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Abstract: This paper studies the correlation between different macroscopic features of image regions
and object properties with the Sauter diameter (D32) of bubble size in flotation. Bubbles were sampled
from the collection zone of a two-dimensional flotation cell using a McGill Bubble Size Analyzer,
and photographed bubbles were processed using image analysis. The Sauter mean diameters were
obtained under different experimental conditions using a semiautomated methodology, in which
non-identifiable bubbles were manually characterized to estimate the bubble size distribution. For
the same processed images, different image properties from their binary representation were studied
in terms of their correlation with D32. The median and variability of the shadow percentage, aspect
ratio, power spectral density, perimeter, equivalent diameters, solidity, and circularity, among other
image or object properties, were studied. These properties were then related to the measured D32

values, from which four predictors were chosen to obtain a multivariable model that adequately
described the Sauter diameter. After removing abnormal gas dispersion conditions, the multivariable
linear model was able to represent D32 values (99 datasets) for superficial gas rates in the range of
0.4–2.5 cm/s, for four types of frothers and surfactant concentrations ranging from 0 to 32 ppm. The
model was tested with 72 independent datasets, showing the generalizability of the results. Thus, the
approach proved to be applicable at the laboratory scale for D32 = 1.3–6.7 mm.

Keywords: gas dispersion; flotation; bubble size; Sauter diameter

1. Introduction

Flotation rate and efficiency critically depend upon the relationship between particle
size and bubble size; both parameters play a significant role in successful collection and
froth transport processes [1–5]. Since the development of bubble size analyzers, a better
understanding of the impact of gas dispersion on flotation performance has been achieved.
The most used analyzers consist of a bubble viewer for sampling along with an image
processing tool to characterize bubbles [6–8]. These devices proved to have a good trade-off
between the number of identified bubbles and their applicability at different flotation
scales. More basic image processing algorithms identify bubbles by a single or a variety
of shape factors, such as circularity, solidity, and others [9–11], removing irregular objects
and overlapped bubbles from the analysis. This approach has been widely used in the
flotation literature [10–12]; however, significant biases have been observed in bubble size
estimations, especially in the presence of large bubbles [13–15]. To avoid these biases, some
applications also incorporate segmentation algorithms to separate or identify bubbles in
clusters (i.e., Watershed and Hough transforms) [7,13,16–19]. In any case, most current
algorithms focus on the individualization of bubbles, removing objects that are not identifi-
able (e.g., complex clusters or cap-shaped bubbles) from a predefined performance criterion
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or threshold. This strategy has proven to be effective only under specific gas dispersion
regimes [20]. Thus, robust bubble size characterizations have been limited to spherical and
spherical-ellipsoidal regimes, which hinders the generalization of experimental results to
non-ideal conditions.

Some alternative or indirect estimations of bubble size have been proposed in the
literature. These approaches take advantage of either signals that are generated from
bubble motion or correlations between bubble size with other measurable variables. For
example, Steinemann and Buchholz [21] used conductivity measurements to estimate
bubble size and bubble velocity. A two-point probe was proposed, in which terminals
were disturbed by the rising bubbles. These disturbances generated pulse trains asso-
ciated with bubble properties. Geometrical and physical relationships allowed for the
bubble size estimations, for bubbles larger than 1.0 mm. Meernik and Yuen [22] pre-
sented an optical method based on disturbances to laser beams to estimate bubble size.
Optical fiber was used at the injection and detection terminals, and a photodiode was
employed as a transmitter. The measurement system was limited by the optical beam
length to characterize single bubbles. Kracht et al. [23] proposed a stochastic approach
based on the covariance function of the image backgrounds to determine bubble size distri-
butions (BSDs). That methodology was successfully tested under a spherical regime from
10 images generated at the laboratory scale. Image simulations also supported this
study. Kracht and Moraga [24] estimated the Sauter mean diameter of bubble popula-
tions D32 = ∑ d3

