nodes and all possible directions [16,17], which increases the storage
space, reduces the computation accuracy and efficiency due to the secondary source can
only be located on grid node and boundary [18,19]. It is common to track the raypath
in reverse by computing the maximum gradient direction of the computed traveltime
field [9,10,20,21], but the computation details are not given in these papers. To complete
FMM raypath calculation, Rawlinson et al. propose the raylet method, and the multi-
valued raypath of the source and the receiving points can be obtained by computing the
derivative of the total traveltime from the given point to the source and the receiving
points [22]; Wei et al. add the inverse interpolation method to improve the computation
accuracy of the secondary source points [23]. Wang et al. track the raypath of FMM
by computing the steepest descent direction of the traveltime gradient [24]. Since the
linear traveltime interpolation (LTI) method [25] and the steepest descent method [24]
only consider the traveltime and raypath of the secondary source located on the grid node
and boundary, theydo not deal with the case when the secondary source is inside the grid
cell. The raypath may be zigzagged or merged incorrectly with adjacent raypath when
dealing with the transparent reflection interface, which reduces the computation accuracy
of raypath [18,19,26]. To solve these problems, the interpolation method is usually used
to compute the traveltime and traveltime gradient of any point in the model area. Zhang
Dong et al. propose Maximum Traveltime Gradient Ray Tracing (MTG) based on cubic
B-spline interpolation, which can compute the traveltime gradient at any point in the model
region [18,19]. However, it is not suitable for media with drastic changes in velocity. Then
the linear interpolation method [25], the Chebyshev interpolation method [27] and the
model parameterization [28] are used to solve this problem. Zhang Yun et al. complete
multi-seismic phase tracking of MFMM by computing the traveltime gradient [29].

In this paper, we adopt the Vidale finite-difference [1,30] and double-grid technol-
ogy [5,6] to improve the computation accuracy and efficiency of the traveltime. Then
the linear interpolation method is used to track the raypath, especially considering the
secondary source appears inside the grid cell, completing the traveltime and raypath com-
putation of improved MFMM. The correctness and effectiveness of the improvements in
this paper are verified by numerical simulation of the typical models and the Marmousi
model. We also test the improved MFMM by the velocity model of Xiong’an New Area
in China [31,32]. The results can describe the first break and reflection events well. Our
research in this paper improves the numerical simulation of seismic ray tracing and pro-
vides a basis for further studies on seismic data processing and denoising, seismic image
analysis, seismic tomography and inversion [33–35].

2. Calculation Method of Traveltime
2.1. Finite-Difference Scheme

The two-dimensional eikonal equation is:[
∂t(x, z)

∂x

]2
+

[
∂t(x, z)

∂z

]2
= s2(x, z) (1)

where t is the traveltime of the seismic wave, and s is the slowness of the seismic wave. The
traditional FMM uses the upwind finite-difference method to solve the eikonal equation to
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obtain the first arrivals traveltime [6]. In this paper, the traditional and improved Vidale
finite-difference [1,30] schemes are used to discrete the eikonal equation.

Figure 1 shows the three types of the Vidale finite-difference schemes, and the trav-
eltime can be obtained by solving Equation (1), so the expression of tc in Figure 1a is
as follows:

Figure 1. Sketch map of (a,b) the Vidale finite-difference scheme and (c) the improved Vidale finite-
difference scheme. tc is the traveltime of point C to be solved, ta, tb and td are the known traveltime
of points A, B and D, respectively; ta is the minimal value, and h is the grid spacing.

tc = min
[

ta +

√
2(sh)2 − (td − tb)

2, ta +
√

2sh, tb + sh, td + sh
]

(2)

The expression of tc in Figure 1b is:

tc = min

[
ta +

√
(sh)2 − 1

4
(td − tb)

2, ta + sh, tb +
√

2sh, td +
√

2sh

]
(3)

The improved expression of tc in Figure 1c is:

tc = min
[

ta + max
[

sh√
2

,
√
(sh)2 − (tb − ta)

2
]

, ta + sh, tb +
√

2sh
]

(4)

where is the average slowness of all grid nodes in each equation. By using Equations (2)–(4),
the traveltime of the whole model area can be computed through the narrow-band expan-
sion of FMM [6].

