Non-Linear Clumped Isotopes from DIC Endmember Mixing and Kinetic Isotope Fractionation in High pH Anthropogenic Tufa
Abstract
:1. Introduction
1.1. Clumped Isotope Palaeothermometry
1.2. Non-Equilibrium Precipitation
Kinetic Isotope Effects
1.3. Anthropogenic Carbonates
1.4. Purpose of Study
2. Materials and Methods
2.1. Site of Study
2.1.1. Howden Burn
2.1.2. Carbonate Classification
2.1.3. Samples
2.2. Data Acquisition
2.2.1. Stable Isotope Measurements
2.2.2. Data Analysis and Reduction
2.3. Non-Linear Mixing Model
3. Results
3.1. Carbonate δ13C and δ18O Isotope Values
3.2. Carbonate Δ47 Clumped Isotope Values
3.3. Calculated Temperatures and δ18Ofluid
4. Discussion
4.1. High pH Carbonates
4.1.1. DIC Speciation
4.1.2. CO2 Hydroxylation
4.2. Variation in Disequilibrium
4.2.1. Supply of CO2
4.2.2. Supply of OH−
4.3. Endmember Mixing
Non-Linear Mixing
4.4. Mixing Model Insights
4.4.1. pH Effect
4.4.2. Endmember Suitability
4.4.3. Correlation with Environmental Conditions
4.5. Quantifying Δ47 Enrichment
4.6. Significance and Future Work
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ghosh, P.; Adkins, J.; Affek, H.; Balta, B.; Guo, W.; Schauble, E.A.; Schrag, D.; Eiler, J.M. 13C–18O Bonds in Carbonate Minerals: A New Kind of Paleothermometer. Geochim. Cosmochim. Acta 2006, 70, 1439–1456. [Google Scholar] [CrossRef]
- Schauble, E.A.; Ghosh, P.; Eiler, J.M. Preferential Formation of 13C–18O Bonds in Carbonate Minerals, Estimated Using First-Principles Lattice Dynamics. Geochim. Cosmochim. Acta 2006, 70, 2510–2529. [Google Scholar] [CrossRef]
- Eiler, J.M. “Clumped-Isotope” Geochemistry—The Study of Naturally-Occurring, Multiply-Substituted Isotopologues. Earth Planet. Sci. Lett. 2007, 262, 309–327. [Google Scholar] [CrossRef]
- Guo, W.; Mosenfelder, J.L.; Goddard, W.A.; Eiler, J.M. Isotopic Fractionations Associated with Phosphoric Acid Digestion of Carbonate Minerals: Insights from First-Principles Theoretical Modeling and Clumped Isotope Measurements. Geochim. Cosmochim. Acta 2009, 73, 7203–7225. [Google Scholar] [CrossRef]
- Kluge, T.; John, C.M.; Boch, R.; Kele, S. Assessment of Factors Controlling Clumped Isotopes and δ18O Values of Hydrothermal Vent Calcites. Geochem. Geophys. Geosyst. 2018, 19, 1844–1858. [Google Scholar] [CrossRef][Green Version]
- Guo, W. Kinetic Clumped Isotope Fractionation in the DIC-H2O-CO2 System: Patterns, Controls, and Implications. Geochim. Cosmochim. Acta 2020, 268, 230–257. [Google Scholar] [CrossRef]
- Zaarur, S.; Affek, H.P.; Brandon, M.T. A Revised Calibration of the Clumped Isotope Thermometer. Earth Planet. Sci. Lett. 2013, 382, 47–57. [Google Scholar] [CrossRef]
- Defliese, W.F.; Hren, M.T.; Lohmann, K.C. Compositional and Temperature Effects of Phosphoric Acid Fractionation on Δ47 Analysis and Implications for Discrepant Calibrations. Chem. Geol. 2015, 396, 51–60. [Google Scholar] [CrossRef]
- Kluge, T.; John, C.M.; Jourdan, A.-L.; Davis, S.; Crawshaw, J. Laboratory Calibration of the Calcium Carbonate Clumped Isotope Thermometer in the 25–250 °C Temperature Range. Geochim. Cosmochim. Acta 2015, 157, 213–227. [Google Scholar] [CrossRef][Green Version]
- Kele, S.; Breitenbach, S.F.M.; Capezzuoli, E.; Meckler, A.N.; Ziegler, M.; Millan, I.M.; Kluge, T.; Deák, J.; Hanselmann, K.; John, C.M.; et al. Temperature Dependence of Oxygen- and Clumped Isotope Fractionation in Carbonates: A Study of Travertines and Tufas in the 6–95 °C Temperature Range. Geochim. Cosmochim. Acta 2015, 168, 172–192. [Google Scholar] [CrossRef]