i / ∑ d2
i from acoustic measurements. Bubbles were exposed to an acoustic

disturbance, whose responses (demodulated signals) were related to bubble size. An
approximated linear trend between the signal intensities and the Sauter diameter was
observed for D32 ≈ 0.8–2.7 mm. The reference D32 values (ground truth) were estimated
from image analysis. Vinnett and Alvarez-Silva [25] related the shadow percent from binary
bubble images with D32 at different superficial gas rates, JG. A linear model was proposed,
which incorporated JG and the shadow percent as predictors. This model presented accept-
able results from laboratory and industrial datasets. However, the trends were rather noisy.
Vinnett et al. [26] reported a technique to estimate D32 from the power spectral density
of pulses generated by bubbles in binary images. The spatial bandwidth proved to be
non-linearly correlated with D32. A piecewise algorithm based on conventional image anal-
ysis in a spherical regime and a bandwidth correlation of D32 > 2.0 mm was proposed for
industrial measurements [20]. Ilonen et al. [27] used the two-dimensional discrete Fourier
transform to estimate BSDs in pulp delignification. The results provided by different circle
detection techniques were compared with the estimations obtained from the 2D power
spectral density. Principal component analysis was employed to reduce dimensionality. In
addition, multivariable linear regression was used to obtain the bubble counts in ten size
classes from the power spectral density. The technique showed adequate performance in
spherical regimes. Bu et al. [28] correlated gas dispersion parameters with the variability
of differential pressure measurements in a flotation column. A linear model was proposed
for the bubble size, using the standard deviation of the differential pressure as a predictor.
This model led to a coefficient of correlation of 0.77. High variability was obtained with
this methodology.

The information provided in the previous paragraph shows that bubble size can be
determined by several techniques, which involve parameters that can be measured or are
influenced by the characteristics and behavior of bubbles in a swarm. Some techniques
directly use bubble viewers along with image analysis, whereas other physical parameters
may also be correlated with photographed bubble populations (e.g., differential pressure
measurements and gas hold-up variability). This paper studies correlations between dif-
ferent image and object properties in binary representation and the Sauter mean diameter
of bubble size distributions. These properties and their variability can be automatically
determined, with negligible bias. A semiautomated algorithm that allowed all bubbles to be
processed was used to obtain the Sauter diameters employed as ground truth. A multivari-
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able linear model is proposed to estimate D32 from image and object features, which does
not require the individualization of every single bubble in the photographed populations.

2. Materials and Methods
2.1. Experimental Procedure

Bubble size measurements were conducted in the laboratory-scale flotation cell de-
picted in Figure 1. This 2D cell emulated a slice of an industrial machine with a 140 × 140 cm
cross-section and a width of 15 cm. The forced air was controlled and fed from 24 porous
spargers. A McGill bubble size analyzer (MBSA) [6] was used for bubble sampling and
image recording. This device was initially filled with conditioned water at the same surfac-
tant concentration as in the flotation cell. The rising bubbles were then photographed in a
2D plane with a digital video camera (version, Teledyne Dalsa, Waterloo, ON, Canada), at
a sampling rate of one frame per second. All measurements were conducted for 3 minutes
at a resolution of 0.056 mm/pxl.
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Figure 1. Two-dimensional flotation cell and installation of the McGill bubble size analyzer [29]. 

Four types of frothers were studied: methyl isobutyl carbinol (MIBC), AeroFroth® 70 
(Cytec, Woodland Park, NJ, USA), OrePrep® F-507 (Cytec, Woodland Park, NJ, USA), and 
Flotanol® 9946 (Clariant Mining Solutions, Louisville, KY, USA). AeroFroth® 70 contains 
MIBC and diisobutyl ketone [30], OrePrep® F-507 contains glycol and other non-hazard-
ous components [30], and Flotanol® 9946 corresponds to a 2-ethyl hexanol distillation bot-
tom [31]. The experimental data were divided into training and testing datasets. Tables 1 
and 2 present all the evaluated experimental conditions, including the distribution of the 
training and testing datasets. Frother concentrations of 0, 2, 4, 8, and 16 ppm were evalu-
ated for all types of frothers, whereas 32 ppm was also assessed for AeroFroth® 70, Ore-
Prep® F-507, and Flotanol® 9946. The superficial gas rates were set to 0.5, 1.0, 1.5, 2.0, and 
2.5 cm/s for MIBC, and to 0.4, 0.8, 1.2, 1.6, and 2.0 cm/s for the rest of the frothers. Condi-
tions with high JG and low concentrations of MIBC favored the transition toward a churn-
turbulent regime from an ellipsoidal regime, which was detected in the analysis. All tests 
were conducted at two locations in the flotation cell. From Tables 1 and 2, 104 experi-
mental conditions were used in the training procedure and 72 for testing. 