2.2. Double-Grid Technology

The FMM computation errors of traveltime are mainly concentrated near the source.
Rawlinson and Sambridge [9,10] refine the grids near the source to improve this problem.
In the same way, the double-grid technology is used in this paper to refine the original
grids near the source to achieve a similar effect, as shown in Figure 2.

Figure 2. Sketch map of the double-grid technology. The star represents the source, the bold lines
represent the boundary of the refined area, and the bold dots represent the original grid nodes on
this boundary.
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The processes of double-grid technology are as follows: refine the grids near the source,
compute the traveltime on all grid nodes of this area by improved FMM, and then return
the high-precision traveltime to the original grid node. In this process, two parameters,
the number of expanded grid layers around the source and the number of refined points
of each grid, determine the computation accuracy and efficiency, while the computation
efficiency will decrease with the increase of refined grids. Since the traveltime errors of
FMM mainly surround the source, the preferred way is to use fewer expanded grid layers
and more refined points of each grid. In practical application, the appropriate parameters
can be set through efficiency and error analysis.

3. Calculation Method of Raypath
3.1. The Linear Interpolation Method

After obtaining the traveltime field of the model area, the linear interpolation method [25]
is adopted to compute the raypath. As shown in Figure 3, in the model area with the
rectangular grids, points A and B are the known points, the coordinates are (xa, za) and (xb,
zb), the traveltimes are ta and tb, respectively, and point C and point D are the secondary
sources need to be solved, the ray is from point D to point C. So the raypath can be
computed by the coordinates of the secondary source D (xd, zd) and traveltime of point C tc.

Figure 3. Sketch map of computing the traveltime of point C and the coordinate of point D by
the linear interpolation method (a) on the horizontal boundary, (b) on the vertical boundary, and
(c) inside the grid on line AB. The arrows represent the raypath from point D to point C, the dotted
lines AC represent the auxiliary line in triangle ADC, and ϕ represents the angle between line AB
and line AC.

Based on the linear hypothesis, the traveltime of point D td can be obtained by linear
interpolation with ta and tb, i.e.,

td = ta + (tb − ta)r/|AB| (5)

where point A is the minimum traveltime point, satisfying ta ≤ tb; r is the distance between
point A and point D, satisfying 0 ≤ r ≤ |AB|, and |AB| is the distance between point A
and point B. Since the ray at point C comes from point D, tc can be expressed as:

tc = td + |CD|/v = td +

√
r2 + |AC|2 − 2r|AC| cos ϕ/v (6)

where v is the wave velocity, ϕ is the angle between lines AB and AC, |CD| and |AC| rep-
resent the distances between corresponding points. Taking Equation (5) into Equation (6):

tc = ta + (tb − ta)r/|AB|+
√

r2 + |AC|2 − 2r|AC| cos ϕ/v (7)

As can be seen from Equation (7), tc is a function about r. According to Fermat’s
principle, the traveltime of the ray from point D to point C is the smallest, and its traveltime
gradient is zero; that is:

∂tc/∂r = 0 (8)
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Taking Equation (7) into Equation (8):

(tb − ta)/|AB|+ (r− |AC| cos ϕ)/
√

r2 + |AC|2 − 2r|AC| cos ϕ /v = 0 (9)

r can be obtained by solving Equation (9):

r = |AC|

cos ϕ− (tb − ta) sin ϕ√
|AB|2/v2 − (tb − ta)

2

 (10)

Then the coordinates of point D can be obtained:{
xd = xa + (xb − xa)r/|AB|
zd = za + (zb − za)r/|AB| (11)

Meanwhile, taking Equation (10) into Equation (7), we can obtain tc:

tc = ta +
|AC|
|AB|

cos ϕ(tb − ta) + sin ϕ

√
|AB|2

v2 − (tb − ta)
2

 (12)

Equations (10)–(12) are suitable for traveltime computation with arbitrary shapes.
The rectangular grid is used to discretize the model area in this paper. When point A

and point B are located on the grid nodes, Equations (10)–(12) can be further simplified. As
shown in Figure 3a, when points A, B and D are located on the horizontal boundary of the
grid, za = zb, the corresponding equations are:

r = (xc − xa)−
(tb − ta)(zc − za)√
|AB|2/v2 − (tb − ta)