- Kelson, J.R.; Huntington, K.W.; Schauer, A.J.; Saenger, C.; Lechler, A.R. Toward a Universal Carbonate Clumped Isotope Calibration: Diverse Synthesis and Preparatory Methods Suggest a Single Temperature Relationship. Geochim. Cosmochim. Acta 2017, 197, 104–131. [Google Scholar] [CrossRef]
- Bonifacie, M.; Calmels, D.; Eiler, J.M.; Horita, J.; Chaduteau, C.; Vasconcelos, C.; Agrinier, P.; Katz, A.; Passey, B.H.; Ferry, J.M.; et al. Calibration of the Dolomite Clumped Isotope Thermometer from 25 to 350 °C, and Implications for a Universal Calibration for All (Ca, Mg, Fe)CO3 Carbonates. Geochim. Cosmochim. Acta 2017, 200, 255–279. [Google Scholar] [CrossRef][Green Version]
- Petersen, S.V.; Defliese, W.F.; Saenger, C.; Daëron, M.; Huntington, K.W.; John, C.M.; Kelson, J.R.; Bernasconi, S.M.; Colman, A.S.; Kluge, T.; et al. Effects of Improved 17O Correction on Interlaboratory Agreement in Clumped Isotope Calibrations, Estimates of Mineral-Specific Offsets, and Temperature Dependence of Acid Digestion Fractionation. Geochem. Geophys. Geosyst. 2019, 20, 3495–3519. [Google Scholar] [CrossRef][Green Version]
- Davies, A.J.; John, C.M. The Clumped (13C18O) Isotope Composition of Echinoid Calcite: Further Evidence for “Vital Effects” in the Clumped Isotope Proxy. Geochim. Cosmochim. Acta 2019, 245, 172–189. [Google Scholar] [CrossRef]
- Affek, H.P.; Bar-Matthews, M.; Ayalon, A.; Matthews, A.; Eiler, J.M. Glacial/Interglacial Temperature Variations in Soreq Cave Speleothems as Recorded by ‘Clumped Isotope’ Thermometry. Geochim. Cosmochim. Acta 2008, 72, 5351–5360. [Google Scholar] [CrossRef]
- Kluge, T.; Affek, H.P.; Zhang, Y.G.; Dublyansky, Y.; Spötl, C.; Immenhauser, A.; Richter, D.K. Clumped Isotope Thermometry of Cryogenic Cave Carbonates. Geochim. Cosmochim. Acta 2014, 126, 541–554. [Google Scholar] [CrossRef]
- Henkes, G.A.; Passey, B.H.; Grossman, E.L.; Shenton, B.J.; Pérez-Huerta, A.; Yancey, T.E. Temperature Limits for Preservation of Primary Calcite Clumped Isotope Paleotemperatures. Geochim. Cosmochim. Acta 2014, 139, 362–382. [Google Scholar] [CrossRef]
- Rodríguez-Sanz, L.; Bernasconi, S.M.; Marino, G.; Heslop, D.; Müller, I.A.; Fernandez, A.; Grant, K.M.; Rohling, E.J. Penultimate Deglacial Warming across the Mediterranean Sea Revealed by Clumped Isotopes in Foraminifera. Sci. Rep. 2017, 7, 16572. [Google Scholar] [CrossRef][Green Version]
- Evans, D.; Sagoo, N.; Renema, W.; Cotton, L.J.; Müller, W.; Todd, J.A.; Saraswati, P.K.; Stassen, P.; Ziegler, M.; Pearson, P.N.; et al. Eocene Greenhouse Climate Revealed by Coupled Clumped Isotope-Mg/Ca Thermometry. Proc. Natl. Acad. Sci. USA 2018, 115, 1174–1179. [Google Scholar] [CrossRef][Green Version]
- Henkes, G.A.; Passey, B.H.; Grossman, E.L.; Shenton, B.J.; Yancey, T.E.; Pérez-Huerta, A. Temperature Evolution and the Oxygen Isotope Composition of Phanerozoic Oceans from Carbonate Clumped Isotope Thermometry. Earth Planet. Sci. Lett. 2018, 490, 40–50. [Google Scholar] [CrossRef]
- Dale, A.; John, C.M.; Mozley, P.S.; Smalley, P.C.; Muggeridge, A.H. Time-Capsule Concretions: Unlocking Burial Diagenetic Processes in the Mancos Shale Using Carbonate Clumped Isotopes. Earth Planet. Sci. Lett. 2014, 394, 30–37. [Google Scholar] [CrossRef][Green Version]
