Aridification in the Asian Interior Recorded by Mineral Assemblages in Tarim Basin since the Late Miocene and Its Link to Global Cooling
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Carbonates
3.2. Sulfates
3.3. Clay Minerals
4. Discussion
4.1. The Paleoclimatic Significance of Minerals
4.1.1. Carbonates
4.1.2. Sulfates
4.1.3. Clay Minerals
4.2. Implications for Climatic Change
- 1.
- Aridification (6.865~6.378 Ma)
- 2.
- Humidification (6.378~5.583 Ma)
- 3.
- Intensified aridification (5.583~4.4 Ma)
- 4.
- Relative humidification (4.4~3.62 Ma)
- 5.
- Accelerated aridification (3.62~2 Ma)
4.3. Late Cenozoic Westerlies Evolution Drove by Global Cooling
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, J.; Liu, W.; Liu, Z.; Deng, T.; Windley, B.F.; Fu, B. Extreme aridification since the beginning of the Pliocene in the Tarim Basin, western China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2017, 485, 189–200. [Google Scholar] [CrossRef]
- Tang, Z.; Yang, S.; Qiao, Q.; Yin, F.; Huang, B.; Ding, Z. A high-resolution geochemical record from the Kuche depression: Constraints on early Miocene uplift of South Tian Shan. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2016, 446, 1–10. [Google Scholar] [CrossRef]
- Zhu, B.; Yu, J.; Qin, X.; Rioual, P.; Zhang, Y.; Xiong, H. Formation and evolution of sand deserts in Xinjiang, Northwest China: II. The palaeo-environmental reconstruction. J. Geogr. Sci. 2014, 24, 539–559. [Google Scholar] [CrossRef]
- Caves, J.K.; Winnick, M.J.; Graham, S.A.; Sjostrom, D.J.; Mulch, A.; Chamberlain, C.P. Role of the westerlies in Central Asia climate over the Cenozoic. Earth Planet. Sci. Lett. 2015, 428, 33–43. [Google Scholar] [CrossRef][Green Version]
- Chang, H.; An, Z.; Wu, F.; Song, Y.; Qiang, X.; Li, L. Late Miocene-early Pleistocene climate change in the mid-latitude westerlies and their influence on Asian monsoon as constrained by the K/Al ratio record from drill core Ls2 in the Tarim Basin. Catena 2017, 153, 75–82. [Google Scholar] [CrossRef]
- Zhang, Z.; Han, W.; Fang, X.; Song, C.; Li, X. Late Miocene-Pleistocene aridification of Asian inland revealed by geochemical records of lacustrine-fan delta sediments from the western Tarim Basin, NW China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2013, 377, 52–61. [Google Scholar] [CrossRef]
- Liu, W.; Liu, Z.; An, Z.; Sun, J.; Chang, H.; Wang, N.; Dong, J.; Wang, H. Late Miocene episodic lakes in the arid Tarim Basin, western China. Proc. Natl. Acad. Sci. USA 2014, 111, 16292–16296. [Google Scholar] [CrossRef][Green Version]
- Zhang, Z.; Sun, J. Palynological evidence for Neogene environmental change in the foreland basin of the southern Tianshan range, northwestern China. Glob. Planet. Chang. 2011, 75, 56–66. [Google Scholar] [CrossRef]
- Chang, H.; An, Z.; Liu, W.; Wu, F.; Qiang, X.; Song, Y. Late Miocene-early Pleistocene paleoproductivity variations of the Lop Nor in the Tarim Basin and its implications on aridification in Asian Interior. Chin. Sci. Bull. 2014, 59, 3650–3658. [Google Scholar] [CrossRef]
- Ramstein, G.; Fluteau, F.; Besse, J.; Joussaume, S. Effect of orogeny, plate motion and land-sea distribution on Eurasian climate change over the past 30 million years. Nature 1997, 386, 788–795. [Google Scholar] [CrossRef]
- Raymo, M.E.; Ruddiman, W.F. Tectonic forcing of late Cenozoic climate. Nature 1992, 359, 117–122. [Google Scholar] [CrossRef]
- Gyawali, A.R.; Wang, J.; Ma, Q.; Wang, Y.; Xu, T.; Guo, Y.; Zhu, L. Paleo-environmental change since the Late Glacial inferred from lacustrine sediment in Selin Co, central Tibet. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2019, 516, 101–112. [Google Scholar] [CrossRef]
- N’nanga, A.; Ngos, S.; Ngueutchoua, G. The late Pleistocene-Holocene paleoclimate reconstruction in the Adamawa plateau (Central Cameroon) inferred from the geochemistry and mineralogy of the Lake Fonjak sediments. J. Afr. Earth Sci. 2019, 150, 23–36. [Google Scholar] [CrossRef]
