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Abstract: This paper presents the development and validation of five different soft computing
methods for flotation performance prediction: (1) two models based on fuzzy logic (Mamdani and
Takagi-Sugeno fuzzy inference system) and (2) three models based on artificial neural networks.
Copper content in the ore feed, collector dosage in the rougher and the scavenger flotation circuits,
slurry pH in the rougher flotation circuit and frother consumption were selected as input parameters
to estimate the copper grade and recovery of final concentrate, as well as the copper content in the final
tailings of the flotation plant. The training and evaluation of the proposed models were performed
on the basis of real process data collected by the multiannual monitoring of industrial flotation plant
operation in “Veliki Krivelj Mine”. The results showed that the proposed soft computing-based
models well describe the behavior of the industrial flotation plant in a wide range of circumstances.
Among the proposed algorithms, artificial neural networks gave the most accurate predictions for
the final copper concentrate grade and recovery (R2 = 0.98 and R2 = 0.99, respectively) and copper
content in final tailings (R2 = 0.87). At some points, fuzzy logic models are almost equally efficient,
but artificial neural networks had lower values for all error functions.

Keywords: copper flotation; fuzzy logic; artificial neural network; mathematical modeling

1. Introduction

In the mining industry, the separation of valuable minerals from raw ores is carried
out using the flotation process to obtain qualified concentrate and to eliminate tailings.
Recovery and grade of the concentrate are the important metallurgical factors of the
flotation process. In an industrial flotation plant, the online prediction of the metallurgical
factors is costly and time-consuming. Since the flotation is a nonlinear process, modeling,
automatic monitoring and control of the industrial plants based on the metallurgical factors
have met with limited success at the present time. Furthermore, the process models based
on classical experimental methods do not provide sufficiently efficient results when it
comes to such complex systems [1]. To overcome these difficulties, the use of statistical and
artificial intelligence methods for control and monitoring purposes of the flotation process
has been developed [2]. Therefore, soft sensors based on problem-solving technologies
such as fuzzy logic and neural networks (NNs) emerged as perspective alternatives to
the classical modeling approaches. These methods, unlike the conventional mathematical
techniques, exhibit a certain tolerance to the imprecision and uncertainty of technological
parameters in the description of real systems [3–6].

The most commonly used soft computing methods in the modeling of flotation pro-
cess are different types of NNs due to their acceptable accuracy, robustness, simplicity
and nonlinearity [7–9]. NNs use very powerful computational techniques for modeling
the complex nonlinear processes. Among them, a frequently used NN is a multilayer
perceptron (MLP) based on which models for predicting various flotation parameters have
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been developed. For example, Al-Thyabat [10] examined the suitability of different MLP
architectures by considering the influence of three input parameters (mean particle size in
the feed slurry, collector dosage and impeller rotation speed) on the grade and recovery of
the concentrate obtained by the phosphate flotation process. Similarly, Farghaly et al. [11]
used an artificial neural network (ANN) model to investigate the effect of flotation time,
collector dosage, frother dosage and impeller speed on the grade and recovery of coal
concentrate. Jorjani et al. [12] formed two MLP architectures (7-10-3-1) and (5-30-2-1), for
predicting the recovery and grade of the coal concentrate, respectively.

Nakhaei et al. [13–15] proposed several ANN models for predicting the contents and
recoveries of copper and molybdenum in the column flotation concentrate. The authors
concluded that NNs proved to be a superior technique compared to the regression models.
The same conclusion was obtained by other researchers comparing the statistical methods
and techniques based on MLP for the modeling of copper minerals’ flotation process [16,17].
More recently, the researchers proposed ANN models for the prediction of the phosphate
concentrate grade [18], and removal Cu (II) ion in flotation systems [19].

Some authors have also considered the application of other types of NNs. For example,
Gholami et al. [20] used two types of recurrent neural networks (RNN)—Long short-
term memory network (LSTM) and Gated recurrent unit network (GRU)—to predict the
grade and recovery of copper concentrate within different operating conditions. They
compared the results obtained by the RNN with models based on classical NN and random
forest methods. They demonstrated that the RNN models have a better prediction ability.
The potential of RNNs was also considered by Nakhaei and Irannajad [15], where they
demonstrated good abilities to predict the content and recovery of Cu and Mo in the final
concentrate obtained in the flotation column (correlation coefficient greater than 0.8).

There are also numerous studies for the application of NN in the models related
to the identification, categorization and interpretation of flotation froth images [21–30].
These models typically use extracted features from flotation froth images. In recent times,
convolutional neural networks are increasingly being used to model the flotation process,
especially when it comes to the classification and feature recognition of froth images [31–35].

Fuzzy logic supports the ability of the human mind to effectively express a way of
reasoning that is more approximate than exact. It is a computation and reasoning system
where the objects of computation and reasoning are classes with fuzzy limitations. Fuzzy
logic system allows analysis for modeling complex and poorly defined systems in which
linguistic expressions are used rather than numerical variables [36].

Fuzzy inference is the process of formulating the mapping from a given input to an
output using fuzzy logic. The fuzzy logic generally presents a simple knowledge of the
complex and non-linear process in terms of if-then precise rules with different matching
degrees for a given operational situation [37,38]. This is especially valuable where models
are developed based on expert’s knowledge and individuals without a mathematical
background are involved. There are two kinds of fuzzy inference systems that can be
implemented in the Fuzzy Logic Toolbox: Mamdani and Sugeno types.

Fuzzy logic has been increasingly used in different mineral processing fields with a
variety purpose, such as crushing [39], grinding [40], flotation [4,41] and sample prepa-
ration [42] systems. Attempts to model flotation processes by a fuzzy logic approach are
numerous, whether it is about models related to the entire flotation system or to specific
subsystems that are its integral part.

Jahedsaravani et al. [16] used NN, adaptive neuro-fuzzy and regression methods for
modeling the metallurgical factors in the batch flotation process. Their results indicated
that intelligent techniques outperform statistical approaches. Carvalho and Durão [43]
proposed a model based on Mamdani’s fuzzy inference system within the control system
for stabilizing the operation of the flotation column in a two-phase system (air and water).
In another study, they more fully described the implementation of this model in the control
system of a pilot flotation plant [44]. Vieira et al. [45] employed a multiple-input and
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multiple-output (MIMO) model to identify the performance of a flotation column using the
fuzzy modeling technique, where the Takagi-Sugeno inference system was applied.

Liao et al. [46] created a fuzzy inference system within a slurry level control system in
a flotation column. They considered the position of the valve that regulates the slurry level,
depending on the error between the reference and measured slurry level and the change
rate of that error. Jahedsaravani et al. [47] developed a fuzzy model that simulates the
relationship between process conditions (air velocity, slurry solids content, frother dosage
and type) and metallurgical process parameters (grade and recovery) in an industrial copper
flotation column. This model was incorporated into an intelligent system for controlling
the flotation process. The simulation results demonstrated that the proposed model was
able to maintain the process performance at the desired values during an acceptable period
of time.

Recently, Zhou and Zhou [48] proposed a fuzzy logic-based methodology for bubble
edge detection in flotation froth images. Liang et al. [49] used a fuzzy logic model to
optimize the configuration of flotation circuit. Gao et al. [35] applied several soft computing
methodologies to develop a system that recognizes and classifies flotation froth images,
including fuzzy logic.

The importance of process modeling is reflected in several technological and produc-
tion aspects of flotation concentration. For example, models can be used for data analysis,
which, from the aspect of the complexity of the technological process, would not be easy
to achieve. Ali [50] provides several advantages that can be obtained by mathematical
modeling, optimization and flotation process simulation, such as: improvement of knowl-
edge management, better understanding of current problems, enhancement of technology
transfers, decision-making support systems for plant personnel, improvements in plant
work conditions, improvement in product quality, the reduction of potentially hazardous
experiments, reduction of waste in process development, etc. Proper prediction of metal-
lurgical performance factors of the flotation circuit leads to optimum production and high
profit margin for industrial mineral companies.

Despite the popularity of the flotation process, and the numerous published studies,
comprehensive and robust model that can represent the relationship between the operation
variables (such as grinding fineness, reagent regime, slurry pH and density, residence time
and similar) and performance parameters (usually concentrate quality and recovery of
useful components) of the whole industrial flotation circuit is a challenging task.

Hence, finding a robust and more accurate prediction method for estimating the
metallurgical performance parameters of an industrial flotation circuit is still necessary.
Therefore, this work aims to assess and compare the performance of the two predictive
methods that are ANN and fuzzy logic and to reveal the relevant approach for predicting
the metallurgical parameters in an industrial copper flotation plant. These models are
applied to a large set of industrial flotation circuit data and the results are compared in
terms of accuracy, complexity and suitability for control of the flotation process. For this
purpose, a real large dataset (obtained by multiannual monitoring) of the industrial copper
flotation plant (Veliki Krivelj) is used. The final copper grade and recovery of the flotation
circuit concentrate along with copper content in final tailings are predicted depending
on the five effective variables, which are copper content in the ore feed, collector dosage
in the rougher and the scavenger flotation lines, pulp pH in the rougher line and frother
consumption.