2
(13)

{
xd = xa + (xb − xa)r/|AB|
zd = za

(14)

tc = ta +
1
|AB|

(xc − xa)(tb − ta) + (zc − za)

√
|AB|2

v2 − (tb − ta)
2

 (15)

As shown in Figure 3b, when points A, B and D are located on the vertical boundary
of the grid, xa = xb, the corresponding equations are:

r = (zc − za)−
(tb − ta)(xc − xa)√
|AB|2/v2 − (tb − ta)

2
(16)

{
xd = xa

zd = za + (zb − za)r/|AB| (17)

tc = ta +
1
|AB|

(zc − za)(tb − ta) + (xc − xa)

√
|AB|2

v2 − (tb − ta)
2

 (18)

In addition to the case of the secondary source D being located on the grid node
or boundary, we also have considered the case of the secondary source D being located
inside the grid cell, i.e., point A and point B are located at the transparent reflection
interface, as shown in Figure 3c, and we use Equations (10)–(12) for the traveltime and
raypath computation. Therefore, according to the known conditions of points A-D in
Figure 3, the coordinate and traveltime of the secondary source at any location in the model
area can be solved by using Equations (10)–(18), which can improve the FMM raypath
calculation accuracy.
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3.2. Raypath Tracing Process

After obtaining the traveltime of all grid nodes, the raypath tracing processes [25] re-
trieved from the receiving point to the source are shown in Figure 4 and can be summarized
into three steps:

Figure 4. Sketch map of raypath tracing. S is the source, R is the receiving point, the dotted lines
represent the possible raypath from all directions and the solid line SR represents the determined
minimum-traveltime raypath from the source S to the receiving point R.

(1) Retrieve the coordinates and traveltime of all nodes in the grid where the receiving
point is located. If the receiving point is on the grid node, its traveltime can be used directly;
if the receiving point is not on the grid node, its traveltime can be computed through linear
interpolation by Equation (15) or (18).

(2) Compute the traveltime of all the possible raypath from the boundary of the grid
where the receiving point is located by Equation (15) or (18), then select the minimum
traveltime raypath and compute the location of the secondary source on this raypath
by Equation (14) or (17); if there are transparent reflection interfaces in the grid cell, the
secondary source will appear inside the grid cell, and its location can be computed by
Equations (10)–(12).

(3) Repeat steps (1) to (2) until the last secondary source reaches the grid where the
source is located, then connect the source, all the secondary sources and the receiving points
in turn to obtain the whole raypath.

4. Model Test

We use several typical models to test the computation accuracy, efficiency, stability
and adaptability of complex models with the interpolation raypath method.

4.1. Homogeneous Model

To analyze the computation accuracy and efficiency of FMM, we design a homoge-
neous model for forward simulation, with an area of 1000 m × 1000 m and a wave velocity
of 1000 m/s. The observation system is shown in Figure 5a. N represents the source.
The coordinates are (0, 0) m. H represents the receiving points, which are sequentially
arranged on the right boundary of the model, with a channel spacing of 100 m, and there
are 11 receiving channels in total. The first-order, second-order and Vidale finite-difference
schemes are used with the same grid spacing. The forward modeling results and their
comparison are shown in Figures 5 and 6 and Table 1.

It can be seen from Figure 5 that it is feasible to use linear interpolation to compute
the raypath of FMM. With the small grid spacing, the numerical raypaths under the
first-order, second-order, and Vidale finite-difference schemes are consistent with the
analytical raypaths, and the numerical raypaths are orthogonal to the wavefront. Figure 6
shows the relative error between the analytical solution and the numerical solution under
different finite-difference schemes. It can be seen from Figure 6a,c that the smaller the
grid spacing, the smaller the relative error. From Figure 6a to Figure 6c, we can see the
FMM computation accuracy under the Vidale finite-difference scheme is better than that
under the first-order and second-order finite-difference schemes. As can be seen from
Figure 6b, when the first 20 layers of grids around the source are refined to 1 × 1 m by
using the double-grid technology, the computation accuracy under the second-order and
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the Vidale finite-difference schemes with the grid spacing of 20 m is significantly improved
and is equivalent to that with the grid spacing of 1 m. As shown in Table 1, the CPU
time of FMM under the Vidale finite-difference scheme is equivalent to that under the
first-order finite-difference scheme and also has a higher computation efficiency than that
under the second-order finite-difference scheme. The above results show that to obtain the
same computation accuracy, the improvements in this paper will take the least CPU time.
Therefore, the Vidale finite-difference scheme and double-grid technology can improve the
computation accuracy and efficiency of FMM at the same time.