- McCormack, J.; Nehrke, G.; Jöns, N.; Immenhauser, A.; Kwiecien, O. Refining the interpretation of lacustrine carbonate isotope records: Implications of a mineralogy-specific Lake Van case study. Chem. Geol. 2019, 513, 167–183. [Google Scholar] [CrossRef]
- Hay, R.L.; Kyser, T.K. Chemical sedimentology and paleoenvironmental history of Lake Olduvai, a Pliocene lake in northern Tanzania. Geol. Soc. Am. Bull. 2001, 113, 1505–1521. [Google Scholar] [CrossRef]
- Lan, M.; Song, Y.; Cheng, L. Review on formation of lacustrine carbonate minerals and their paleoclimate significance. J. Earth Sci. Environ. 2022, 44, 156–170. [Google Scholar]
- Singer, A. The paleoclimatic interpretation of clay minerals in sediments-a review. Earth Sci. Rev. 1984, 21, 251–293. [Google Scholar] [CrossRef]
- Adam, M.H.; Jay, Q.; Guleed, A.; Douglas, B.; Scott, B.; Katharine, W.H.; Marie, G.D.L.S.; Andrew, S.C.; Lin, K.; Wang, X. Stable C, O and clumped isotope systematics and 14C geochronology of carbonates from the Quaternary Chewaucan closed-basin lake system, Great Basin, USA: Implications for paleoenvironmental reconstructions using carbonates. Geochim. Cosmochim. Acta 2017, 212, 274–302. [Google Scholar]
- David, T.W.; David, W. Precipitation of dolomite using sulphate-reducing bacteria from the Coorong Region, South Australia: Significance and implications. Sedimentology 2005, 52, 987–1008. [Google Scholar]
- Li, M.; Sun, S.; Fang, X.; Wang, C.; Wang, Z.; Wang, H. Clay minerals and isotopes of Pleistocene lacustrine sediments from the western Qaidam Basin, NE Tibetan Plateau. Appl. Clay Sci. 2018, 162, 382–390. [Google Scholar] [CrossRef]
- Chang, H.; An, Z.; Liu, W.; Qiang, X.; Song, Y.; Ao, H. Magnetostratigraphic and paleoenvironmental records for a Late Cenozoic sedimentary sequence drilled from Lop Nor in the eastern Tarim Basin. Glob. Planet. Chang. 2012, 80–81, 113–122. [Google Scholar] [CrossRef]
- Zhang, C.; Li, Y.; Zhou, X.; Wang, Y. A sedimentological interpretation of the inverse correlation between saline mineral and detritals mineral in the Late Quaternary lake sediments. J. Glaciol. Geocryol. 2015, 37, 95–108. [Google Scholar]
- Schütt, B. Holocene paleohydrology of playa lakes in northern and central Spain: A reconstruction based on the mineral composition of lacustrine sediments. Quat. Int. 2000, 73–74, 7–27. [Google Scholar] [CrossRef]
- Olila, O.G.; Reddy, K.R. Influence of pH on Phosphorus Retention in Oxidized Lake Sediments. Soil Sci. Soc. Am. J. 1995, 59, 946–959. [Google Scholar] [CrossRef]
- Sinha, R.; Raymahashay, B.C. Evaporite mineralogy and geochemical evolution of the Sambhar Salt Lake, Rajasthan, India. Sediment. Geol. 2004, 166, 59–71. [Google Scholar] [CrossRef]
- You, X.; Jia, W.; Xu, F.; Liu, Y. Mineralogical characteristics of Ankerite and mechanisms of primary and secondary Origins. Earth Sci. 2018, 43, 4047–4055. [Google Scholar]
- You, X.; Shu, S.; Zhu, J.; Li, Q.; Hu, W.; Dong, H. Microbially mediated dolomite in Cambrian stromatolites from the Tarim Basin, north-west China: Implications for the role of organic substrate on dolomite precipitation. Terra Nova 2013, 25, 387–395. [Google Scholar] [CrossRef]
- Thompson, J.B.; Ferris, F.G. Cyanobacterial precipitation of gypsum, calcite, and magnesite from natural alkaline lake water. Geology 1990, 18, 995. [Google Scholar] [CrossRef]
- Chang, H.; An, Z.; Wu, F.; Jin, Z.; Liu, W.; Song, Y. A Rb/Sr record of the weathering response to environmental changes in westerly winds across the Tarim Basin in the late Miocene to the early Pleistocene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2013, 386, 364–373. [Google Scholar] [CrossRef]
- Vasconcelos, C.M.; Judith, A.; Bernasconi, S.; Grujic, D.; Tiens, A.J. Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures. Nature 1995, 377, 220–222. [Google Scholar] [CrossRef]