The purpose of modeling the production process in Veliki Krivelj is the possibility of
implementing the obtained models into an automatic control system of this process. This
system would include the application of controllers based on soft computing methods,
as a form of decision support for operators (fuzzy logic controller) or as an independent
control unit (ANN controller). Classic PID controllers, in this case, would be used at lower
hierarchical levels of control to regulate certain parameters such as: pulp level in flotation
cells, air flow, pH value, value of electrochemical potential (Eh) and the like.
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2. Materials and Methods
2.1. Input and Output Variables
2.1.1. Brief Description of the Veliki Krivelj Flotation Plant

The flow sheet of the Veliki Krivelj flotation circuit is shown in Figure 1. In the
comminution plant, the output of three-stage crushing is fed to the two-stage grinding
trains (rod mill and ball mill) in the closed circuit with cyclones to produce 58% of the
product finer than 74 µm. The product of the grinding circuit is separately fed to two
lines of roughing flotation cells. The first roughing flotation bank consists of 2 × 16 cells,
and the second one of 3 × 21 cells. The final copper concentrate is produced by three
stages of flotation cleaning. The first, second and third cleaning banks have 2 × 9, 1 × 8
and 1 × 18 cells, respectively. There is a scavenging flotation stage after the first cleaning.
The scavenging bank consists of 8 cells. The combined concentrates of the roughing and
scavenging lines are ground by using a regrinding mill. The tailings of the roughing and
scavenging cells are discarded as the final tails. In this flotation circuit, Potassium ethyl
xanthate (PEX) is used as collector and Dowfroth 250 (D-250) is used as frother. After the
flotation stages, a copper concentrate was produced with an average grade and recovery of
18%–22% and 80%–90%, respectively.
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Figure 1. Process flow diagram of Veliki Krivelj flotation plant: 1–6—conveyor belts; 7–9—rod
mills; 10–12, 21, 24, 29, 30, 33, 34—centrifugal slurry pumps; 13–15, 25—ball mills; 16–18, 26—
hydrocyclones; 19, 22—agitators; 20, 23—roughing flotation cells; 27—divider; 28—first cleaning
cells; 31—scavenging cells; 32—second cleaning cells; 35—third cleaning cells (Adapted from [4]).

2.1.2. Data Collection

The flotation process is characterized by a large number of influential parameters, i.e.,
input variables that influence the course of the process. All data (the input and output
parameters of the model) were collected by daily/shiftly process monitoring during the
multiannual plant’s operation. The samples on which the copper content is determined—
feed ore, final concentrate and final tailings—were taken at every hour. From the hourly
increments, shift composite samples are formed (one shift lasts 8 h). On these, composites
chemical analyses for copper are performed. The average consumption of reagents as
well as the pulp pH value during one shift are read from the control room. More details
about process parameters measurement and data collection are given in Appendix A.
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Furthermore, Appendix B contains information about all datasets that were used in the
process of model development and evaluation.

2.1.3. Selection of Variables

For the purposes of developing the process models, during the selection of the ap-
propriate influential parameters, their importance was taken into account on the basis of
expert analysis, as well as the availability of appropriate data. The key input variables are
shown in Table 1. Other variables are considered mainly at their constant values as shown
in Table 2. The output parameters of the models are shown in Table 3.

Table 1. Input (independent) parameters.

Type of Variable Label in the Model Unit of Measurement

Copper content in the feed FCU %
Collector consumption at rougher flotation circuit PXR g/t

Frother consumption FRT g/t
pH value of slurry at rougher flotation circuit PHR -

Collector consumption at scavenger flotation circuit PXS g/t

Table 2. Input variables that are considered constant.

Parameter Value Unit of Measurement

Grinding fineness 58 % of class −74 + 0 µm
Regrinding fineness 85 % of class −74 + 0 µm

Pulp density in rougher flotation circuit 1190 g/L
Pulp density in 1st, 2nd and 3rd cleaning 1150, 1130 and 1125 g/L
Pulp density in scavenger flotation circuit 1120 g/L

pH value in 1st, 2nd and 3rd cleaning 11.5, 11.8 and 12 -
pH value in scavenger flotation circuit 11.5 -

Residence time of rougher flotation circuit 21 minutes
Residence time of 1st, 2nd and 3rd cleaning 10, 20 and 19 minutes
Residence time of scavenger flotation circuit 10 minutes

Table 3. Output (dependent) parameters.

Type of Variable Label in the Model Unit of Measure

Copper content in the final concentrate CCU %
Copper content in the final tailings TCU %

Copper recovery in the final concentrate RCU %

The reasons for choosing constant variables are varied. For example, the liberation of
the mineral raw material, i.e., its particle size distribution after grinding and regrinding is
an important influencing parameter in the process. However, the analysis of the particle
size distribution on the sieves is not performed daily, but as needed, every few days. The
monitoring of the particle size distribution of the raw material mainly takes place on the
mining pan, so there was not enough information about the changes of this parameter
during each shift. Furthermore, when it comes to pulp density, there are shiftly data on
the density of hydrocyclone overflows at grinding and regrinding. However, it should be
taken into account that water is added to the roughing flotation cells, as well as to each
cleaning stage, with the aim of correcting the pulp density. Since there is no continuous
monitoring of pulp density in flotation cells, data on changes in pulp density in any of the
stages of flotation concentration were not available.

By analysis of data about pH values of the hydrocyclone overflow at the regrinding, it
was observed that they generally range between 9 and 10. Given that the first cleaning takes
place at a pulp pH of approximately 11.5, it is clear that in the stage of the first cleaning,
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with addition of lime milk, was almost always necessary to achieve the desired pH value.
Consequently, although there is regular monitoring and record keeping of pH values of
the hydrocyclone overflow at the regrinding, these data cannot be considered confident
for process model development. Choosing the consumption of the titrant in the cleaning
stages as input variables makes more sense; however, from the automatic process control
and regulation point of view, it is much more efficient to monitor pulp pH values (because
they can be directly and continuously measured). Bearing in mind this fact, it was decided
not to take the titration values into account in the modeling, but to consider the pH values
of the pulp at cleaning and scavenging as constants.

It should also be noted that one of the criteria when choosing the number of input
variables was the complexity of the fuzzy logic model. Specifically, when the number of
input parameter increases, the number of fuzzy rules will increase exponentially [51]. This
significantly increases the number of calculation and response time of fuzzy system. Therefore,
the decision was to adopt an optimally small number of input parameters in the model.

In order to gain a better insight into the range and characteristics of the input and output
variables, Table 4 presents some of the statistical indicators of the associated data sets.

Table 4. Statistical indicators of the input and output variables in the flotation system.

Statistical Indicator
Input Variables Output Variables

FCU PXR FRT PHR PXS CCU TCU RCU

Minimum 0.12 10.00 1.02 8.44 2.50 7.91 0.009 40.78
Maximum 0.51 49.98 16.97 11.97 7.90 28.09 0.149 96.48

Mean 0.26 32.27 6.19 10.40 5.38 19.24 0.041 84.24
Mod 0.26 33.50 3.80 9.85 5.00 18.48 0.035 90.77

Median 0.26 33.30 5.87 10.45 5.25 19.34 0.038 85.18
Standard deviation 0.046 5.046 2.319 0.645 0.774 3.129 0.017 6.751
Confidence interval 0.002 0.226 0.104 0.029 0.035 0.140 0.001 0.303

2.2. Methodology of Fuzzy System

Fuzzy logic is a mathematical rule-based system in which two human capabilities, which
are the reasoning ability and the ability to fulfill different mental tasks, are tried to be mech-
anized with IF–THEN rules [52,53]. Fuzzy modeling uses linguistic expressions instead of
numerical variables. The typical fuzzy logic architecture comprises four parts: 1. fuzzification,
2. fuzzy rule base, 3. fuzzy inference system (FIS) and 4. defuzzification, as it is illustrated in
Figure 2 [54].

To implement a fuzzy rule-based model, the following stages are needed. First, the
input and output variables are determined. Second, the fuzzy sets are determined for all
variables. Within the fuzzification process, membership functions were determined for
each of the input and output variable. In practice, different types of membership functions
are used (such as triangular, trapezoidal, Gaussian, sigmoidal, polynominal, etc.), and the
selection of the form of the membership functions will rely on the suitability of represent-
ing the element belonging to a given set and expert’s decision. In this research, several
membership functions—triangular, trapezoidal, Gaussian and sigmoidal right—are taken
into consideration, and the most appropriate membership functions: Gaussian, trapezoidal
and constant (Sugeno) were chosen. According to expert analysis, these functions gave the
response surfaces most corresponding to the real process.
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FIS is the heart of the fuzzy logic system in which the classical numeric values are
translated to linguistic forms. These linguistic forms are related to membership function
which assigns them a membership degree (always in the interval between 0 and 1) [55]. FIS
is known as a decision-making platform, which syndicates fuzzification facts with a rule
base and performs the fuzzy reasoning process [56]. FIS includes membership functions,
IF-THEN rules and other logical operations. IF-THEN rules are made to describe the
association between input and output variables [53]. In this work, a set of the linguistic
variables of a fuzzy model are specified as Low, Medium and High (see Table 5).

For the purpose of the current research, the two most common FIS types were estab-
lished: the Mamdani fuzzy inference system marked as PMM and the other based on the
Takagi Sugeno fuzzy inference system, marked as PSM. There are some differences between
them. The PSM model is made by the appropriate transformation of the PMM model. The
output of the Sugeno is linear or constant, but the output of Mamdani is the membership
function. The final stage is the defuzzification in which the fuzzy results are translated to
crispy form values. Some of the defuzzification techniques are the mean of the maximum,
centroid, smallest of the maximum, and largest of the maximum.

In this study, the built fuzzy models are established, trained and authenticated to
predict the flotation performance parameters. The input parameters are FCU, PXR, FRT,
PHR, PXS, while CCU, TCU, RCU are considered as the output responses. The fuzzy
models are constructed by using a fuzzy toolbox of MATLAB®. The fuzzification of the
variables is performed based on the experiential knowledge of the flotation process as well
as the analysis of the collected data. During the training stage, the values of the fuzzy
numbers within the membership functions were adjusted. For each membership function,
an appropriate type and range are determined and assigned.