 

Figure 1. Two-dimensional flotation cell and installation of the McGill bubble size analyzer [29].

Four types of frothers were studied: methyl isobutyl carbinol (MIBC), AeroFroth® 70
(Cytec, Woodland Park, NJ, USA), OrePrep® F-507 (Cytec, Woodland Park, NJ, USA), and
Flotanol® 9946 (Clariant Mining Solutions, Louisville, KY, USA). AeroFroth® 70 contains
MIBC and diisobutyl ketone [30], OrePrep® F-507 contains glycol and other non-hazardous
components [30], and Flotanol® 9946 corresponds to a 2-ethyl hexanol distillation bot-
tom [31]. The experimental data were divided into training and testing datasets. Tables 1
and 2 present all the evaluated experimental conditions, including the distribution of the
training and testing datasets. Frother concentrations of 0, 2, 4, 8, and 16 ppm were evaluated
for all types of frothers, whereas 32 ppm was also assessed for AeroFroth® 70, OrePrep®

F-507, and Flotanol® 9946. The superficial gas rates were set to 0.5, 1.0, 1.5, 2.0, and 2.5 cm/s
for MIBC, and to 0.4, 0.8, 1.2, 1.6, and 2.0 cm/s for the rest of the frothers. Conditions with
high JG and low concentrations of MIBC favored the transition toward a churn-turbulent
regime from an ellipsoidal regime, which was detected in the analysis. All tests were
conducted at two locations in the flotation cell. From Tables 1 and 2, 104 experimental
conditions were used in the training procedure and 72 for testing.
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Table 1. Flotation tests for training.

Type of Frother Location Frother Concentrations, ppm Superficial Gas Rate, cm/s

MIBC 1 and 2 0, 2, 4, 8, 16 0.5, 1.0, 1.5, 2.0, 2.5
AeroFroth® 70 1 0, 2, 4, 8, 16, 32 0.4, 1.2, 2.0

OrePrep® F-507 1 0, 2, 4, 8, 16, 32 0.4, 1.2, 2.0
Flotanol® 9946 1 0, 2, 4, 8, 16, 32 0.4, 1.2, 2.0

Table 2. Flotation tests for testing.