- Shenton, B.J.; Grossman, E.L.; Passey, B.H.; Henkes, G.A.; Becker, T.P.; Laya, J.C.; Perez-Huerta, A.; Becker, S.P.; Lawson, M. Clumped Isotope Thermometry in Deeply Buried Sedimentary Carbonates: The Effects of Bond Reordering and Recrystallization. Geol. Soc. Am. Bull. 2015, 127, 1036–1051. [Google Scholar] [CrossRef]
- MacDonald, J.M.; John, C.M.; Girard, J.-P. Testing Clumped Isotopes as a Reservoir Characterization Tool: A Comparison with Fluid Inclusions in a Dolomitized Sedimentary Carbonate Reservoir Buried to 2–4 Km. Geol. Soc. Lond. Spec. Publ. 2018, 468, 189–202. [Google Scholar] [CrossRef][Green Version]
- Lawson, M.; Shenton, B.J.; Stolper, D.A.; Eiler, J.M.; Rasbury, E.T.; Becker, T.P.; Phillips-Lander, C.M.; Buono, A.S.; Becker, S.P.; Pottorf, R.; et al. Deciphering the Diagenetic History of the El Abra Formation of Eastern Mexico Using Reordered Clumped Isotope Temperatures and U-Pb Dating. GSA Bull. 2018, 130, 617–629. [Google Scholar] [CrossRef]
- Pagel, M.; Bonifacie, M.; Schneider, D.A.; Gautheron, C.; Brigaud, B.; Calmels, D.; Cros, A.; Saint-Bezar, B.; Landrein, P.; Sutcliffe, C.; et al. Improving Paleohydrological and Diagenetic Reconstructions in Calcite Veins and Breccia of a Sedimentary Basin by Combining Δ47 Temperature, δ18Owater and U-Pb Age. Chem. Geol. 2018, 481, 1–17. [Google Scholar] [CrossRef]
- Millán, M.I.; Machel, H.; Bernasconi, S.M. Constraining Temperatures of Formation and Composition of Dolomitizing Fluids In the Upper Devonian Nisku Formation (Alberta, Canada) With Clumped Isotopes. J. Sediment. Res. 2016, 86, 107–112. [Google Scholar] [CrossRef]
- Mangenot, X.; Gasparrini, M.; Rouchon, V.; Bonifacie, M. Basin-Scale Thermal and Fluid Flow Histories Revealed by Carbonate Clumped Isotopes (Δ47)–Middle Jurassic Carbonates of the Paris Basin Depocentre. Sedimentology 2018, 65, 123–150. [Google Scholar] [CrossRef][Green Version]
- MacDonald, J.M.; Faithfull, J.W.; Roberts, N.M.W.; Davies, A.J.; Holdsworth, C.M.; Newton, M.; Williamson, S.; Boyce, A.; John, C.M. Clumped-Isotope Palaeothermometry and LA-ICP-MS U–Pb Dating of Lava-Pile Hydrothermal Calcite Veins. Contrib. Mineral. Petrol. 2019, 174, 63. [Google Scholar] [CrossRef][Green Version]
- Barnes, I.; O’Neil, J.R. Calcium-Magnesium Carbonate Solid Solutions from Holocene Conglomerate Cements and Travertines in the Coast Range of California. Geochim. Cosmochim. Acta 1971, 35, 699–718. [Google Scholar] [CrossRef]
- Barnes, I.; O’neil, J.R. The Relationship between Fluids in Some Fresh Alpine-Type Ultramafics and Possible Modern Serpentinization, Western United States. GSA Bull. 1969, 80, 1947–1960. [Google Scholar] [CrossRef]
- Clark, I.D.; Fontes, J.-C.; Fritz, P. Stable Isotope Disequilibria in Travertine from High PH Waters: Laboratory Investigations and Field Observations from Oman. Geochim. Cosmochim. Acta 1992, 56, 2041–2050. [Google Scholar] [CrossRef]
- Dietzel, M.; Usdowski, E.; Hoefs, J. Chemical and 13C/12C- and 18O/16O-Isotope Evolution of Alkaline Drainage Waters and the Precipitation of Calcite. Appl. Geochem. 1992, 7, 177–184. [Google Scholar] [CrossRef]
- Falk, E.S.; Guo, W.; Paukert, A.N.; Matter, J.M.; Mervine, E.M.; Kelemen, P.B. Controls on the Stable Isotope Compositions of Travertine from Hyperalkaline Springs in Oman: Insights from Clumped Isotope Measurements. Geochim. Cosmochim. Acta 2016, 192, 1–28. [Google Scholar] [CrossRef][Green Version]