Figure 5. Comparison between the analytical raypath and the numerical raypath of FMM with
(a) first-order, (b) second-order and (c) Vidale finite-difference scheme with the grid spacing of
1.0 m. The gray triangle N represents the source, and the gray inverted triangle H represents the
receiving points.

Figure 6. Relative error of FMM with different grid spacings of (a) 20 m, (b) 20 m with double-grid
technology of 25 grid layers and 9 points of each grid and (c) 1.0 m.

Table 1. CPU time of FMM with different finite-difference schemes and grid spacings.

Finite-Difference Scheme
Grid Spacing

20 m 20 m (Double-Grid) 1 m

First order 0.1094 s 0.4531 s 2.1250 s
Second order 0.2137 s 1.3437 s 5.8437 s

Vidale 0.1250 s 0.6719 s 3.0156 s

4.2. High-Speed Sandwich Model

To test the correctness of the interpolation method for computing raypaths, we adopt
the high-speed sandwich model designed by Asakawa and Kawanaka [25]. The model
parameters and observation system are shown in Figure 7. The model area is 1000 × 1000 m.
The background wave velocity is 1000 m/s. The wave velocity of the high-speed interlayer
is 1500 m/s. Model B is 90◦ symmetrical with model A. N represents the source. H
represents the receiving points. The receiving channel spacing is 100 m, with a total of
11 receiving channels. With the Vidale finite-difference scheme and the same double-grid
parameters as Figure 6b, the first arrival waves of FMM ray tracing are shown in Figure 7.
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Figure 7. FMM ray tracing results of (a) transverse high-speed sandwich model and (b) vertical
high-speed sandwich model. The gray triangle N represents the source, the gray inverted triangle H
represents the receiving points, the gray shade represents the high-speed layer and the red dotted
line with × represents the wrong raypath.

It can be seen from Figure 7 that the first arrivals raypaths obtained by FMM ray
tracing are along the normal direction of the wavefront, and the rays received by the third
and fourth channels in Figure 7a,b are not directly from the source, but from the refraction
of the high-speed layer, which satisfies the Fermat principle and is consistent with the test
results of Asakawa and Kawanaka [25], indicating that the numerical raypath we computed
is correct. So FMM raypath tracing based on linear interpolation is correct and effective.

4.3. Marmousi Model

We use the Marmousi model to test the adaptability and stability of the interpolation
method for complex models and compare the results of FMM and LTI ray tracing. The
model area is 3830 × 1210 m, the grid spacing is 10 m and the number of grid nodes is
384 × 122 (Nx × Nz); the source N is located at the bottom interface of the model with
coordinates (2790, 1210) m, and the receiving arrangement is located on the top of the model
with the receiving channel spacing of 50 m, totaling 77 channels. The forward modeling
results and their comparison are shown in Figure 8.

As can be seen from Figure 8a, the FMM wavefront and raypaths can reflect the
velocity structure of the Marmousi model correctly. The wavefront in the high-velocity
area is faster than that in the low-velocity area. The rays gather in the high-velocity area,
bypass the low-velocity area, and scatter at the velocity cusp. The numerical rays always
propagate along the minimum traveltime direction, which satisfies the Fermat principle.
Comparing Figure 8a with Figure 8b, the wavefront and raypath of FMM and LTI coincide
highly with each other. Meanwhile, it can be seen from Figure 8c that the traveltimes of
FMM and LTI are highly consistent, and the residual error between them is almost zero.
Therefore, FMM ray tracing based on the interpolation method has strong adaptability for
complex models, which have been proven to be stable.
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Figure 8. Comparison of wavefront and raypath between (a) FMM and (b) LTI. (c) Comparison
of traveltime between FMM and LTI. The refined grids around the source are 100 grid layers and
4 points of each grid in FMM. The LTI results are from [36]. The gray triangle N represents the source.