Type of Frother Location Frother Concentrations, ppm Superficial Gas Rate, cm/s

AeroFroth® 70 2
0, 2, 4, 8, 16, 32 0.8, 1.6

0, 2, 8, 32 0.4, 1.2, 2.0

OrePrep® F-507 2
0, 2, 4, 8, 16, 32 0.8, 1.6

0, 2, 8, 32 0.4, 1.2, 2.0

Flotanol® 9946 2
0, 2, 4, 8, 16, 32 0.8, 1.6

0, 2, 8, 32 0.4, 1.2, 2.0

2.2. Semiautomated Image Processing

The BSDs and Sauter mean diameters used as reference (ground truth) were obtained
by a semiautomated application based on the Image Processing Toolbox of MATLAB (11.4,
The MathWorks Inc., Natick, MA, USA). A field of view of 45 × 35 mm was chosen for
image analysis. The images were firstly converted to their binary representation. Bubbles
observed as isolated spheres and ellipsoids were identified based on solidity [26]. Objects
that presented low solidity were first segmented using Watershed, followed by Hough trans-
forms [13,32]. The previous automated steps were complemented by manual processing:
(i) false positives obtained in the automated processing were corrected; (ii) non-identified
bubbles (bubbles in clusters and irregular bubbles) were manually estimated. This pro-
cedure avoided the biases caused by removing bubbles from the analysis as reported in
the literature [13–15]. The size of each identified bubble was estimated as an equivalent
ellipsoid diameter. The D32 values obtained from the semiautomated algorithm were used
as references to evaluate the ability to predict bubble size. We recorded 180 images per
experimental condition, from which a subset was randomly chosen to process a minimum
of 1500 bubbles per test. However, at least 10 images were processed in all cases. This
limit for the number of processed images was especially defined for conditions with a
high gas hold-up. All images were analyzed when operating the cell with no frother. For
further details on the semiautomated procedure, please refer to Vinnett, Urriola, Orellana,
Guajardo and Esteban [29]. Appendix A presents examples of the bubble size distributions
obtained by the semiautomated approach.

2.3. Region Properties and Their Association with Bubble Size

The same images that were processed by the semiautomated algorithm were studied in
terms of their region properties from their binary representation. The statistical parameters
of these properties were analyzed based on their association with the Sauter mean diameter
of the BSDs. For example, for the binary image shown in Figure 2a, the object and region
properties summarized in Table 3 were calculated. For each experimental condition and
all processed images, the statistics of the properties of all objects (e.g., circularity, solidity,
aspect ratio, and perimeter) were estimated to obtain the median and some indicators of
variability. In addition, the shadow fraction (black region with respect to the region of
interest) and the spatial bandwidth were obtained for each image. The spatial bandwidth
was an indicator of the average pulse width generated by the black pixels associated with
the bubbles (i.e., disturbances of bubbles over the gray line in Figure 2a). This bandwidth
was obtained at −20 dB with respect to the peak in the power spectral density, as shown in
Figure 2b [26]. The shadow fraction and the spatial bandwidth have been proven to be cor-
related with D32 [25,26]. Most of the object features were directly obtained from the Image
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Processing Toolbox of MATLAB (11.4, The MathWorks Inc., Natick, MA, USA). Circularities,
aspect ratios, eccentricities, perimeters, solidities, equivalent diameters, and the number
of objects were obtained from the regrionprops function of this toolbox. The estimations of
the shadow fractions and spatial bandwidths have been proven to be straightforward, as
reported by Vinnett and Alvarez-Silva [25] and Vinnett, Sovechles, Gomez and Waters [26].
Table 3 also presents the variable symbols for each studied feature. The computations of all
region and object properties were limited by the bandwidth estimations, whose processing
times were proven to be shorter than those of conventional image analysis [26]. The median
(subscript 50) along with variability indexes were correlated with D32. Variability was
evaluated by the relative standard deviation (subscript RSD), relative interdecile range
(subscript RIDR), relative interquintile range (subscript RIQQR), and relative interquartile
range (subscript RIQR). Only one variability indicator was used per feature, which was
chosen based on the highest level of association with the D32 values.
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Figure 2. (a) Example of binary image, and (b) normalized power spectral density and
bandwidth estimation.

Table 3. List of studied region and object properties.

Property Variable Symbol Statistical Index

Shadow Fraction SF

Median
Relative Standard Deviation
Relative Interdecile Range

Relative Interquintile Range
Relative Interquartile Range

Circularity, 4π area/P2 C
Aspect Ratio, major axis length/minor axis length AR

Eccentricity E
Perimeter, mm P

Solidity S
Equivalent Diameter,

√
4 area/π, mm ED

Number of Objects per mm2, 1/mm2 N
Spatial Bandwidth, pxl/mm BW

All properties were related to the measured D32 values using the Pearson coefficient
of correlation (R) and the maximal information coefficient [33]. The former measures linear
correlation, whereas the latter indicates the level of association between the evaluated
variables, not constrained to linear relationships [33]. The maximal information coefficient
(MIC) was used to detect variables that were non-linearly related to the Sauter diameter
and did not lead to a high coefficient of correlation.