- Quigley, R.M.; Martin, R.T. Chloritized weathering products of a New England glacial till. Clays Clay Miner. 1961, 10, 107–116. [Google Scholar] [CrossRef]
- Fang, X.; Li, M.; Wang, Z.; Wang, J.; Li, J.; Liu, X.; Zan, J. Oscillation of mineral compositions in Core SG-1b, western Qaidam Basin, NE Tibetan Plateau. Sci. Rep. 2016, 6, 32848. [Google Scholar] [CrossRef][Green Version]
- Lybrand, R.; Rasmussen, C.; Jardine, A.; Troch, P.; Chorover, J. The effects of climate and landscape position on chemical denudation and mineral transformation in the Santa Catalina mountain critical zone observatory. Appl. Geochem. 2011, 26, S80–S84. [Google Scholar] [CrossRef]
- Wang, C.; Hong, H.; Li, Z.; Yin, K.; Xie, J.; Liang, G.; Song, B.; Song, E.P.; Zhang, K. The Eocene-Oligocene climate transition in the Tarim Basin, Northwest China: Evidence from clay mineralogy. Appl. Clay Sci. 2013, 74, 10–19. [Google Scholar] [CrossRef]
- Toshimura, T. Neofomation and transfomation of clay minerals in diagenetic process and their characteristic features. Nendo Kagaku 1985, 25, 107–112. [Google Scholar]
- Singer, A.; Stoffers, P. Clay mineral diagenesis in two East African lake sediments. Clay Miner. 1980, 15, 291–307. [Google Scholar] [CrossRef]
- Tian, J.; Chen, Z.; Fan, Y.; Li, P.; Song, L. The occurrence, growth mechanism and distribution of authigenic chlorite in sandstone. Bull. Mineral. Petrol. Geochem. 2008, 27, 201–205. [Google Scholar]
- Rao, Q.; Dai, C.; Zhang, H.; Pan, Z.; Cao, S. Occurrence and origin of chlorite in sedimentary, igneous and metamorphic rocks. Acta Geol. Sichuan 2016, 36, 561–566. [Google Scholar]
- Yin, K.; Hong, H.; Algeo, T.J.; Churchman, G.J.; Li, Z.; Zhu, Z.; Fang, Q.; Zhao, L.; Wang, C.; Ji, K.; et al. Fe-oxide mineralogy of the Jiujiang red earth sediments and implications for Quaternary climate change, southern China. Sci. Rep. 2018, 8, 3610. [Google Scholar] [CrossRef][Green Version]
- Hui, Z.; Li, J.; Xu, Q.; Song, C.; Zhang, J.; Wu, F.; Zhao, Z. Miocene vegetation and climatic changes reconstructed from a sporopollen record of the Tianshui Basin, NE Tibetan Plateau. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 308, 373–382. [Google Scholar] [CrossRef]
- Dittrich, M.; Obst, M. Are Picoplankton Responsible for Calcite Precipitation in Lakes? Ambio 2004, 33, 559–564. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Zhang, L.; Deng, C.; Zhu, R. Evidence for enhanced aridity in the Tarim Basin of China since 5.3 Ma. Quat. Sci. Rev. 2009, 27, 1012–1023. [Google Scholar] [CrossRef]
- Sun, J.; Gong, Z.; Tian, Z.; Jia, Y.; Windley, B. Late Miocene stepwise aridification in the Asian interior and the interplay between tectonics and climate. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2015, 421, 48–59. [Google Scholar] [CrossRef]
- Sun, D.; Bloemendal, J.; Yi, Z.; Zhu, Y.; Wang, X.; Zhang, Y.; Li, Z.; Wang, F.; Han, F.; Zhang, Y. Palaeomagnetic and palaeoenvironmental study of two parallel sections of late Cenozoic strata in the central Taklimakan Desert: Implications for the desertification of the Tarim Basin. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 300, 1–10. [Google Scholar] [CrossRef]
- Zheng, H.; Chen, H.; Cao, J. Palaeoenvironmental implication of the Plio-Pleistocene loess deposits in southern Tarim Basin. Chin. Sci. Bull. 2002, 47, 700–704. [Google Scholar] [CrossRef]
- Fang, X.; An, Z.; Clemens, S.C.; Zan, J.; Shi, Z.; Yang, S.; Han, W. The 3.6-Ma aridity and westerlies history over midlatitude Asia linked with global climatic cooling. Proc. Natl. Acad. Sci. USA 2020, 117, 24729–24734. [Google Scholar] [CrossRef]
- Wang, X.; Sun, D.H.; Wang, F.; Li, B.F.; Wu, S.; Guo, F.; Li, Z.J.; Zhang, Y.B.; Chen, F.H. A high-resolution multi-proxy record of late Cenozoic environment change from central Taklimakan Desert, China. Clim. Past 2013, 9, 2731–2739. [Google Scholar] [CrossRef][Green Version]