In order to see more clearly the type and range of the used membership functions,
in the following text, the mathematical formulas describing trapezoidal and Gaussian
functions are given. Trapezoidal membership function (µT) is specified by four parameters
(a, b, c, d) as follows:

µT(x; a, b, c, d) =


0, x ≤ a

x−a
b−a , a ≤ x ≤ b
1, b ≤ x ≤ c

d−x
d−c , c ≤ x ≤ d

0, d ≤ x

 (1)

where the parameters a, b, c and d (with a < b ≤ c < d) determine the x coordinates of the
four corners of the underlying trapezoidal membership function. An illustration of this
membership function is given in Figure 3a.
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Table 5. Fuzzification of the range of variables in the PMM and PSM.

Variable Membership
Function Range of Values Range Fuzzification (Linguistic

Value of the Variable)

Input
(independent)

FCU Gaussian
σ/2 = 0.04778; c = 0.112 Low
σ/2 = 0.07976; c = 0.3008 Medium
σ/2 = 0.02871; c = 0.492 High

PXR Gaussian
σ/2 = 4.743; c = 10.5 Low
σ/2 = 6.37; c = 30.0 Medium
σ/2 = 4.678; c = 49.0 High

FRT Gaussian
σ/2 = 1.362; c = 0.325 Low
σ/2 = 1.486; c = 6.5 Medium
σ/2 = 5.335; c = 17.4 High

PHR Gaussian
σ/2 = 0.779; c = 8.08 Low
σ/2 = 0.598; c = 9.989 Medium
σ/2 = 1.071; c = 11.88 High

PXS Gaussian
σ/2 = 1.225; c = 2.2 Low
σ/2 = 0.7887; c = 6.0 Medium
σ/2 = 0.3802; c = 7.9 High

Output
PMM

CCU Trapezoidal
a = 3.439; b = 6.845; c = 8.015; d = 13.98 Low
a = 10.16; b = 12.36; c = 15.28; d = 21.66 Medium
a = 19.78; b = 24.18; c = 25.38; d = 28.08 High

RCU Trapezoidal
a = 34.32; b = 43.92; c = 54.12; d = 65.73 Low
a = 56.05; b = 71.45; c = 76.15; d = 94.35 Medium
a = 61.90; b = 82.32; c = 89.90; d = 100.0 High

TCU Trapezoidal
a = 0.0124; b = 0.0394; c = 0.0461; d = 0.0731 Low
a = 0.0609; b = 0.0878; c = 0.0946; d = 0.1216 Medium
a = 0.1227; b = 0.1497; c = 0.1565; d = 0.1834 High

Output PSM

CCU Constant
z = 8.8 Low

z = 15.08 Medium
z = 24.25 High

RCU Constant
z = 49.61 Low
z = 74.69 Medium
z = 83.07 High

TCU Constant
z = 0.0427 Low
z = 0.0912 Medium
z = 0.153 High
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Gaussian membership function (µG) is specified by two parameters (c, σ) as follows:

µG(x; c, σ) = e−
1
2 (

x−c
σ )

2
(2)

where c represents the membership functions center and σ determines the membership
function width. An illustration is given in Figure 3b.
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Table 5 shows the fuzzified linguistic values of the input and output variables. The
parameter labels given in the column entitled “Range of values” correspond to those in
Equations (1) and (2). Figures 4 and 5 show the examples of defined membership functions.
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Figure 5. Example of defining the parameters of membership functions in the PSM: (a) pH value at
rougher flotation circuit (PHR); (b) collector consumption in scavenging circuit (PXS).

As a starting point for defining fuzzy rules, Table 6 shows the interdependence matrix
of process parameters of the flotation process. The action, that is, the behavior of depen-
dent variables in the process, was considered for the case of an increase in the value of
independent variable factors (understood within the established range, with no influence
of the remained parameters).

By combining the linguistic values of the input and output variables using the logical
operators of conjunction (AND) or disjunction (OR), fuzzy rules of the following type were
formed (Table 7):

Fuzzy rules were formed based on literature review and expert knowledge of the
flotation process. In this process, 753 rules were constructed by using a rule editor in a
fuzzy toolbox environment. Figure 6 shows the details of rule bases for PMM and PSM
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models, where the rule constituents are expressed through membership functions. This
display of the rule base allows the possibility of setting the values of the input parameters
and insight into the resulting values of the output variables.

Table 6. Interdependence matrix of parameters in the flotation process.

Independent Variable
Action 1

CCU RCU TCU

FCU ↑ ↓ ↑
PXR ↑ ↑ ↓
FRT ↓ ↑ ↓
PHR ↑ ↓ ↑
PXS ↓ ↑ ↓

1 ↑—increase; ↓—decrease.

Table 7. Fuzzy rules formation.

IF FCU is “low” AND PXR is “high” AND FRT is “medium” AND PHR is “medium” AND PXS is “high”
THEN CCU is “medium” AND TCU is “low” AND RCU is “high”

IF FCU is “medium” AND PXR is “medium” AND FRT is “high” AND PHR is “low” AND PXS is “medium”
THEN CCU is “medium” AND TCU is “medium” AND RCU is “high”

IF FCU is “high” AND PXR is “medium” AND FRT is “medium” AND PHR is “high” AND PXS is “low”
THEN CCU is “high” AND TCU is “medium” AND RCU is “medium”

...
etc.

2.2.1. Fuzzy Logic Model Based on Mamdani Inference System—PMM

The elementary characteristics of the PMM model are as following:

• Mamdani inference system;
• Applied AND operator in all rules;
• Implication by the minimum method;
• Aggregation by the maximum method; and
• Defuzzification by the centroid method.

PMM model contains a base of 753 rules. The resulting surfaces are shown in Figures 7–9.
By observing the obtained surfaces, and taking into account predefined boundaries,

it can generally be concluded that these surfaces follow real dependencies of the process
parameters to an acceptable extent. Due to the existence of a large number of resulting sur-
faces, a detailed analysis of each surface would require a too extensive textual presentation.
Therefore, the authors decided to analyze two resulting surfaces of the PMM model:

(1) The surface that shows the dependence of the final concentrate grade (CCU) on copper
content in the feed (FCU) and collector consumption at a rougher flotation circuit
(PXR), Figure 7c;

(2) The surface that demonstrates dependence of the final grade of tailings (TCU) on the
copper content in the feed (FCU) and frother consumption (FRT), Figure 9a.

By visual analysis of the first chosen surface, Figure 7c, it can be observed that with
increasing the collector dosage to a certain extent, the copper grade of the final concentrate
increases and then decreases with a further increase in collector dosage. Similarly, with
increasing the copper content in the feed ore, the quality of the final concentrate also
increases. When we consider the second chosen surface, Figure 9a, it can be observed that
an increase in the frother dosage leads to the reduction of the copper content in the tailings.
These characteristics are in alignment with the literature [57–59].
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copper content in the feed (FCU) and collector consumption at rougher flotation circuit (PXR); (d) 

copper content in the feed (FCU) and collector consumption at scavenger flotation ciruit (PXS); (e) 
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Figure 7. Resulting response surfaces of the PMM model—dependence of final concentrate quality
(CCU) on input parameters. (a) copper content in the feed (FCU) and frother consumption (FRT);
(b) copper content in the feed (FCU) and pH value of slurry at rougher flotation circuit (PHR);
(c) copper content in the feed (FCU) and collector consumption at rougher flotation circuit (PXR);
(d) copper content in the feed (FCU) and collector consumption at scavenger flotation ciruit (PXS);
(e) frother consumption (FRT) and pH value of slurry at rougher flotation circuit (PHR); (f) frother
consumption (FRT) and collector consumption at scavenger flotation ciruit (PXS); (g) pH value of
slurry at rougher flotation circuit (PHR) and collector consumption at scavenger flotation ciruit (PXS);
(h) frother consumption (FRT) and collector consumption at rougher flotation circuit (PXR); (i) pH
value of slurry at rougher flotation circuit (PHR) and collector consumption at rougher flotation
circuit (PXR); (j) collector consumption at scavenger flotation ciruit (PXS) and collector consumption
at rougher flotation circuit (PXR).
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Figure 8. Resulting response surfaces of the PMM model—dependence of copper recovery in final
concentrate (RCU) on input parameters. (a) copper content in the feed (FCU) and frother consumption
(FRT); (b) copper content in the feed (FCU) and pH value of slurry at rougher flotation circuit (PHR);
(c) copper content in the feed (FCU) and collector consumption at rougher flotation circuit (PXR);
(d) copper content in the feed (FCU) and collector consumption at scavenger flotation ciruit (PXS);
(e) frother consumption (FRT) and pH value of slurry at rougher flotation circuit (PHR); (f) frother
consumption (FRT) and collector consumption at scavenger flotation ciruit (PXS); (g) pH value of
slurry at rougher flotation circuit (PHR) and collector consumption at scavenger flotation ciruit (PXS);
(h) frother consumption (FRT) and collector consumption at rougher flotation circuit (PXR); (i) pH
value of slurry at rougher flotation circuit (PHR) and collector consumption at rougher flotation
circuit (PXR); (j) collector consumption at scavenger flotation ciruit (PXS) and collector consumption
at rougher flotation circuit (PXR).
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Figure 9. Resulting response surfaces of the PMM model—dependence of copper content in final
tailings (TCU) on input parameters. (a) copper content in the feed (FCU) and frother consumption
(FRT); (b) copper content in the feed (FCU) and pH value of slurry at rougher flotation circuit (PHR);
(c) copper content in the feed (FCU) and collector consumption at rougher flotation circuit (PXR);
(d) copper content in the feed (FCU) and collector consumption at scavenger flotation ciruit (PXS);
(e) frother consumption (FRT) and pH value of slurry at rougher flotation circuit (PHR); (f) frother
consumption (FRT) and collector consumption at scavenger flotation ciruit (PXS); (g) pH value of
slurry at rougher flotation circuit (PHR) and collector consumption at scavenger flotation ciruit (PXS);
(h) frother consumption (FRT) and collector consumption at rougher flotation circuit (PXR); (i) pH
value of slurry at rougher flotation circuit (PHR) and collector consumption at rougher flotation
circuit (PXR); (j) collector consumption at scavenger flotation ciruit (PXS) and collector consumption
at rougher flotation circuit (PXR).
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2.2.2. Fuzzy Logic Model Based on Takagi Sugeno Inference System—PSM

The fuzzy logic model was formed by applying a suitable transformation of the PSM
model. Its basic methodological characteristics are as follows:

• Takagi-Sugeno inference system; applied AND operator in all rules;
• Implication by the product method;
• Aggregation by the sum method and
• Defuzzification by the weighted average method.