It should be noted that the experimental conditions with no frother and JG = 0.4, 1.2,
and 2.0 cm/s were run six times in different locations of the flotation cell. Manual processing
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for these three conditions was conducted by 4, 3, and 3 different users, respectively. The
relative standard deviations of the estimated D32 were 6.2%, 3.7%, and 2.8%, respectively.
These variabilities included the experimental and spatial variability, and uncertainties in
the manual processing. The latter was considered acceptable for the purpose of this study.

3. Results

All analyzed region and object properties shown in Table 3 were related to the mea-
sured Sauter diameters using the Pearson coefficient of correlation and the maximal in-
formation coefficient. Only the training datasets were included in this analysis. Table 4
shows the 12 predictors with the most significant (absolute) coefficients of correlation. From
these results, the highest absolute coefficients of correlation did not consistently agree with
the highest MICs because the latter were able to detect non-linear associations. Figure 3
presents examples of correlations between some region or image properties and the Sauter
diameter of the BSDs. Figure 3a,c illustrate the increasing trends between predictors (rela-
tive interquintile range for the shadow fraction and perimeter median) and D32. Except for
the variability, which is higher at high D32, these trends are compatible with linear depen-
dencies. The coefficients of correlation between these predictors and D32 thus resulted in
higher values compared with other trends. The maximal information coefficients were also
high or moderately high for these trends. Figure 3b,d present non-linear trends between the
spatial bandwidth and the number of objects per unit area, and D32, respectively. Although
clear relationships were observed, the coefficients of correlation resulted in lower values
with respect to Figure 3a,b. The maximal information coefficient was therefore effective
in determining non-linear associations between the predictors and the Sauter diameter. It
should be noted that D32 values greater than 6.0 mm were observed, which were mainly
associated with experimental conditions under high superficial gas rates and with MIBC
as a frother. These experimental conditions transitioned to churn-turbulent regimes, as
exemplified in Appendix B.

Table 4. Twelve properties that led to the highest coefficients of correlation with D32.

Title P50 SFRIQQR ED50 NRSD BW50 EC50 ARRSD C50 ECRIDR N50 AR50 BWRSD

R 0.838 0.831 0.829 0.822 −0.820 0.766 0.762 −0.750 −0.730 −0.717 0.700 0.650
MIC 0.942 0.794 0.960 0.859 1.000 0.813 0.969 0.754 0.798 0.953 0.813 0.477