- O’Neil, J.R.; Barnes, I. C13 and O18 Compositions in Some Fresh-Water Carbonates Associated with Ultramafic Rocks and Serpentinites: Western United States. Geochim. Cosmochim. Acta 1971, 35, 687–697. [Google Scholar] [CrossRef]
- Burgener, L.K.; Huntington, K.W.; Sletten, R.; Watkins, J.M.; Quade, J.; Hallet, B. Clumped Isotope Constraints on Equilibrium Carbonate Formation and Kinetic Isotope Effects in Freezing Soils. Geochim. Cosmochim. Acta 2018, 235, 402–430. [Google Scholar] [CrossRef]
- Clark, I.D.; Lauriol, B. Kinetic Enrichment of Stable Isotopes in Cryogenic Calcites. Chem. Geol. 1992, 102, 217–228. [Google Scholar] [CrossRef]
- Friedman, I. Some Investigations of the Deposition of Travertine from Hot Springs—I. The Isotopic Chemistry of a Travertine-Depositing Spring. Geochim. Cosmochim. Acta 1970, 34, 1303–1315. [Google Scholar] [CrossRef]
- Loyd, S.J.; Sample, J.; Tripati, R.E.; Defliese, W.F.; Brooks, K.; Hovland, M.; Torres, M.; Marlow, J.; Hancock, L.G.; Martin, R.; et al. Methane Seep Carbonates Yield Clumped Isotope Signatures out of Equilibrium with Formation Temperatures. Nat. Commun. 2016, 7, 12274. [Google Scholar] [CrossRef][Green Version]
- Tripati, A.K.; Hill, P.S.; Eagle, R.A.; Mosenfelder, J.L.; Tang, J.; Schauble, E.A.; Eiler, J.M.; Zeebe, R.E.; Uchikawa, J.; Coplen, T.B.; et al. Beyond Temperature: Clumped Isotope Signatures in Dissolved Inorganic Carbon Species and the Influence of Solution Chemistry on Carbonate Mineral Composition. Geochim. Cosmochim. Acta 2015, 166, 344–371. [Google Scholar] [CrossRef][Green Version]
- Watkins, J.M.; Hunt, J.D. A Process-Based Model for Non-Equilibrium Clumped Isotope Effects in Carbonates. Earth Planet. Sci. Lett. 2015, 432, 152–165. [Google Scholar] [CrossRef]
- Hill, P.S.; Tripati, A.K.; Schauble, E.A. Theoretical Constraints on the Effects of PH, Salinity, and Temperature on Clumped Isotope Signatures of Dissolved Inorganic Carbon Species and Precipitating Carbonate Minerals. Geochim. Cosmochim. Acta 2014, 125, 610–652. [Google Scholar] [CrossRef][Green Version]
- Tang, J.; Dietzel, M.; Fernandez, A.; Tripati, A.K.; Rosenheim, B.E. Evaluation of Kinetic Effects on Clumped Isotope Fractionation (Δ47) during Inorganic Calcite Precipitation. Geochim. Cosmochim. Acta 2014, 134, 120–136. [Google Scholar] [CrossRef][Green Version]
- McConnaughey, T. 13C and 18O Isotopic Disequilibrium in Biological Carbonates: I. Patterns. Geochim. Cosmochim. Acta 1989, 53, 151–162. [Google Scholar] [CrossRef]
- McConnaughey, T. 13C and 18O Isotopic Disequilibrium in Biological Carbonates: II. In Vitro Simulation of Kinetic Isotope Effects. Geochim. Cosmochim. Acta 1989, 53, 163–171. [Google Scholar] [CrossRef]
- Wilson, S.A.; Barker, S.L.L.; Dipple, G.M.; Atudorei, V. Isotopic Disequilibrium during Uptake of Atmospheric CO2 into Mine Process Waters: Implications for CO2 Sequestration. Environ. Sci. Technol. 2010, 44, 9522–9529. [Google Scholar] [CrossRef]
- Bajnai, D.; Guo, W.; Spötl, C.; Coplen, T.B.; Methner, K.; Löffler, N.; Krsnik, E.; Gischler, E.; Hansen, M.; Henkel, D.; et al. Dual Clumped Isotope Thermometry Resolves Kinetic Biases in Carbonate Formation Temperatures. Nat. Commun. 2020, 11, 4005. [Google Scholar] [CrossRef]