The surfaces obtained by the Takagi Sugeno methodology were smoother than those
obtained by the Mamdani fuzzy inference system, which is expected [60]. In general, it can
be concluded that these surfaces follow the real dependencies of the process parameters
somewhat better than the PMM model. As in the previous section, a detailed analysis of all
surfaces requires a substantial textual representation. Because of that, the analyses of two
selected resulting surfaces are given in this section:

(1) The surface that shows the dependence of the final concentrate grade (CCU) on
the copper content in the feed (FCU) and the pulp pH at the rougher circuit (PHR),
Figure 10b; and

(2) The surface that displays the dependence of copper recovery in the final concentrate
(RCU) on the copper content in the feed (FCU) and the consumption of the collector
at the scavenger circuit (PXS), Figure 11d.

It is known from practice that an increase in the pulp pH leads to an increase in the
copper grade of concentrate, which can also be observed from the first selected surface,
Figure 10b. At first glance, the question of the regularity of the given surface can be
imposed, considering that in this case only the pH value at the rough flotation is considered.
However, we should not ignore the fact that the pH values in the other stages of flotation
are considered optimal constants, and therefore this surface is justified from the aspect of
the flotation concentration process as a whole.

The main reason for adding the collector at the scavenger stage is to increase the
recovery of copper in the concentrate, which coincides with the appearance of the second
selected surface, Figure 11d.

In industrial conditions, the increase in the copper content in the feed ore increase
the concentrate grade. Moreover, if the feed is poor, recovery increases to a certain extent,
and with a further increase in Cu in the feed, recovery decreases, because a part of the
copper remains in the tailings. These technological actualities correspond to both observed
surfaces.

2.3. Artificial Neural Network

NNs are used for solving complex and nonlinear engineering problems. NNs is a
widely used model in mineral processing applications with the ability to recognize patterns
among parameters and predict the key performance parameters of the processes. A typical
NN comprises a large number of neurons or nodes, which are connected to each other. The
neurons are grouped in layers and connected by weighted links and bias. The output of
each neuron is transferred to the next layer as an input. Finally, the nonlinear basis function
set is used to calculate the outputs of NN. The model learning is modifying the weights and
biases to minimize the error, taking into account the targets. Details of the NN algorithm
procedure are presented by Nakhaei et al. [61,62].

In the current study, three feed-forward back-propagation learning algorithms were
employed for predicting the copper content in the final concentrate (NN1), copper recovery
in the final concentrate (NN2), and copper content in the final tailings (NN3). A simple
architecture for the model structures established in this study is shown in Figure 13.

The base also contains 753 rules, as well as the corresponding Mamdani model. The
resulting surfaces of the PSM model are presented in Figures 10–12.
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copper content in the feed (FCU) and collector consumption at rougher flotation circuit (PXR); (d) 

Figure 10. Resulting response surfaces of the PSM model—dependence of final concentrate quality
(CCU) on input parameters. (a) copper content in the feed (FCU) and frother consumption (FRT);
(b) copper content in the feed (FCU) and pH value of slurry at rougher flotation circuit (PHR);
(c) copper content in the feed (FCU) and collector consumption at rougher flotation circuit (PXR);
(d) copper content in the feed (FCU) and collector consumption at scavenger flotation ciruit (PXS);
(e) frother consumption (FRT) and pH value of slurry at rougher flotation circuit (PHR); (f) frother
consumption (FRT) and collector consumption at scavenger flotation ciruit (PXS); (g) pH value of
slurry at rougher flotation circuit (PHR) and collector consumption at scavenger flotation ciruit (PXS);
(h) frother consumption (FRT) and collector consumption at rougher flotation circuit (PXR); (i) pH
value of slurry at rougher flotation circuit (PHR) and collector consumption at rougher flotation
circuit (PXR); (j) collector consumption at scavenger flotation ciruit (PXS) and collector consumption
at rougher flotation circuit (PXR).
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Figure 11. Resulting response surfaces of the PSM model—dependence of copper recovery (RCU) in
final concentrate on input parameters. (a) copper content in the feed (FCU) and frother consumption
(FRT); (b) copper content in the feed (FCU) and pH value of slurry at rougher flotation circuit (PHR);
(c) copper content in the feed (FCU) and collector consumption at rougher flotation circuit (PXR);
(d) copper content in the feed (FCU) and collector consumption at scavenger flotation ciruit (PXS);
(e) frother consumption (FRT) and pH value of slurry at rougher flotation circuit (PHR); (f) frother
consumption (FRT) and collector consumption at scavenger flotation ciruit (PXS); (g) pH value of
slurry at rougher flotation circuit (PHR) and collector consumption at scavenger flotation ciruit (PXS);
(h) frother consumption (FRT) and collector consumption at rougher flotation circuit (PXR); (i) pH
value of slurry at rougher flotation circuit (PHR) and collector consumption at rougher flotation
circuit (PXR); (j) collector consumption at scavenger flotation ciruit (PXS) and collector consumption
at rougher flotation circuit (PXR).
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Figure 12. Resulting response surfaces of the PSM model—dependence of copper content in final
tailings (TCU) on input parameters. (a) copper content in the feed (FCU) and frother consumption
(FRT); (b) copper content in the feed (FCU) and pH value of slurry at rougher flotation circuit (PHR);
(c) copper content in the feed (FCU) and collector consumption at rougher flotation circuit (PXR);
(d) copper content in the feed (FCU) and collector consumption at scavenger flotation ciruit (PXS);
(e) frother consumption (FRT) and pH value of slurry at rougher flotation circuit (PHR); (f) frother
consumption (FRT) and collector consumption at scavenger flotation ciruit (PXS); (g) pH value of
slurry at rougher flotation circuit (PHR) and collector consumption at scavenger flotation ciruit (PXS);
(h) frother consumption (FRT) and collector consumption at rougher flotation circuit (PXR); (i) pH
value of slurry at rougher flotation circuit (PHR) and collector consumption at rougher flotation
circuit (PXR); (j) collector consumption at scavenger flotation ciruit (PXS) and collector consumption
at rougher flotation circuit (PXR).
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Figure 13. The structure of the NN models for the prediction of CCU, RCU and TCU from the
industrial flotation plant.

The ANN models consist of one input layer with five elements (FCU, PXR, FRT, PHR
and PXS), one hidden layer including the desired number of nodes, and the output layer
where the CCU, RCU and TCU values are calculated. The logsigmoid and purelin functions
(see Figure 14) are implemented as the activation functions in the hidden layer and the
output layer. The optimum NN structure is selected using the “trial and error” method by
adjusting the number of neurons in the hidden layer (from 10 to 100) in order to achieve
the best model by minimizing the errors. The widely applied Levenberg Marquardt (LM)
algorithm is used for the model training. For the purposes of designing the network,
1910 data were selected.
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The first idea was to develop one ANN model consisting of 5 input and 3 output
variables. However, the selected software tool considers the sets of output data as one set
and performs all calculations and interpretations based on it. Since the output parameters
are numerically independent and expressed in different units, this was not acceptable.
Moreover, ANN models were developed in order to compare their performances with
performances of fuzzy logic models. Given that fuzzy logic models were developed
based on original data (without normalization), the same procedure was applied to neural
networks. The building of new ANN models with 3 output variables, using more advanced
software tools and normalized data sets, is a topic for further research.

3. Results and Discussion
3.1. Performance Evaluation of the Fuzzy Models

The evaluation of the proposed models was carried out in the MATLAB software
package, by entering the real values of the input process variables from the industrial
flotation plant “Veliki Krivelj” and generating the corresponding outputs predicted by the
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models. Several standard statistical criteria, including the determination coefficient (R2),
root mean square error (RMSE), and standard deviation of prediction error (SDE), are used
to evaluate the performance of the developed models. R2 is an indicator of how much
changes in one variable are caused by changes in another variable, and is represented by
Equation (3), while RMSE shows the accuracy of the model’s predicted values versus the
actual, and is represented by Equation (4):

R2 =

 n(∑ XY)− (∑ X)(∑ Y)√(
n ∑ X2 − (∑ X)2

)(
n ∑ Y2 − (∑ Y)2

)


2

(3)

RMSE =

√
∑n

i=1(X−Y)2

n
(4)

In these equations, X is the measured value, Y is the predicted value, and n is the
number of samples.