The results from Table 4 and Figure 3 show that different fractions of the D32 variability
can be explained by the variability of some region and object properties. A multivariable
linear model was implemented to obtain the Sauter diameter from all studied predic-
tors. This model was obtained from the training datasets. Predictors that had non-linear
trends in relation to D32 were transformed to favor linearity, which was applied to BW50
(Figure 3b), BWSRSD, and N50 (Figure 3d). Thus, 1/BW50, 1/N50, and ln(BWSRSD) were
employed in the linear regression. The model incorporated a constant term; therefore,
19 parameters were estimated. Robust linear regression was used from the Statistics and
Machine Learning toolbox of MATLAB (The MathWorks Inc., Natick, MA, USA). Ordinary
least-squares estimation was sensitive to leverage points associated with abnormal gas
dispersion conditions, as illustrated in Appendix B. Robust regression performs iteratively
reweighted least-squares estimations, assigning a weight to each residual based on its
magnitude [34]. This approach was then used to reduce the impact of data points that
were far from the main trends. Figure 4 presents the model fitting. A good agreement was
observed, except for some tests with D32 > 5.0 mm. According to the procedure reported by
Vinnett et al. [35], experimental conditions with relative standard deviations greater than
0.7 in the shadow fraction were removed from the overall dataset, allowing abnormal gas
dispersion conditions to be skipped from the analysis.
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Five data points were removed from the training dataset. Thus, 99 conditions were
used for model fitting. To reduce over-parameterization, ordinary linear regression was
conducted using the best-subset approach. All combinations of predictors were used in the
model fitting to choose the model structure that led to the lowest predicted residual error
sum of squares (PRESS). The PRESS is obtained as the sums of squares of the prediction
residuals, after removing one data point at a time. Four predictors were then chosen in the
model structure: C50, EDRIQR, NRSD and BW50 (reciprocal). The root mean squared error
was 0.214 with these four predictors, compared with an RMSE of 0.204 when including
all predictors in the regression. Figure 5 shows the model fitting for the training datasets
along with the comparisons for the testing datasets. An adequate D32 description was
observed for D32 = 1.3–6.7 mm, after removing abnormal gas dispersion conditions. Higher
variability was observed for D32 ≥ 4.0 mm, which was caused by the sensitivity of the
Sauter diameter to large bubbles. The testing results proved that the model was generaliz-
able to independent datasets. Again, higher dispersion was observed for D32 ≥ 4.0 mm.
It should be noted that the modeled D32 values were automatically estimated without
individualizing every single bubble. Although the D32 values observed in the 2D cell corre-
sponded to intermediate- and large-size ranges from industrial databases [18,20,36], poorer
bubble size estimations are observed for D32 ≥ 2.0 mm by conventional image analysis, as
reported by Vinnett, Yianatos, Arismendi and Waters [20]. Thus, the correlation presented
here is suitable for ellipsoidal regimes and in the transition toward turbulent regimes.
Conventional image analysis (shape factors and object segmentation) is recommended for
D32 < 2.0 mm, as no significant bias was observed with this method from industrial data.

Minerals 2022, 12, x FOR PEER REVIEW 9 of 13 
 

 

 
Figure 5. Measured versus modeled Sauter diameters: training and testing datasets, after removing 
abnormal conditions. 

Equation (1) presents the D32 model, in which all parameters were significant at the 
95% confidence level. All p-values and 95% confidence intervals of the predictors are pre-
sented in Appendix C. From Equation (1), a D32 increase is related to variability increases 
in the number of objects per millimeter square (NRSD) and in the equivalent diameter 
(EDRIQR). The former is caused by the variability in the gas hold-up when transitioning 
from spherical to ellipsoidal and turbulent conditions [35]. This transition also increased 
the variability in the equivalent diameter because more irregular bubbles, coexisting with 
small bubbles, are typically observed at higher D32 values. Lower D32 values were ob-
served at lower median circularities (C50) as small bubbles are consistently observed as 
spheres in a bubbly regime. As the spatial bandwidth is an indicator of the horizontal and 
vertical pulse widths that are caused by bubbles (Figure 2a), wider pulses (and lower BW) 
lead to higher Sauter diameters [26]. A sensitivity analysis proved that BW50 was the most 
significant predictor. The increases in C50, EDRIQR, NRSD, and BW50 from the 25th percentile 
to the 75th percentile led to D32 variations of −0.13, 0.27, 0.20, and 1.90, respectively. The 
spatial bandwidth was previously tested with industrial data, adequately explaining the 
D32 variability for D32 ≈ 2.0–6.0 mm, under normal gas dispersion conditions. Vinnett, 
Sovechles, Gomez and Waters [26] proposed D32 = α/BWβ  to estimate bubble size, obtain-
ing α = 3.7 and β = 1.1 by non-linear regression. As the linear model proposed here incor-
porates the bandwidth by its reciprocal (β = 1.0), any bias in the industrial variability ex-
plained by BW will be moderate with respect to the laboratory results in Figure 5 and 
Equation (1). It should be noted that Equation (1) only allows for the estimation of the 
Sauter mean diameter; therefore, additional correlations are required to automatically ob-
tain unbiased BSDs. 𝐷ଷଶ = 1.14 െ 1.80𝐶ହ଴ ൅ 0.785𝐸𝐷ୖ୍୕ୖ ൅ 1.52𝑁ୖୗୈ ൅ 3.49𝐵𝑊ହ଴ (1) 