- Guo, W.; Zhou, C. Patterns and Controls of Disequilibrium Isotope Effects in Speleothems: Insights from an Isotope-Enabled Diffusion-Reaction Model and Implications for Quantitative Thermometry. Geochim. Cosmochim. Acta 2019, 267, 196–226. [Google Scholar] [CrossRef]
- Mills, G.A.; Urey, H.C. The Kinetics of Isotopic Exchange between Carbon Dioxide, Bicarbonate Ion, Carbonate Ion and Water. J. Am. Chem. Soc. 1940, 62, 1019–1026. [Google Scholar] [CrossRef]
- Pinsent, B.R.W.; Pearson, L.; Roughton, F.J.W. The Kinetics of Combination of Carbon Dioxide with Hydroxide Ions. Trans. Faraday Soc. 1956, 52, 1512. [Google Scholar] [CrossRef]
- Turner, J.V. Kinetic Fractionation of Carbon-13 during Calcium Carbonate Precipitation. Geochim. Cosmochim. Acta 1982, 46, 1183–1191. [Google Scholar] [CrossRef]
- Usdowski, E.; Hoefs, J. 13C/12C Partitioning and Kinetics of CO2 Absorption by Hydroxide Buffer Solutions. Earth Planet. Sci. Lett. 1986, 80, 130–134. [Google Scholar] [CrossRef]
- Renforth, P.; Manning, D.A.C.; Lopez-Capel, E. Carbonate Precipitation in Artificial Soils as a Sink for Atmospheric Carbon Dioxide. Appl. Geochem. 2009, 24, 1757–1764. [Google Scholar] [CrossRef]
- Mayes, W.M.; Riley, A.L.; Gomes, H.I.; Brabham, P.; Hamlyn, J.; Pullin, H.; Renforth, P. Atmospheric CO2 Sequestration in Iron and Steel Slag: Consett, County Durham, United Kingdom. Environ. Sci. Technol. 2018, 52, 7892–7900. [Google Scholar] [CrossRef]
- Kelemen, P.B.; Matter, J. In Situ Carbonation of Peridotite for CO2 Storage. Proc. Natl. Acad. Sci. USA 2008, 105, 17295–17300. [Google Scholar] [CrossRef][Green Version]
- Rodríguez-Berriguete, Á.; Alonso-Zarza, A.M.; Martín-García, R.; Cabrera, M.d.C. Sedimentology and Geochemistry of a Human-Induced Tufa Deposit: Implications for Palaeoclimatic Research. Sedimentology 2018, 65, 2253–2277. [Google Scholar] [CrossRef]
- Andrews, J.E.; Gare, S.G.; Dennis, P.F. Unusual Isotopic Phenomena in Welsh Quarry Water and Carbonate Crusts. Terra Nova 1997, 9, 67–70. [Google Scholar] [CrossRef]
- Moyce, E.B.A.; Milodowski, A.E.; Morris, K.; Shaw, S. Herbert’s Quarry, South Wales—An Analogue for Host-Rock Alteration at a Cementitious Radioactive Waste Repository? Mineral. Mag. 2015, 79, 1407–1418. [Google Scholar] [CrossRef][Green Version]
- Ettler, V.; Zelená, O.; Mihaljevič, M.; Šebek, O.; Strnad, L.; Coufal, P.; Bezdička, P. Removal of Trace Elements from Landfill Leachate by Calcite Precipitation. J. Geochem. Explor. 2006, 88, 28–31. [Google Scholar] [CrossRef]
- Manning, D.A.C. Calcite Precipitation in Landfills: An Essential Product of Waste Stabilization. Mineral. Mag. 2001, 65, 603–610. [Google Scholar] [CrossRef]
- Bayless, E.R.; Schulz, M.S. Mineral Precipitation and Dissolution at Two Slag-Disposal Sites in Northwestern Indiana, USA. Environ. Geol. 2003, 45, 252–261. [Google Scholar] [CrossRef]
- Roadcap, G.S.; Kelly, W.R.; Bethke, C.M. Geochemistry of Extremely Alkaline (PH > 12) Ground Water in Slag-Fill Aquifers. Groundwater 2005, 43, 806–816. [Google Scholar] [CrossRef] [PubMed]
- Huijgen, W.J.J.; Comans, R.N.J. Carbonation of Steel Slag for CO2 Sequestration: Leaching of Products and Reaction Mechanisms. Environ. Sci. Technol. 2006, 40, 2790–2796. [Google Scholar] [CrossRef] [PubMed]
- Mayes, W.M.; Younger, P.L.; Aumônier, J. Hydrogeochemistry of Alkaline Steel Slag Leachates in the UK. Water Air Soil Pollut. 2008, 195, 35–50. [Google Scholar] [CrossRef]