SDE shows how much, on average, the elements of the dataset deviate from the
arithmetic mean of that dataset and is expressed by Formula (5):

SDE =

√
∑n

i=1(x− µ)2

n
(5)

where n presents the number of elements in the dataset, µ is mean (average value) of the
dataset and x is the i-th member of the dataset.

Standard deviation is determined for absolute (SDE) and relative prediction error
(SDEr).

The prediction error (ε) and relative prediction error (εr), which served as the crite-
ria for evaluating the predictive properties of models, were calculated according to the
Formulas (6) and (7):

ε = Y− X (6)

εr =
Y− X

X
(7)

where X, Y have the same meaning as in Equations (3) and (4).
The descriptive statistics of differences between measured and estimated values for

the evaluation data are given in Tables 8 and 9. Figures 15–18 present the prediction errors
of the fuzzy models.

Table 8. Statistical analysis of actual and predicted values using the PMM model.

Statistical Parameters
Technological Indicator of the Flotation Process

CCU RCU TCU

R2 0.971 0.992 0.839
RMSE 3.126 7.007 0.034

Mean of prediction error, µ −0.886 −2.666 0.044
SDE 3.306 7.227 0.019

Maximum positive error (maximum) 10.644 36.739 0.100
Minimum positive error 0.00069 0.00689 0.00015
Minimum negative error −0.01968 −0.01318 −0.00001

Maximum negative error (minimum) −10.743 −25.233 −0.047
Mean of relative prediction error, µr −0.017 −0.024 1.485

SDEr 0.190 0.098 1.238



Minerals 2022, 12, 1493 22 of 50

Table 9. Statistical analysis of actual and predicted values using the PSM model.

Statistical Parameters
Technological Indicator of the Flotation Process

CCU RCU TCU

R2 0.970 0.993 0.847
RMSE 3.291 6.739 0.034

Mean of prediction error −0.288 −2.008 0.046
SDE 3.374 6.915 0.018

Maximum positive error (maximum) 10.961 39.619 0.091
Minimum positive error 0.00473 0.00232 0.00128
Minimum negative error −0.01028 −0.01190 −0.00019

Maximum negative error (minimum) −10.354 −17.502 −0.056
Mean of relative prediction error, µr 0.015 −0.0165 1.562

SDEr 0.198 0.096 1.244
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By considering the results of the regression analysis shown in Table 8, it can be
observed that the values of the determination coefficients for predictions of the content and
recovery of copper in the final concentrate are high. This means that a strong relationship
has been established using the PMM model between the actual and the predicted values
of the metallurgical indicators. In other words, the proposed model well describes the
changes in the real values of the observed parameters related to their increase or decrease
over time.

Yet, when the prediction error is taken into account (Figure 15), it is noted that there
are insignificant and, in some occasions, relatively large deviations from the actual results.
Although the maximum and minimum errors of the estimation (margin of error) are high,
they occurred a few times and did not have a high frequency.
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Figure 18. Relative prediction errors of technological indicators according to the PSM model: (a)
CCU, (b) RCU and (c) TCU. The red line on the charts represents mean (µr), green line value µr + 1
SDEr and violet line value µr − 1 SDEr.

The red line on the charts represents mean (µ), green line value µ + 1 SDE and purple
line value µ − 1 SDE. This is generally applied to all charts where absolute and relative
prediction error is presented.

It should be noted that the complete regression analysis was based on a theoretical
assumption that if the actual values of the metallurgical indicators were equal to zero, in
that case the values predicted by the models would also be equal to zero. This statement was
adopted for practical reasons, in order to mitigate illogical oscillations, extreme deviations
and dispersion of values in real results, caused by imperfections in measurement, human
factor errors and the like, which can significantly affect the results of the model validation.
In this sense, this regression analysis should be given greater mathematical importance
than the practical.

By observing the trend of the prediction errors of the final concentrate grade, it can
be concluded that their values are mostly between ± 5% Cu, which is consistent with the
RMSE value of 3.126 (Table 8). The only major deviation from this trend can be observed
on the right half of the diagram, which corresponds to the beginning of the last third of the
observed time period of the plant operation. In this period, prediction errors are mostly
negative, which may indicate changes in the operation conditions of the plant. These large
fluctuations can be caused by changing some factors that were not taken into account
during modeling, such as changes in the feed ore hardness or changes in the quality of the
reagents.

Furthermore, by looking at the prediction errors of recovery, it is observed that a
positive prediction error for the recovery (predicted values are higher than the actual) is
quite well associated to a negative prediction error for the tailings grade. The reverse is
also true: a negative prediction error for the recovery is associated to a positive prediction
error for the tailings grade. Therefore, the recovery of copper in the final concentrate and
the copper content in the tailings are in alignment with each other. This matching indicates
a good general setting of the model, as well as the potential influence of process factors
that were considered constant during modeling.
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It should also be noted that the TCU prediction error is mostly positive, which means
that the values predicted by the model are, as a rule, slightly higher than the real ones
(offset error). This result indicates that the additional fine tuning of the model is needed.
Namely, the relatively small deviations of the predictive model results in relation to real
results, with the tendency to “translatory skip” the real values, indicating that fuzzy values
within the membership functions need to be additionally corrected. However, taking into
account the good correlation between fuzzy rule base outputs with the real flotation system
conditions, this is at the same time an indication that the performance of the model itself
has “hit” its own limits. In this sense, hybridization of this fuzzy logic model with other
soft computing methods is recommended.

By considering the data distribution in the range of ± 1 SDE, it was found that in this
range lies 67.6% of the prediction error values for CCU, 74.7% for RCU and 71.2% for TCU.

Besides the absolute prediction error, one of the criteria for assessing model adequacy
is the relative prediction error. This parameter can provide a clearer insight and additional
data on the effectiveness of the predictive model, because it is used as a basis for comparing
parameters that are expressed in different measurement units and different value ranges.
Figure 16 presents the relative prediction errors of the CCU, RCU and TCU parameters of
the PMM model.

By visual analysis of the charts in Figure 16, as well as consideration of the statistical
parameters, it can be observed that the smallest relative prediction error is obtained when
modeling RCU, and the highest when modeling TCU, which is consistent with their R2.

The relative prediction error of RCU has the smallest standard deviation, and 82.1% of
the results are in the range ± 1 SDEr. When it comes to relative prediction errors of CCU
and TCU, 73.6% and 79.0% of the results are within ± 1 SDEr., respectively.

Table 9 shows that the results obtained by the PSM model are very similar to the PMM
model results. The high values of determination coefficients indicate the existence of a
strong relationship between the actual and predicted values of metallurgical indicators.

Prediction error diagrams (Figure 17) have shown small (more frequently) and larger
(less frequently) deviations from the actual results. Margin errors (maximum and minimum)
are also high, as in the previous case (Figure 15), but such extremes occur very rarely.

The prediction error trends of the copper content and recovery of the concentrate is
almost identical to the trends shown in Figure 15.

Moreover, when it comes to the error of predicting the copper content in the tailings,
the trend largely coincides with the corresponding trend of Figure 15. The only difference
that is possible to observe is that a smaller number of error values are close to extremes.
This leads to the conclusion that the deviations between the predicted and actual tailings
grade are somewhat smaller, which also corresponds to the slightly higher value of the
determination coefficient of the PSM model for the TCU variable.

Generally, for both models (PMM and PSM), the values of TCU prediction errors are
mostly between ± 0.05% Cu, which is consistent with RMSE values (0.034 both, Table 9). It
can be concluded that both models provided effective predictions, overall. As for the PMM
model, the TCU prediction error is mostly positive, which indicates an offset error.

Similar to the PMM model, 67.7% of the prediction error values for CCU, 73.8% for
RCU and 72.1% for TCU are in the range ± 1 SDE.

When considering the relative prediction error presented in Figure 18, it is also con-
cluded that the results are very similar to the results of the PMM model.

In the range ± 1 SDEr are 73.1% of the relative prediction error results for CCU, 82.1%
for RCU and 79.4% for TCU (Figure 18).

3.2. Neural Network-Based Models
3.2.1. Model Performances

Three different models based on the principle of feed-forward backpropagation NN
were trained. Model NN1 predicts copper content in the final concentrate, model NN2
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predicts copper recovery in the final concentrate and model NN3 predicts copper content
in the final tailings.

The architecture of the NN that gave the smallest Mean Square Error (MSE) of vali-
dation (best validation performance) was chosen as the most favorable predictive model.
Mathematically, MSE can be defined as:

MSE =
1
n

n

∑
i=1

(X−Y)2 (8)

where X is the measured value, Y is the predicted value, and n is the number of samples.
The NN models consisting of 64, 43 and 24 neurons in the hidden layer gave the lowest

mean squared error among all models studied for NN1, NN2 and NN3, respectively. The
networks’ performances in the training stage are shown in Figures 19–21.
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Figure 20. Training state and performance of the generated NN2 model for RCU.

Figure 19 demonstrates the MSE variation of the training, validation and testing stages
versus the iteration number. As shown in this figure, the large values for the MSE were
gradually reduced to a smaller value as the weights are updated. The training stage stopped
at 5th epoch, i.e., after epochs 5, there was not a significant improvement in the performance
of the model. The best validation performance was 8.35 at epoch 5, implying a good stable
network behavior. Then, after six error iterations (validation checks), the process stopped at
epoch 11. The similar explanation provided for Figure 19 can also be applied for Figures 20
and 21.
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Figure 21. Training state and performance of the generated NN3 model for TCU.

One of the important phenomena that can be observed from the Figures 19–21 is that
no overfitting occurred during training, testing and validation.