- Wu, F.; Fang, X.; Herrmann, M.; Mosbrugger, V.; Miao, Y. Extended drought in the interior of Central Asia since the Pliocene reconstructed from sporopollen records. Glob. Planet. Chang. 2011, 76, 16–21. [Google Scholar] [CrossRef]
- Sun, Y.; An, Z. History and variability of asian interior aridity recorded by eolian flux in the chinese loess plateau during the past 7 Ma. Sci. China Earth Sci. 2002, 45, 421–429. [Google Scholar] [CrossRef]
- Tang, Z.; Ding, Z.; White, P.D.; Dong, X.; Ji, J.; Jiang, H.; Luo, P.; Wang, X. Late Cenozoic central Asian drying inferred from a palynological record from the northern Tian Shan. Earth Planet. Sci. Lett. 2011, 302, 439–447. [Google Scholar] [CrossRef]
- Zachos, J.; Pagani, M.; Sloan, L.; Thomas, E.; Billups, K. Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present. Paleoclimate 2001, 292, 686–693. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H. Late Miocene and mid-Pliocene enhancement of the East Asian monsoon as viewed from the land and sea. Glob. Planet. Chang. 2004, 41, 147–155. [Google Scholar] [CrossRef]
- Miao, Y.; Herrmann, M.; Wu, F.; Yan, X.; Yang, S. What controlled Mid-Late Miocene long-term aridification in Central Asia?-Global cooling or Tibetan Plateau uplift: A review. Earth Sci. Rev. 2012, 112, 155–172. [Google Scholar] [CrossRef]
- Nielsen, T.; Kuijpers, A. Only 5 southern Greenland shelf edgeglaciations since the early Pliocene. Sci. Rep. 2013, 3, 1875. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Sun, J.; Lü, T.; Gong, Y.; Liu, W.; Wang, X.; Gong, Z. Effect of aridification on carbon isotopic variation and ecologic evolution at 5.3 Ma in the Asian interior. Earth Planet. Sci. Lett. 2013, 380, 1–11. [Google Scholar] [CrossRef]
- Porter, S.C.; An, Z. Correlation between climate events in the North Atlantic and China during the last glaciation. Lett. Nat. 1995, 375, 305–308. [Google Scholar] [CrossRef]
- Kudless, K.E. Late Cenozoic Ice-rafted Debris Studies of the Southeast Greenland Margin and the North Pacific Ocean; The Ohio State University: Genoa, Italy, 1998. [Google Scholar]
- Alan, M.H.; Paul, J.V.; Bruce, W.S. Global scale palaeoclimate reconstruction of the middle Pliocene climate using the UKMO GCM: Initial results. Glob. Planet. Chang. 2000, 25, 239–256. [Google Scholar]
- Ballantyne, A.P.; Greenwood, D.R.; Sinninghe Damsté, J.S.; Csank, A.Z.; Eberle, J.J.; Rybczynski, N. Significantly warmer Arctic surface temperatures during the Pliocene indicated by multiple independent proxies. Geology 2010, 38, 603–606. [Google Scholar] [CrossRef]
- Brierley, C.M.; Fedorov, A.V. Relative importance of meridional and zonal sea surface temperature gradients for the onset of the ice ages and Pliocene-Pleistocene climate evolution. Paleoceanography 2010, 25, PA2214. [Google Scholar] [CrossRef]
- Pan, Y.; Li, D.; Guo, F.; He, Z.; Pei, J.; Liu, J.; Zhao, Y. Geomorphological features of the Keriya River valley and the early-middle Pleistocene great lake environment of the Tarim basin. Geol. Bull. China 2008, 27, 814. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, M.; Chang, H.; Qin, X.; Burr, G.S.; Liu, W. Aridification in the Asian Interior Recorded by Mineral Assemblages in Tarim Basin since the Late Miocene and Its Link to Global Cooling. Minerals 2022, 12, 1543. https://doi.org/10.3390/min12121543
Yang M, Chang H, Qin X, Burr GS, Liu W. Aridification in the Asian Interior Recorded by Mineral Assemblages in Tarim Basin since the Late Miocene and Its Link to Global Cooling. Minerals. 2022; 12(12):1543. https://doi.org/10.3390/min12121543
Chicago/Turabian StyleYang, Maojie, Hong Chang, Xiuling Qin, George S. Burr, and Weiguo Liu. 2022. "Aridification in the Asian Interior Recorded by Mineral Assemblages in Tarim Basin since the Late Miocene and Its Link to Global Cooling" Minerals 12, no. 12: 1543. https://doi.org/10.3390/min12121543