- Hall, C.; Large, D.J.; Adderley, B.; West, H.M. Calcium Leaching from Waste Steelmaking Slag: Significance of Leachate Chemistry and Effects on Slag Grain Mineralogy. Miner. Eng. 2014, 65, 156–162. [Google Scholar] [CrossRef]
- Riley, A.L.; Mayes, W.M. Long-Term Evolution of Highly Alkaline Steel Slag Drainage Waters. Environ. Monit. Assess. 2015, 187, 463. [Google Scholar] [CrossRef][Green Version]
- Washbourne, C.-L.; Lopez-Capel, E.; Renforth, P.; Ascough, P.L.; Manning, D.A.C. Rapid Removal of Atmospheric CO2 by Urban Soils. Environ. Sci. Technol. 2015, 49, 5434–5440. [Google Scholar] [CrossRef]
- Washbourne, C.-L.; Renforth, P.; Manning, D.A.C. Investigating Carbonate Formation in Urban Soils as a Method for Capture and Storage of Atmospheric Carbon. Sci. Total Environ. 2012, 431, 166–175. [Google Scholar] [CrossRef][Green Version]
- Moyce, E.B.A.; Rochelle, C.; Morris, K.; Milodowski, A.E.; Chen, X.; Thornton, S.; Small, J.S.; Shaw, S. Rock Alteration in Alkaline Cement Waters over 15 Years and Its Relevance to the Geological Disposal of Nuclear Waste. Appl. Geochem. 2014, 50, 91–105. [Google Scholar] [CrossRef][Green Version]
- Martin, L.H.J.; Leemann, A.; Milodowski, A.E.; Mäder, U.K.; Münch, B.; Giroud, N. A Natural Cement Analogue Study to Understand the Long-Term Behaviour of Cements in Nuclear Waste Repositories: Maqarin (Jordan). Appl. Geochem. 2016, 71, 20–34. [Google Scholar] [CrossRef]
- Brocken, H.; Nijland, T.G. White Efflorescence on Brick Masonry and Concrete Masonry Blocks, with Special Emphasis on Sulfate Efflorescence on Concrete Blocks. Constr. Build. Mater. 2004, 18, 315–323. [Google Scholar] [CrossRef]
- Macleod, G.; Fallick, A.E.; Hall, A.J. The Mechanism of Carbonate Growth on Concrete Structures, as Elucidated by Carbon and Oxygen Isotope Analyses. Chem. Geol. Isot. Geosci. Sect. 1991, 86, 335–343. [Google Scholar] [CrossRef]
- Hull, S.L.; Oty, U.V.; Mayes, W.M. Rapid Recovery of Benthic Invertebrates Downstream of Hyperalkaline Steel Slag Discharges. Hydrobiologia 2014, 736, 83–97. [Google Scholar] [CrossRef]
- Harber, A.J.; Forth, R.A. The Contamination of Former Iron and Steel Works Sites. Environ. Geol. 2001, 40, 324–330. [Google Scholar] [CrossRef]
- Ford, T.D.; Pedley, H.M. A Review of Tufa and Travertine Deposits of the World. Earth-Sci. Rev. 1996, 41, 117–175. [Google Scholar] [CrossRef]
- Kano, A.; Matsuoka, J.; Kojo, T.; Fujii, H. Origin of Annual Laminations in Tufa Deposits, Southwest Japan. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2003, 191, 243–262. [Google Scholar] [CrossRef]
- Kawai, T.; Kano, A.; Hori, M. Geochemical and Hydrological Controls on Biannual Lamination of Tufa Deposits. Sediment. Geol. 2009, 213, 41–50. [Google Scholar] [CrossRef]
- Capezzuoli, E.; Gandin, A.; Pedley, M. Decoding Tufa and Travertine (Fresh Water Carbonates) in the Sedimentary Record: The State of the Art. Sedimentology 2014, 61, 1–21. [Google Scholar] [CrossRef]
- Adlan, Q.; Davies, A.J.; John, C.M. Effects of Oxygen Plasma Ashing Treatment on Carbonate Clumped Isotopes. Rapid Commun. Mass Spectrom. 2020, 34, e8802. [Google Scholar] [CrossRef][Green Version]
- Huntington, K.W.; Eiler, J.M.; Affek, H.P.; Guo, W.; Bonifacie, M.; Yeung, L.Y.; Thiagarajan, N.; Passey, B.; Tripati, A.; Daëron, M.; et al. Methods and Limitations of ‘Clumped’ CO2 Isotope (Δ47) Analysis by Gas-Source Isotope Ratio Mass Spectrometry. J. Mass Spectrom. 2009, 44, 1318–1329. [Google Scholar] [CrossRef]