Overfitting can be spotted when the error on the training data decreases to a small
value, but the error on the test/validation data increases to a large value. Some reasons
for overfitting are: small size of the training dataset, very noisy dataset and complex ANN
architecture [63].

When the network tries to learn from a small dataset, it will tend to have greater
control over the dataset and to satisfy all the data points exactly. Therefore, the network is
trying to memorize every single data point and failing to capture the general trend from
the training dataset. In the observed case, a relatively large training dataset is applied,
containing 1336 samples.

Overfitting also occurs when the model tries to make predictions on data that is very
noisy, which results that the overfitted model is inaccurate, as the trend does not reflect the
reality present in the data. By using the early stopping technique (small number of epochs),
the network can be prevented from overfitting the noise in the data [63]. In the observed
case, the number of epochs is relatively small, i.e., 11, 15 and 12 epochs for NN1, NN2 and
NN3, respectively.

Increasing the number of hidden units and/or layers may lead to overfitting because
it will make it easier for the neural network to memorize the training set, but to avoid
generalization to unseen data. Therefore, a too large number of neurons in the hidden layer
is undesirable. There is an empirical formula for the optimal number of hidden neurons
(Nh) in the hidden layer [64]:

Nh =
Ns

α(Ni + No)
(9)

where Ni represents the number of input neurons, No is the number of output neurons, Ns
is the number of samples in training dataset and α is the scaling factor, which takes values
from 2 to 10.

If this formula is applied to the observed case, the number of hidden neurons should
vary between 22 and 111. NN1, NN2 and NN3 models contain 64, 43 and 24 hidden
neurons, respectively, which corresponds to the specified range. Since overfitting is not
occurred, the numbers of hidden neurons are correctly chosen.

3.2.2. Predictive Abilities of NN-Based Models

The predicted results demonstrate the R2 value 0.98 for CCU, 0.99 for RCU and 0.87
for TCU, demonstrating the success of the proposed NN models (Table 10). As it can
be observed from Table 10, the RMSE between predicted and actual data by using NN
models are very small, which means they can accurately predict the flotation performance
indicators within the entire process variables’ space.
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Table 10. Statistical analysis of actual and predicted values using NN1, NN2 and NN3 models.

Statistical Parameters
Technological Indicator of the Flotation Process

CCU RCU TCU

R2 0.982 0.994 0.867
RMSE 2.567 6.284 0.015

Mean of prediction error −0.017 −0.338 0.0015
SDE 2.589 6.323 0.016

Maximum positive error (maximum) 10.933 44.501 0.043
Minimum positive error 0.00102 0.00694 0.000003
Minimum negative error −0.00230 −0.01246 −0.00004

Maximum negative error (minimum) −10.892 −16.341 −0.113
Mean of relative prediction error, µr 0.019 0.002 0.222

SDEr 0.154 0.089 0.551

NN errors for the prediction of CCU, RCU and TCU are shown in Figure 22. It can
be observed that these errors are mostly between ± 2.7% Cu and ± 5% for CCU and
RCU, respectively. The prediction errors of the copper content and recovery in the final
concentrate are very rarely out of range of ± 5% Cu and ± 10%, respectively. This is
consistent with the RMSE values of 2.567 for NN1 and 6.284 for NN2 (Table 10).
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Analyzing the results obtained by the NN3 model from Figure 22, we explored that
the prediction errors of the TCU mostly take values in the range of ± 0.016% Cu, which
is consistent with its RMSE of 0.015 (Table 10). Examining the data distribution of the
prediction error in the range of ± 1 SDE, it was found that 68.9%, 74.3% and 72.1% data lies
within this range for CCU, RCU and TCU, respectively.

Figure 23 shows the relative error of the predictive models. Similar to the previous
observations (for PMM and PSM), the smallest relative prediction error with the smallest
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standard deviation was obtained for the RCU variable. This is consistent with the highest
coefficient of determination also achieved for the RCU (Table 10).

Minerals 2022, 12, x FOR PEER REVIEW 30 of 51 
 

 

 

Figure 23. Relative prediction errors of technological indicators according to the (a) NN1, (b) NN2 

and (c) NN3 models. The red line on the charts represents mean (μr), green line value μr + 1 SDEr 

and violet line value μr − 1 SDEr. 

In general, from the obtained results, it was found that the NN models are well fitting 

the real data and have the ability to predict the output data. It can be concluded that the 

NN models have good predictive properties, because of significant fluctuations in real 

process data. The validation set and test set had similar behavior with no occurrence of 

overfitting. 

3.3. Summary Discussion 

Comparative presentation of statistical parameters of every model is given in Figures 

24–26. 

 

Figure 24. Comparison of fuzzy and ANN modeling results: R2 and RMSE. 

Figure 23. Relative prediction errors of technological indicators according to the (a) NN1, (b) NN2
and (c) NN3 models. The red line on the charts represents mean (µr), green line value µr + 1 SDEr

and violet line value µr − 1 SDEr.

The number of datum lying in the ± 1 SDEr range is similar to the previous two
models, and is 75.1% for the NN1 model, 81.4% for the NN2 model and 78.7% for the NN3
model.

In general, from the obtained results, it was found that the NN models are well fitting
the real data and have the ability to predict the output data. It can be concluded that the
NN models have good predictive properties, because of significant fluctuations in real
process data. The validation set and test set had similar behavior with no occurrence of
overfitting.

3.3. Summary Discussion

Comparative presentation of statistical parameters of every model is given in Figures 24–26.
According to Figure 24, the accuracy of the NN models is higher than the accuracy

of fuzzy models. The dependent variables (CCU, RCU and TCU) are better explained
in the NN models than in the fuzzy models by the independent variables (FCU, PXR,
FRT, PHR and PXS), since the determination coefficients are higher and the RMSE are
significantly smaller. It can be clearly observed that models based on NN demonstrate the
best predictive abilities, while both fuzzy models demonstrate very similar performances.
Therefore, practically there is no difference in the utilization of either the Mamdani or
Takagi Sugeno inference system under a wide range of operation conditions.

A similar conclusion can be made based on the results shown in Figures 25 and 26. The
smallest standard deviations of predictive error (both absolute and relative) have neural
networks when it comes to all output variables. A low standard deviation indicates that
the values tend to be close to the mean (also called the expected value) of the set, while a
high standard deviation indicates that the values are spread over a wider range.
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By analyzing the statistical parameters of the relative error, it is observed that the
RCU variable has the smallest standard deviations (SDEr) in all models, which corresponds
to the highest coefficients of determination for RCU variable in all models. Further, the
variable TCU has the highest standard deviations of the relative prediction error, which
also corresponds to the smallest values of R2 in relation to CCU and RCU (Tables 8–10).

The means of the absolute errors for CCU and RCU variables are negative, which
indicates that the models have a greater tendency to predict values that are less than the
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real ones. On the other hand, the means of errors for TCU are positive, which indicates that
the models have a tendency to predict higher values from real ones. In accordance with the
second observation are offset errors in the Figures 15c and 17c.

This study demonstrates that the developed models can be used as new tools to
estimate the performance of the flotation circuit based on operational conditions, which are
readily available at an industrial plant. Due to the dynamic nature and variations in real
data, building an appropriate model for the prediction of flotation process in an industrial
plant is a challenging task. More complex algorithms always require a larger amount
of data. The sample size would depend on the number of input features and degree of
nonlinearity between input and predicted variables (nature of the problem) [65]. In this
paper, more than 1900 samples were used to capture the complexity of the process. The
results indicate that the proposed NN and fuzzy models are able to predict the performance
indicators of the flotation process in an industrial plant based on a large dataset with a high
accuracy. The main reason why these models are more precise than some other presented
models is that such models reported in the past were based on a small data set [2,28,66].

4. Conclusions

In this study, the metallurgical parameters of an industrial copper flotation plant
were predicted by two fuzzy logic models (Mamdani and Takagi-Sugeno) and three back-
propagation neural network (BPNN) models. Since the grade and recovery of concentrate
are essential factors for decision making and control of the industrial flotation plant, their
predictive model accuracy is very important. Therefore, a large dataset (1910 samples) was
collected by daily/shiftly process monitoring during the multiannual plant’s operation.
The most effective parameters, namely copper grade in the ore feed, collector dosage
in the rougher and the scavenger circuits, slurry pH in the rougher circuit and frother
consumption, were selected and used in all models. The performance of each model was
evaluated by well-known evaluation criteria, RMSE, R2.and SD of prediction error. Based
on the obtained results, the following can be concluded:

• The purpose of modeling the production process in the Veliki Krivelj plant is the
possibility of implementing the obtained models into an automatic control system of
this process. This system would include the application of controllers based on fuzzy
logic or artificial neural networks.

• The NN and fuzzy logic models provided effective estimations due to the high R2 and
low RMSE values. However, the NN models were slightly more robust and accurate
in predicting the values of metallurgical factors compared to the fuzzy logic models.
The RMSE values of the NN models for the prediction of copper grade and recovery
of the final concentrate were 2.567 and 6.284, respectively.

• Neural networks have the smallest standard deviations of the absolute and relative
prediction error for all output variables.

• The differences between predicted and actual values are relatively small for all models.
The significant deviations between actual and predicted values most likely occurred
due to the fluctuations in real process data that can be caused by various factors, such
as changing process dynamics due to the downtime of the plant, oscillations in the
process parameters that were considered constant during modeling, changes in the
reagents’ quality, changes in process water quality, human factor, etc.