5. MFMM Ray Tracing
5.1. Multistage Approach

The multistage approach proposed by Rawlinson and Sambridge [9,10] is successfully
applied to FMM, which can track the reflected waves and multiple waves. In the process,
the computation regions are separated according to the type of waves tracked, and then the
traveltime fields are computed in turn, which solves the grid-based multiwave ray tracing
problem.

Taking the two-layer velocity model as an example, as shown in Figure 9, the processes
of MFMM tracking transmitted and reflected waves are as follows:

(1) Discretize the interface and the velocity model, separate the calculation regions
into I and II according to the wave types and compute the wavefront of region I from the
source, as shown in Figure 9a;

(2) Compute the wavefront narrowband of the interface; all the nodes of the interface
are alive points [6], and their traveltimes cannot be updated, as shown in Figure 9b;

(3) Compute the wavefront of the up-going or down-going waves in each computation
region separately from the narrowband in (2), and the processes are as follows:
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Figure 9. The process of multistage approach. (a) The down-going wavefront from the source to the
reflection interface, (b) the narrowband at the reflection interface, (c) the transmitted wavefront and
(d) the reflected wavefront from the narrowband in Figure 9b. The gray triangle N represents the
source, the solid curve in the middle represents the reflection interface, the dotted curves in Figure 9b
represent the narrowband of FMM at the reflection interface and other solid curves in Figure 9a,c,d
represent the wavefronts. Region I is above the interface and Region II is below the interface.

A. If the waves transmit at the interface, the down-going wavefront in region II can be
computed from the narrowband in (2), as shown in Figure 9c;

B. If the waves reflect at the interface, the up-going wavefront in region I can be
computed from the narrowband in (2), as shown in Figure 9d;

In this step, if the type of wave tracked from the narrowband in (2) is converted,
compute the wavefront of the up-going or down-going waves with the corresponding
wave velocity.

(4) Repeat (2) and (3) to compute the wavefront of the transmitted wave, reflected
wave and multiple wave.

Figure 10 shows the workflow of the improved MFMM in this paper.

Figure 10. The flowchart of the improved MFMM.
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5.2. Marmousi Model Test

We apply the multistage approach [9,10] and linear-interpolation raypath calculation
method to FMM and use the Marmousi model to test MFMM. The model parameters are
the same as that in Figure 8a. The source N and receiving arrangement H are located at
the top interface of the model, with source coordinates (1915, 0) m, and the first receiving
channel coordinates (0, 0) m. The receiving channel spacing is 383 m, with 11 receiving
channels in total. As shown in Figure 11, two reflection interfaces are given in this model,
the computation stages of primary reflection waves are I-II and I-III, and that of multiple
reflection waves are 1-2-3-4. The MFMM ray tracing is carried out with the same double
grids as in Figure 8a, and the results are shown in Figures 12 and 13. The seismic gathers in
Figure 14 describe the first break and reflection events clearly, which are synthesized by
Ricker wavelet with a frequency of 30 Hz and a length of 60 ms, and the sampling rate and
record length are 1 ms and 1.5 s, respectively.

Figure 11. Marmousi model parameters and the stages of the reflection waves. The gray inverted
triangle H represents the receiving points, the black and red arrows represent the raypaths of the
primary and multiple reflection waves, respectively. I, II, III represent the the first, second and third
computation stage of the primary reflection waves, and 1, 2, 3, 4 represent the first, second, third and
fourth computation stage of the multiple reflection waves.

Figure 12. MFMM primary reflection waves ray tracing. The wavefront of the down-going wave
from the source to (a) interface 1 and (c) interface 2. The wavefront of the reflection waves and
raypath of (b) interface 1 and (d) interface 2.
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Figure 13. MFMM multiple wave ray tracing. The wavefront of (a) the down-going wave from
the source to interface 2, (b) the up-going wave from interface 2 to interface 1, (c) the down-going
wave from interface 1 to interface 2, (d) the up-going wave from interface 2 to surface and the
whole raypath.

Figure 14. Synthetic seismic gathers.

It can be seen from Figures 12 and 13 that MFMM can track the primary and multiple
reflection waves in complex models well, and the wavefront and raypath satisfy the wave
propagation law. Meanwhile, the raypath calculation method based on linear interpolation
enables MFMM to accomplish all types of wave ray tracing, and it has been proven to have
good adaptability and stability for complex models.