- Cruset, D.; Cantarero, I.; Travé, A.; Vergés, J.; John, C.M. Crestal Graben Fluid Evolution during Growth of the Puig-Reig Anticline (South Pyrenean Fold and Thrust Belt). J. Geodyn. 2016, 101, 30–50. [Google Scholar] [CrossRef]
- Dennis, K.J.; Affek, H.P.; Passey, B.H.; Schrag, D.P.; Eiler, J.M. Defining an Absolute Reference Frame for ‘Clumped’ Isotope Studies of CO2. Geochim. Cosmochim. Acta 2011, 75, 7117–7131. [Google Scholar] [CrossRef]
- John, C.M.; Bowen, D. Community Software for Challenging Isotope Analysis: First Applications of ‘Easotope’ to Clumped Isotopes. Rapid Commun. Mass Spectrom. 2016, 30, 2285–2300. [Google Scholar] [CrossRef] [PubMed]
- Bernasconi, S.M.; Hu, B.; Wacker, U.; Fiebig, J.; Breitenbach, S.F.M.; Rutz, T. Background Effects on Faraday Collectors in Gas-Source Mass Spectrometry and Implications for Clumped Isotope Measurements. Rapid Commun. Mass Spectrom. 2013, 27, 603–612. [Google Scholar] [CrossRef] [PubMed]
- Meckler, A.N.; Ziegler, M.; Millán, M.I.; Breitenbach, S.F.M.; Bernasconi, S.M. Long-Term Performance of the Kiel Carbonate Device with a New Correction Scheme for Clumped Isotope Measurements. Rapid Commun. Mass Spectrom. 2014, 28, 1705–1715. [Google Scholar] [CrossRef] [PubMed]
- Bernasconi, S.M.; Müller, I.A.; Bergmann, K.D.; Breitenbach, S.F.M.; Fernandez, A.; Hodell, D.A.; Jaggi, M.; Meckler, A.N.; Millan, I.; Ziegler, M. Reducing Uncertainties in Carbonate Clumped Isotope Analysis Through Consistent Carbonate-Based Standardization. Geochem. Geophys. Geosyst. 2018, 19, 2895–2914. [Google Scholar] [CrossRef][Green Version]
- Eiler, J.M.; Schauble, E. 18O13C16O in Earth’s Atmosphere. Geochim. Cosmochim. Acta 2004, 68, 4767–4777. [Google Scholar] [CrossRef]
- Guo, W.; Eiler, J.M. Temperatures of Aqueous Alteration and Evidence for Methane Generation on the Parent Bodies of the CM Chondrites. Geochim. Cosmochim. Acta 2007, 71, 5565–5575. [Google Scholar] [CrossRef]
- Brand, W.A.; Assonov, S.S.; Coplen, T.B. Correction for the 17O Interference in δ(13C) Measurements When Analyzing CO2 with Stable Isotope Mass Spectrometry (IUPAC Technical Report). Pure Appl. Chem. 2010, 82, 1719–1733. [Google Scholar] [CrossRef]
- Holdsworth, C.; MacDonald, J.; John, C. Clumped isotope data from high-pH anthropogenic tufa in the Howden Burn, Consett, North East England; NERC EDS National Geoscience Data Centre: Nottingham, UK, 2022. [Google Scholar] [CrossRef]
- Kim, S.-T.; O’Neil, J.R. Equilibrium and Nonequilibrium Oxygen Isotope Effects in Synthetic Carbonates. Geochim. Cosmochim. Acta 1997, 61, 3461–3475. [Google Scholar] [CrossRef]
- Darling, W.G.; Bath, A.H.; Talbot, J.C. The O and H Stable Isotope Composition of Freshwaters in the British Isles. 2. Surface Waters and Groundwater. Hydrol. Earth Syst. Sci. 2003, 7, 183–195. [Google Scholar] [CrossRef][Green Version]
- Darling, W.G.; Talbot, J.C. The O and H Stable Isotope Composition of Freshwaters in the British Isles. 1. Rainfall. Hydrol. Earth Syst. Sci. 2003, 7, 163–181. [Google Scholar] [CrossRef][Green Version]
- Defliese, W.F.; Lohmann, K.C. Non-Linear Mixing Effects on Mass-47 CO2 Clumped Isotope Thermometry: Patterns and Implications. Rapid Commun. Mass Spectrom. 2015, 29, 901–909. [Google Scholar] [CrossRef][Green Version]