The results from Table 4 and Figures 3 to 5 show that some image properties were 
linearly or non-linearly correlated with the Sauter mean diameter. Except for abnormal 
gas dispersion conditions, these image properties proved to be applicable as predictors to 
automatically estimate bubble size, without individualizing all single bubbles or remov-
ing irregular objects. Additional predictors can be incorporated into the model structure 
to improve its predictability, using cross-validation to control over-parameterization. The 

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

M
od

el
le

d 
D

32
, m

m

Measured D32, mm

Training
Testing
y = x

Figure 5. Measured versus modeled Sauter diameters: training and testing datasets, after removing
abnormal conditions.

Equation (1) presents the D32 model, in which all parameters were significant at the 95%
confidence level. All p-values and 95% confidence intervals of the predictors are presented
in Appendix C. From Equation (1), a D32 increase is related to variability increases in the
number of objects per millimeter square (NRSD) and in the equivalent diameter (EDRIQR).
The former is caused by the variability in the gas hold-up when transitioning from spherical
to ellipsoidal and turbulent conditions [35]. This transition also increased the variability
in the equivalent diameter because more irregular bubbles, coexisting with small bubbles,
are typically observed at higher D32 values. Lower D32 values were observed at lower
median circularities (C50) as small bubbles are consistently observed as spheres in a bubbly
regime. As the spatial bandwidth is an indicator of the horizontal and vertical pulse widths
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that are caused by bubbles (Figure 2a), wider pulses (and lower BW) lead to higher Sauter
diameters [26]. A sensitivity analysis proved that BW50 was the most significant predictor.
The increases in C50, EDRIQR, NRSD, and BW50 from the 25th percentile to the 75th percentile
led to D32 variations of −0.13, 0.27, 0.20, and 1.90, respectively. The spatial bandwidth
was previously tested with industrial data, adequately explaining the D32 variability for
D32 ≈ 2.0–6.0 mm, under normal gas dispersion conditions. Vinnett, Sovechles, Gomez and
Waters [26] proposed D32 = α/BWβ to estimate bubble size, obtaining α = 3.7 and β = 1.1
by non-linear regression. As the linear model proposed here incorporates the bandwidth
by its reciprocal (β = 1.0), any bias in the industrial variability explained by BW will be
moderate with respect to the laboratory results in Figure 5 and Equation (1). It should
be noted that Equation (1) only allows for the estimation of the Sauter mean diameter;
therefore, additional correlations are required to automatically obtain unbiased BSDs.

D32 = 1.14− 1.80C50 + 0.785EDRIQR + 1.52NRSD +
3.49

BW50
(1)

The results from Table 4 and Figures 3–5 show that some image properties were
linearly or non-linearly correlated with the Sauter mean diameter. Except for abnormal
gas dispersion conditions, these image properties proved to be applicable as predictors to
automatically estimate bubble size, without individualizing all single bubbles or removing
irregular objects. Additional predictors can be incorporated into the model structure to
improve its predictability, using cross-validation to control over-parameterization. The
modeling strategy presented here can also be extended to different machine learning tools,
considering the continuous improvement in the training stage after increasing D32 and
image databases. Thus, gas dispersion data from different flotation machines and scales
can be incorporated into the algorithms for model generalizations. Further developments
are being made to expand D32 estimations using experimental data from different flotation
machines, operating conditions, and flotation scales.

4. Conclusions

One hundred and four images and D32 datasets were studied, correlating different
image and object properties (from binary representations) with bubble size. All properties
were automatically determined, whereas the D32 values were obtained from a semiau-
tomated approach that did not remove bubbles from the analysis. The main results are
summarized as follows:

• Several image and object properties showed moderate or strong correlations, linear
and non-linear, with the Sauter diameter.

• The maximal information coefficient was successfully used to detect non-linear as-
sociations between image and object properties with bubble size. These associations
were not clearly detected with the coefficient of correlation. The strongest associations
were observed with the median of the spatial bandwidth, median of the equivalent
diameter, relative standard deviation of the aspect ratio, and median of the number of
objects per unit area.