• The highest determination coefficients between actual and predicted values were
obtained when modeling the copper recovery in the final concentrate, and the lowest
when modeling the copper content in the final tailings. This can be applied to all
models. The reason may lie in that the values of copper content in tailings vary
in a relatively narrow range in relation to quality and recovery. Therefore, it may
happen that the influences of completely different values of input parameters are
integrated through very similar or the same copper contents in tailings, without
this being taken into account during modeling. Such a situation could significantly
affect the determination coefficient. Moreover, possible imperfections during tailings’
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sampling (which are particularly linked to instabilities in the operation of the plant)
should not be ignored, because the copper content in the samples is extremely low, and
therefore proper sampling is of crucial importance for obtaining the precise chemical
composition of the tailings.

• In accordance with the previous statement, the smallest standard deviations of the
relative prediction error were obtained with the models that predict Cu recovery in
the concentrate, and the largest with the models that predict Cu content in the tailings.

• By comparing the results of Mamdani and Takagi Sugeno fuzzy inference systems, it
can be inferred that they demonstrate very similar predictive performance.

• Further research will be focused on the inclusion of other independent variables into
the models, as well as on the modeling of individual parts of the flotation process
depending on the availability (i.e., continual measurement) of process data to evaluate
whether prediction results are improved or not.

• Sensitivity analysis of models, especially regarding the parameters considered con-
stant, can be very helpful when it comes to improving the performances of the models
and also represents the topic of future research.

• The application of more advanced software tools, as well as other soft computing
methods, can also be effective in modeling such systems based on relatively large sets
of input and output data.

Author Contributions: Conceptualization, I.J.; Methodology, I.J., F.N., D.K. and V.C.; Validation, F.N.;
Investigation, I.J. and F.N.; Resources, I.J.; Data curation, D.K., V.C. and D.U.; Writing—original draft
preparation, I.J. and F.N.; Writing—review and editing, D.K. and V.C.; Visualization, D.U.; Supervision,
D.K., V.C. and D.U. All authors have read and agreed to the published version of the manuscript.

Funding: This work was financially supported by the Ministry of Education, Science and Technologi-
cal Development of the Republic of Serbia, Grant No. 451-03-68/2022-14/200052.

Acknowledgments: We thank the Ministry of Education, Science and Technological Development of
the Republic of Serbia.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

During the observed period, in which measurement and data collection was carried
out, the control and regulation system in the Veliki Krivelj flotation plant mainly relied on
a manual mode of operation. This means that there is no fully automated and continuous
monitoring of process parameters, but the role of controller is performed by experienced
plant operators. In order to maintain the technological process in the stable state, the
following technological parameters were measured and regulated:

• Particle size analysis of grinding products;
• Pulp density;
• Pulp level;
• Pulp pH value;
• Reagents’ consumption.

Particle size distribution of the grinding product is one of the parameters that gives
insight into the liberation degree of the mineral raw material. In order to determine the
particle size distribution of the finally ground product, a sample of the hydrocyclone
overflow is taken, and then sieved in the laboratory on the sieve with 0.074 mm aperture.
The percentage mass content of the −0.074 mm class should be within a certain range (i.e.,
58%–60%). If this content is lower than required, a correction is made at the feed to the rod
mill by reducing the ore processing capacity or reducing the grinding pulp density within
the prescribed range. If this content is higher than required, the ore processing capacity
increases. When it comes to the overflow of the hydrocyclone in regrinding circuit, the
regulation of the particle size distribution is conducted by reducing the amount of water (if
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the overflow is too coarse) or by increasing the amount of water (if the overflow is too fine)
that is added to the regrinding mill.

In addition to the control of the finally ground product, if necessary, control of the
grinding product of the rod mill, ball mill and regrinding mill is also carried out. Since the
process is continuous and there is a need for quick reaction and process corrections, it is
necessary to perform visual controls during the work. These controls are performed every
hour and consist of rinsing a sample of the hydrocyclone overflow on the mining pan.

Pulp density has a significant impact on the grinding, classification and flotation
process. The appropriate pulp density in the mills ensures the maximum capacity of the
mill, while in the classifier (hydrocyclone), it affects the coarseness of the overflow. The
optimal pulp density in the flotation cells provides adequate conditions for the optimization
of the copper mineral flotation process.

Pulp density control is performed at various points in the process, such as for example,
rod and ball mill discharges, hydrocyclone underflow and overflow, etc. Pulp density is
determined by the glass pycnometer method in the laboratory. However, due to the timely
reaction to changes in pulp density values in the process, it is necessary to perform a quick
control of the same in the flotation plant. This procedure is performed by measuring the
full “Denver” pycnometer on a “Denver” scale every 1–2 h.

Regulation of the pulp density is conducted by changing the amount of water added
at certain points of the process or by changing the ore processing capacity. Water is added
to the process manually, by means of a valve that corresponds to the given segment of the
process in which the regulation is carried out.

The optimum value of the pulp level ensures the optimum time required for the
hydrophobic mineral particles to adhere to the air bubbles. Regulation of the pulp level is
done manually—by raising the plugs (when it is necessary to decrease the pulp level) or by
lowering the plugs (when it is necessary to increase the pulp level), which are located in
the boxes of the flotation machines.

The optimal pH value of the pulp creates optimal conditions for collector action on
the surfaces of the mineral particles, as well as the selectivity of the flotation process. The
pH value is measured with pH-meters whose electrodes are immersed in the hydrocyclone
overflows. These values are read on the control panel display.

In addition, the pH values of all three cleaning tails are also determined. Samples are
taken manually, and the pH is determined with manual pH-meters or the pulp titration
method in the laboratory (this method is based on determining free lime in the clear part of
the solution. The volumetric quantity of titrant (in this case HCl) needed to react with all
Ca(OH)2 in the solution (end point of the titration) is measured, according to the equation
Ca(OH)2 + 2HCl = CaCl2 + 2H2O).

To regulate the pH value of the pulp, lime is used, which is added to the process in the
form of lime milk (6% aqueous solution of calcium oxide). When it comes to the grinding
process, reducing or increasing the dose of milk of lime, depending on the desired pH
value of the pulp, is conducted from the control panel, by adjusting the clearance of the
pneumatic valves located at each dosing point. The regulation of lime milk consumption in
each stage of cleaning is conducted manually.

Reagents are, as is known, one of the key elements for the success of the copper
flotation process. Control of the reagent dosage (collector and frother) is performed by
measuring the flow of reagents (which is read in the control room) and calculating their
consumption per ton of processed ore.

Potassium ethyl xanthate (PEX) is used as collector and dosed into the process in the
form of a 10% solution. PEX is added only to the roughing and scavenging circuit. The
regulation of collector consumption is a complex task that depends on a number of factors
in the plant. First of all, the information obtained from the mining pit about the ore
mineralogical composition and copper content is considered. In addition, a visual analysis
of the ground material, concentrate and tailings is performed by washing them on the
mining pan every hour (the analysis of intermediate products is also performed in this way,
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but with a lower frequency of testing). The appearance of the flotation froth in terms of its
color, bubble size, mineralization, etc., is also monitored.

Therefore, there are a number of factors that indicate whether it is necessary to in-
crease or decrease the dose of the collector. Experienced plant operators recognize these
indicators and take appropriate management action accordingly. Regulation of the collector
consumption is conducted manually, using the valves located at each dosing point.

Dowfroth 250 is used as a frother and added to the process in liquid form, concentrated.
Frother is only added in the agitation stage, just before the roughing. Its consumption
primarily depends on the stability of the flotation froth (i.e., whether the froth “grows” or
is prone to collapse), then on the presence of alumina in the feed, etc. The frother flow is
regulated in one place, by means of a manual valve.

Besides the mentioned parameters, which are controlled and regulated directly in
the “Veliki Krivelj” flotation plant, particle size distribution of the finally crushed ore is
determined daily, which can indicate the efficiency of the crushing process and the eventual
need to regulate the processing capacity in grinding. In addition, the copper content in the
feed ore, concentrate and tailings is determined by chemical analysis. Samples for chemical
analysis are taken every hour, and from the hourly increments, shift composite samples are
formed. Based on results of chemical analyses, feed capacity and concentrate quantity, the
recovery of copper in concentrate is calculated.

Data on the input parameters of the technological process, as well as data on the
concentration products, are collected by daily monitoring and stored in the record docu-
mentation. Data are stored for each individual shift as a shift average.

For the purposes of model development, a two-and-a-half-year period of continuous
plant production was chosen, with a total of 2553 shift data available to the authors. These
data are arranged in a time-line order. However, considering that during the plant operation
there is a stoppage due to various factors (such as device failures, the need for overhaul
and lack of ore from the open pit), the analysis found that data are missing for certain shifts,
either completely or partially. Moreover, due to errors that may occur during sampling,
or due to the imperfection of chemical analyses, imperfection of measuring instruments,
imperfection of calculations (human factor), etc., some shift data contained illogicalities
in the sense of extremely low or extremely high values of process parameters. Such shift
data were also eliminated from the primary dataset, so that the final and complete dataset
contained 1910 shift data. The time-line sequence in the data arrangement is preserved.

Analyzing these final datasets, it was still possible to notice data scattering, as well as
relatively large differences between minimum and maximum values for certain variables
(e.g., recovery). Still, one of the modeling goals was to use a maximal quantity of industrial
data and to, however is possible, follow the process continuity and the changes that
occur over time. Therefore, these scatterings were considered normal during the industrial
process, with the level of error in the process parameters determination up to 10%, according
to the experiences of process and chemical engineers.

Appendix B

Appendix B.1. Input Datasets

Input datasets, as well as their distributions, are given in Figures A1–A10.
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Table A1. Regression statistics parameters of PMM model training dataset.