- Kato, H.; Amekawa, S.; Kano, A.; Mori, T.; Kuwahara, Y.; Quade, J. Seasonal Temperature Changes Obtained from Carbonate Clumped Isotopes of Annually Laminated Tufas from Japan: Discrepancy between Natural and Synthetic Calcites. Geochim. Cosmochim. Acta 2019, 244, 548–564. [Google Scholar] [CrossRef]
- Létolle, R.; Gégout, P.; Moranville-Regourd, M.; Gaveau, B. Carbon-13 and Oxygen-18 Mass Spectrometry as a Potential Tool for the Study of Carbonate Phases in Concretes. J. Am. Ceram. Soc. 1990, 73, 3617–3625. [Google Scholar] [CrossRef]
- Böttcher, M.E.; Neubert, N.; Escher, P.; von Allmen, K.; Samankassou, E.; Nägler, T.F. Multi-Isotope (Ba, C, O) Partitioning during Experimental Carbonatization of a Hyper-Alkaline Solution. Geochemistry 2018, 78, 241–247. [Google Scholar] [CrossRef]
- Zeebe, R.E. Oxygen Isotope Fractionation between Water and the Aqueous Hydroxide Ion. Geochim. Cosmochim. Acta 2020, 289, 182–195. [Google Scholar] [CrossRef]
- Weise, A.; Kluge, T. Isotope Exchange Rates in Dissolved Inorganic Carbon between 40 °C and 90 °C. Geochim. Cosmochim. Acta 2020, 268, 56–72. [Google Scholar] [CrossRef]
- Uchikawa, J.; Zeebe, R.E. The Effect of Carbonic Anhydrase on the Kinetics and Equilibrium of the Oxygen Isotope Exchange in the CO2–H2O System: Implications for Δ18O Vital Effects in Biogenic Carbonates. Geochim. Cosmochim. Acta 2012, 95, 15–34. [Google Scholar] [CrossRef]
- Danckwerts, P.V.; Lannus, A. Gas-Liquid Reactions. J. Electrochem. Soc. 1970, 117, 369C. [Google Scholar] [CrossRef]
- Blunden, J.; Arndt, D.S. State of the Climate in 2018. Bull. Am. Meteorol. Soc. 2019, 100, Si-S306. [Google Scholar] [CrossRef][Green Version]
- Francey, R.J.; Allison, C.E.; Etheridge, D.M.; Trudinger, C.M.; Enting, I.G.; Leuenberger, M.; Langenfelds, R.L.; Michel, E.; Steele, L.P. A 1000-Year High Precision Record of δ13C in Atmospheric CO2. Tellus B 1999, 51, 170–193. [Google Scholar] [CrossRef][Green Version]
- Cerling, T.E. The Stable Isotopic Composition of Modern Soil Carbonate and Its Relationship to Climate. Earth Planet. Sci. Lett. 1984, 71, 229–240. [Google Scholar] [CrossRef]
- Dreybrodt, W.; Buhmann, D. A Mass Transfer Model for Dissolution and Precipitation of Calcite from Solutions in Turbulent Motion. Chem. Geol. 1991, 90, 107–122. [Google Scholar] [CrossRef]
Temperature (°C) | 10.3 (4.4–20.0) |
pH | 11.0 (6.5–12.7) |
Flow (l/s) | 5.0 (2.5–10.0) |
Major Ions (mg/l) | |
Al | 0.1 (<0.1–5) |
Ca | 150 (45–315) |
Fe | 1.6 (<0.1–4.7) |
Mg | 8.5 (3.3–13.9) |
K | 412 (143–688) |
Na | 172 (45–287) |
Cl | 67 (2–550) |
SO4 | 755 (42–2700) |
Total Alkalinity | 162 (93–315) |
OH− * | 29 upstream, 13 downstream |
CO3 * | 139 upstream, 20 downstream |
HCO3 * | 9 upstream, 3 downstream |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Holdsworth, C.; MacDonald, J.; John, C. Non-Linear Clumped Isotopes from DIC Endmember Mixing and Kinetic Isotope Fractionation in High pH Anthropogenic Tufa. Minerals 2022, 12, 1611. https://doi.org/10.3390/min12121611
Holdsworth C, MacDonald J, John C. Non-Linear Clumped Isotopes from DIC Endmember Mixing and Kinetic Isotope Fractionation in High pH Anthropogenic Tufa. Minerals. 2022; 12(12):1611. https://doi.org/10.3390/min12121611
Chicago/Turabian StyleHoldsworth, Chris, John MacDonald, and Cedric John. 2022. "Non-Linear Clumped Isotopes from DIC Endmember Mixing and Kinetic Isotope Fractionation in High pH Anthropogenic Tufa" Minerals 12, no. 12: 1611. https://doi.org/10.3390/min12121611