5.3. A Field Example: Xiong’an New Area

Xiong’an New Area is a state-level new area located in Hebei province in China. This
area is located in the middle of the Jizhong depression, a part of the eastern block of the
North China Craton [37], and it is mainly composed of four structural units: Rongcheng
High, the southern Niutuozhen High, the southern Niubei Slope and the Baiyangdian
Subsag. The stratigraphy in this area from the top contains Quaternary, Neogene and
Paleogene strata. The thickness of the Quaternary (Q) Pingyuan Formation is 348–437 m;
the Neogene strata are mainly composed of the Guantao Formation (Ng) with a thickness
of 0–424.5 m and the Minghuazhen Formation (Nm) with a thickness of 686–947 m; the
bottom of the Paleogene (Pg) strata is regarded as the basement with the shallowest depth
of approximately 800 m [38]. China Geology Survey has carried out a two-dimensional
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seismic survey in this area to make underground structures transparent [31,32], as shown
in Figure 15.

Figure 15. The seismic survey in Xiong’an New Area (modified according to [31]). The black triangle
N represents the location of Xiong’an New Area in China, and the red line represents the seismic
profile AA’.

Figure 16 shows the velocity model and geological structures of Xiong’an New Area,
which is extracted from the interpretation result of seismic profile AA’ in Figure 15; a
potential geothermal reservoir is delineated [31]. We can see that this field model is
very complex, and the velocity is variable and changes dramatically in some regions. In
the numerical simulation, MFMM is carried out to track the first break and the primary
reflection waves. The source is located on the surface with x = 15 km, and 1440 receiving
channels with a spacing of 20 m are arranged on both sides of the source; the offset is from
10 m to 14,390 m [31].

Figure 16. The velocity model and geological structures of Xiong’an New Area [31]. The black circle
represents the inferred potential geothermal reservoir.

Figure 17 shows the wavefront of the first break and primary reflection waves of
the bottom of Q, the bottom of Nm, the bottom of Ng, the top of Rongcheng High and
Niutuozhen High. As can be seen from the results, compared with the low-velocity
region, the wavefront is farther and faster in the high-velocity region, which follows the
propagation law of seismic waves and can correctly describe the velocity structure of
Xiong’an New Area. Benefiting from the multistage approach [9,10], we can obtain the
reflection waves of any stratigraphic interface.
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Figure 17. MFMM ray tracing of the Xiong’an model. The wavefront of (a) the first break, (b) the
reflection wave of the bottom of Q, (c) the reflection wave of the bottom of Nm, (d) the reflection wave
of the bottom of Ng, (e) the reflection wave of the top of Rongcheng High and Niutuozhen High.

We also use the Ricker wavelet with a frequency of 30 Hz and a length of 60 ms to
synthesize the seismic gathers, and the sampling rate and record length are 1 ms and 8.0 s,
respectively. It can be seen from Figure 18 that the seismic gathers describe the first break
and the primary reflection events correctly, and the circle by dotted lines is considered as
the reflection gathers of the potential geothermal reservoir. From the above results of the
Xiong’an model, the good adaptability and stability of the improved MFMM in this paper
are verified once again.

Figure 18. Synthetic seismic gathers. The black circle represents the reflection gathers of the potential
geothermal reservoir.

6. Conclusions

In this paper, we adopt the Vidale finite-difference scheme and double-grid tech-
nology to improve the computation accuracy and efficiency of traveltime, and the linear
interpolation method is used to compute the raypath, considering the case that the sec-
ondary source is located inside the grid cell, which improves the computation accuracy
of the raypath. The successful application of the multistage approach completes MFMM
ray tracing in two-dimensional cases, which can simulate first arrivals and any type of
primary and multiple reflection wave ray tracing. Through the forward simulation of
typical models, the Marmousi model and the actual model of Xiong’an New Area, the



Minerals 2022, 12, 1624 15 of 16

correctness and effectiveness of the improvements in traveltime computation and the inter-
polation raypath calculation method are verified. The results also show that the improved
MFMM in this paper has good adaptability and stability for complex models and pro-
vides a reference for the finite-difference ray tracing method, which can be extended to
three-dimensional situations.
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