Statistical Parameters
Technological Indicator of the Flotation Process

CCU RCU TCU

R2 0.971 0.992 0.851
RMSE 3.096 6.681 0.034

Testing Datasets

Information about the PMM model testing datasets is shown in Figures A20–A25 and
in the Table A2.

Minerals 2022, 12, x FOR PEER REVIEW 42 of 51 
 

 

Table A1. Regression statistics parameters of PMM model training dataset. 

Statistical Parameters 
Technological Indicator of the Flotation Process 

CCU RCU TCU 

R2 0.971 0.992 0.851 

RMSE 3.096 6.681 0.034 

Appendix B.2.1.2. Testing Datasets 

Information about the PMM model testing datasets is shown in Figures A20–A25 and 

in the Table A2. 

 

Figure A20. PMM model—testing dataset for CCU output variable. 

 

Figure A21. Prediction error of PMM model testing dataset for CCU output variable. 

 

Figure A22. PMM model—testing dataset for RCU output variable. 

Figure A20. PMM model—testing dataset for CCU output variable.

Minerals 2022, 12, x FOR PEER REVIEW 42 of 51 
 

 

Table A1. Regression statistics parameters of PMM model training dataset. 

Statistical Parameters 
Technological Indicator of the Flotation Process 

CCU RCU TCU 

R2 0.971 0.992 0.851 

RMSE 3.096 6.681 0.034 

Appendix B.2.1.2. Testing Datasets 

Information about the PMM model testing datasets is shown in Figures A20–A25 and 

in the Table A2. 

 

Figure A20. PMM model—testing dataset for CCU output variable. 

 

Figure A21. Prediction error of PMM model testing dataset for CCU output variable. 

 

Figure A22. PMM model—testing dataset for RCU output variable. 

Figure A21. Prediction error of PMM model testing dataset for CCU output variable.

Minerals 2022, 12, x FOR PEER REVIEW 42 of 51 
 

 

Table A1. Regression statistics parameters of PMM model training dataset. 

Statistical Parameters 
Technological Indicator of the Flotation Process 

CCU RCU TCU 

R2 0.971 0.992 0.851 

RMSE 3.096 6.681 0.034 

Appendix B.2.1.2. Testing Datasets 

Information about the PMM model testing datasets is shown in Figures A20–A25 and 

in the Table A2. 

 

Figure A20. PMM model—testing dataset for CCU output variable. 

 

Figure A21. Prediction error of PMM model testing dataset for CCU output variable. 

 

Figure A22. PMM model—testing dataset for RCU output variable. 
Figure A22. PMM model—testing dataset for RCU output variable.



Minerals 2022, 12, 1493 42 of 50
Minerals 2022, 12, x FOR PEER REVIEW 43 of 51 
 

 

 

Figure A23. Prediction error of PMM model testing dataset for RCU output variable. 

 

Figure A24. PMM model—testing dataset for TCU output variable. 

 

Figure A25. Prediction error of PMM model testing dataset for TCU output variable. 

Table A2. Regression statistics parameters of PMM model testing dataset. 

Statistical Parameters 
Technological Indicator of the Flotation Process 

CCU RCU TCU 

R2 0.972 0.993 0.840 

RMSE 3.049 6.613 0.035 

Appendix B.2.2. Artificial Neural Network-Based Model for CCU Prediction—NN1 

Training, testing and validation data sets of this model are randomly chosen by the 

network in the following way: 

 A total of 60% of the data (1336 in total) are determined for training; 

 A total of 15% of the data (287 in total) are determined for testing; 

 A total of 15% of the data (287 in total) are determined for validation. 

Information about the NN1 model training, testing and validation datasets is shown 

in Figures A26–A31 and in the Table A3. 

Figure A23. Prediction error of PMM model testing dataset for RCU output variable.

Minerals 2022, 12, x FOR PEER REVIEW 43 of 51 
 

 

 

Figure A23. Prediction error of PMM model testing dataset for RCU output variable. 

 

Figure A24. PMM model—testing dataset for TCU output variable. 

 

Figure A25. Prediction error of PMM model testing dataset for TCU output variable. 

Table A2. Regression statistics parameters of PMM model testing dataset. 

Statistical Parameters 
Technological Indicator of the Flotation Process 

CCU RCU TCU 

R2 0.972 0.993 0.840 

RMSE 3.049 6.613 0.035 

Appendix B.2.2. Artificial Neural Network-Based Model for CCU Prediction—NN1 

Training, testing and validation data sets of this model are randomly chosen by the 

network in the following way: 

 A total of 60% of the data (1336 in total) are determined for training; 

 A total of 15% of the data (287 in total) are determined for testing; 

 A total of 15% of the data (287 in total) are determined for validation. 

Information about the NN1 model training, testing and validation datasets is shown 

in Figures A26–A31 and in the Table A3. 

Figure A24. PMM model—testing dataset for TCU output variable.

Minerals 2022, 12, x FOR PEER REVIEW 43 of 51 
 

 

 

Figure A23. Prediction error of PMM model testing dataset for RCU output variable. 

 

Figure A24. PMM model—testing dataset for TCU output variable. 

 

Figure A25. Prediction error of PMM model testing dataset for TCU output variable. 

Table A2. Regression statistics parameters of PMM model testing dataset. 

Statistical Parameters 
Technological Indicator of the Flotation Process 

CCU RCU TCU 

R2 0.972 0.993 0.840 

RMSE 3.049 6.613 0.035 

Appendix B.2.2. Artificial Neural Network-Based Model for CCU Prediction—NN1 

Training, testing and validation data sets of this model are randomly chosen by the 

network in the following way: 

 A total of 60% of the data (1336 in total) are determined for training; 

 A total of 15% of the data (287 in total) are determined for testing; 

 A total of 15% of the data (287 in total) are determined for validation. 

Information about the NN1 model training, testing and validation datasets is shown 

in Figures A26–A31 and in the Table A3. 

Figure A25. Prediction error of PMM model testing dataset for TCU output variable.

Table A2. Regression statistics parameters of PMM model testing dataset.

Statistical Parameters
Technological Indicator of the Flotation Process

CCU RCU TCU

R2 0.972 0.993 0.840
RMSE 3.049 6.613 0.035

Appendix B.2.2. Artificial Neural Network-Based Model for CCU Prediction—NN1

Training, testing and validation data sets of this model are randomly chosen by the
network in the following way:

• A total of 60% of the data (1336 in total) are determined for training;
• A total of 15% of the data (287 in total) are determined for testing;
• A total of 15% of the data (287 in total) are determined for validation.

Information about the NN1 model training, testing and validation datasets is shown
in Figures A26–A31 and in the Table A3.
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Table A3. Regression statistics parameters of NN1 model datasets.

Statistical Parameters
CCU

Training Testing Validation

R2 0.983 0.981 0.978
RMSE 2.489 2.635 2.854

Appendix B.2.3. Artificial Neural Network-Based Model for RCU Prediction—NN2

Training, testing and validation data sets of this model are randomly chosen by the
network in the following way (same as for NN1):

• A total of 60% of the data (1336 in total) are determined for training;
• A total of 15% of the data (287 in total) are determined for testing;
• A total of 15% of the data (287 in total) are determined for validation.

Information about the NN2 model training, testing and validation datasets is shown
in Figures A32–A37 and in the Table A4.
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Table A4. Regression statistics parameters of NN1 model datasets.

Statistical Parameters
RCU

Training Testing Validation

R2 0.994 0.995 0.993
RMSE 6.291 5.762 6.767

Appendix B.2.4. Artificial Neural Network-Based Model for TCU Prediction—NN3

Training, testing and validation data sets of this model are randomly chosen by the
network in the following way (same as for NN1 and NN2):

• A total of 60% of the data (1336 in total) are determined for training;
• A total of 15% of the data (287 in total) are determined for testing;
• A total of 15% of the data (287 in total) are determined for validation.

Information about the NN3 model training, testing and validation datasets is shown
in Figures A38–A43 and in the Table A5.
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RCU 
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R2 0.873 0.884 0.829 
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Table A5. Regression statistics parameters of NN3 model datasets.

Statistical Parameters
RCU
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59. Ćalić, N. Teorijski Osnovi Pripreme Mineralnih Sirovina; Rudarsko-geološki fakultet Beograd—Faculty of Mining and Geology:
Belgrade, Serbia, 1990; p. 496. (In Serbian)

60. Jassbi, J.; Alavi, S.H.; Serra, P.J.A.; Ribeiro, R.A. Transformation of a Mamdani FIS to First Order Sugeno FIS. In Proceedings of the
IEEE International Conference on Fuzzy Systems, London, UK, 23–26 July 2007; pp. 5–10.

61. Nakhaei, F.; Sam, A.; Mosavi, M.R. Concentrate Grade Prediction in an Industrial Flotation Column using the Artificial Neural
Network. Arab. J. Sci. Eng. 2013, 38, 1011–1023. [CrossRef]

62. Nakhaei, F.; Irannajad, M. Application and comparison of RNN, RBFNN and MNLR approaches on prediction of flotation column
performance. Int. J. Min. Sci. Technol. 2015, 25, 983–990. [CrossRef]

63. Ying, X. An Overview of Overfitting and its Solutions. J. Phys. Conf. Ser. 2019, 1168, 022022. [CrossRef]
64. Available online: https://towardsdatascience.com/the-secret-neural-network-formula-70b41f0da767 (accessed on 20 October 2020).
65. Sarker, I.H. Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications and Research Directions. SN

Comput. Sci. 2021, 2, 420. [CrossRef] [PubMed]
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