• After removing churn-turbulent conditions and linearizing non-linear associations,
a multivariable linear model was proposed, which was able to estimate bubble size
in the range 1.3–6.7 mm. This model was obtained from four predictors: median
of the circularity, relative interquartile range of the equivalent diameter, relative
standard deviation of the number of elements per unit area, and median of the spatial
bandwidth. These predictors were chosen from the best subset of all possible linear
models, minimizing PRESS.

• The linear model was successfully tested on 72 independent datasets, which showed
the generalizability of the model structure.

The strategy to indirectly characterize bubble size from image and object properties
proved to be applicable at laboratory scale, without individualizing all single bubbles or
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removing irregular bubbles and clusters. This approach can be continuously improved
by including additional predictors and expanding gas dispersion databases from different
experimental conditions.
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Appendix A

Figure A1 illustrates five BSDs, which are presented as cumulative distribution func-
tions. These BSDs were associated with the 10, 30, 50, 70, and 90 percentiles of the measured
Sauter diameters. Higher D32 values were related to higher mean (or median) bubble sizes
as well as to longer distribution tails. The latter was caused by the presence of a low
percentage of large bubbles in the analyzed populations.
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Appendix B

Experimental conditions using MIBC as a frother and JG = 2.5 cm/s favored the tran-
sition to churn-turbulent regimes in the flotation cell. Figure A2 illustrates examples of
images from one abnormal flotation test. Although this abnormality can be automatically
detected, the incorporation of these datasets into the proposed regression approach dis-
torted the correlations due to leveraging. The high Sauter diameters were influenced by
the high sensitivity of this parameter to large bubbles.



Minerals 2022, 12, 1528 11 of 12

Minerals 2022, 12, x FOR PEER REVIEW 11 of 13 
 

 

  
Figure A1. Examples of bubble size distributions in the laboratory tests. 

Appendix B 
Experimental conditions using MIBC as a frother and JG = 2.5 cm/s favored the tran-

sition to churn-turbulent regimes in the flotation cell. Figure A2 illustrates examples of 
images from one abnormal flotation test. Although this abnormality can be automatically 
detected, the incorporation of these datasets into the proposed regression approach dis-
torted the correlations due to leveraging. The high Sauter diameters were influenced by 
the high sensitivity of this parameter to large bubbles. 

 
Figure A2. Examples of bubbles under abnormal gas dispersion conditions. Scales in millimeters 
and centimeters. 

Appendix C 
Table A1 presents the p-values along with the 95% confidence intervals for the pre-

dictors used in Equation (1). All parameters were significant at the chosen confidence 
level. 

  

3 6 9 12
Bubble Diameter, mm

0

20

40

60

80

100

Cu
m

ul
at

iv
e 

Pe
rc

en
ta

ge
, %

No Frother, D32 = 5.4 mm
JG = 1.6 cm/s

No Frother, D32 = 3.9 mm
JG = 0.4 cm/s

AF 4 ppm, D32 = 2.7 mm
JG = 0.4 cm/s

AF 16 ppm, D32 = 1.6 mm
JG = 1.2 cm/s

FLOT 2 ppm, D32 = 2.1 mm
JG = 0.4 cm/s

Figure A2. Examples of bubbles under abnormal gas dispersion conditions. Scales in millimeters
and centimeters.

Appendix C

Table A1 presents the p-values along with the 95% confidence intervals for the predic-
tors used in Equation (1). All parameters were significant at the chosen confidence level.

Table A1. p-values and 95% confidence intervals for the predictors used in Equation (1).

Title p-Values 95% Confidence Intervals

Constant 0.0453 (0.0242, 2.25)
C50 0.000420 (−2.78, −0.822)

EDIQR 6.90 × 10−11 (0.573, 0.997)
NRSD 2.14 × 10−5 (0.843, 2.19)
BW50 1.11 × 10−43 (3.22, 3.76)
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