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Abstract: Although artificial neural networks are widely used in various fields, including mining
and mineral processing, they can be problematic for appropriately choosing the model architecture
and parameters. In this article, we describe a procedure for the optimization of the structure of a
convolutional neural network model developed for the purposes of metallic ore pre-concentration.
The developed model takes as an input two-band X-ray scans of ore grains, and for each scan two
values corresponding to concentrations of zinc and lead are returned by the model. The whole
process of sample preparation and data augmentation, optimization of the model hyperparameters
and training of selected models is described. The ten best models were trained ten times each in order
to select the best possible one. We were able to achieve a Pearson coefficient of R = 0.944 for the best
model. The detailed results of this model are shown, and finally, its applicability and limitations in
real-world scenarios are discussed.

Keywords: convolutional neural networks; mineral processing; artificial intelligence; sensor-based
sorting; ore enrichment; ore pre-concentration

1. Introduction

Grain size distribution and chemical composition are the basic parameters determining
the effectiveness of mineral processing. Knowing them makes it possible to properly select
the operating parameters and evaluate the efficiency of the ore enrichment processes.
Traditional recognition methods, such as sieve analysis or laboratory tests, are not feasible
in real-time and are very costly and time-consuming. They are carried on the macro- and
micro-scale [1,2]. Additionally, there are a number of factors that can make the sample
unrepresentative and not yield consistent results. In practice, vision-based methods for the
analysis of the material stream are being increasingly used [3,4]. There are works in the
literature where vision methods were used to assess the quality of the applied chemicals [5]
or to assess the color of juice powders [6]. One of the most common transportation means
used for a large amount of granular material is the conveyor belt, in which only the surface
layer is visible to the vision system. The basic problem of this system concerns the inherent
overlap and segregation of particles, or the location of small fragments under a larger
one [1]. The reduction in the three-dimensional shape of the surface of the material flow to
the form of a two-dimensional image prevents the precise reproduction of the volume and
weight of both individual grains and the entire material flow. On the other hand, the use of
fusion from various sources allows to extract unique features, thanks to which it is possible
to estimate the physical and chemical properties of individual minerals.
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1.1. Grain Size Distribution—State of the Art

Most of the vision methods used in mining to analyze the output transported through
the conveyor belt relate to monitoring and controlling particle size distribution. This
solution is essential to improve energy consumption and metallurgical efficiency [7–10].
Overall, machine vision seems to be the best approach at the moment as it is robust,
cost-effective, non-invasive and online. There are many works related to online optical
sizing systems for coarse rocks and iron pellets in the literature. The first methods based
on machine vision and image processing technology appeared at the turn of the 1980s
and 1990s [11,12]. Early methods relied on detecting the contours of the ore, converting
two-dimensional images of ore into three-dimensional characteristics, such as particle
size distribution and incoming ore volume. In the article in [12], the authors described
the hardware and software along with the whole mechanism of converting video data
to volumetric (sieve) data, including solutions to common problems related to particles
overlapping or extraction of particles from a dirty conveyor belt background, etc. The rapid
development of new technologies after 2000 started advances in the area of estimating
grain size distribution. For example, in [13,14], the authors extracted information about
RGB color and the visual texture of particles. They used the radial basis neural network
to control the ore classification and sorting process. In the article in [15], the authors
presented a method developed for the crushing circuit of a copper concentrator based on
image and neural network processing. The methods of segmentation of visual images and
extraction of size features were presented, and their potential was assessed on the basis of
a test sample developed in the sieve analysis. In [16], the authors present an approach to
crushed ore analysis using data on belt weight and a 3D laser scanner. On the other hand,
the authors of [17] used a number of non-invasive tomographic sensors encased above
the moving conveyor belt to estimate the particle size distribution. In [18], the authors
developed a method for the detection of oversized ore pieces based on computer vision
and sound processing for the purpose of validating vibration signals in the diagnostics of
mining screen. Another interesting method based on deep learning and image technology
is introduced in [19]. The developed model enables the detection of empty belt images,
segmenting the coarse material images as well as mixed material images. The authors
achieved an accuracy of 94.4%. In subsequent works, multi-layer perceptron networks
(MLPN) and statistical networks (machine learning) were used to identify granular material
and its impurities [20]. The increased popularity of inspection robotics in the mining sector
contributed significantly to the further development of the optical sizing system for ore
classification on the belt [21,22].

1.2. Chemical Composition

The first works on the use of machine vision to recognize minerals in rock began
to appear in the 1990s. They were based on methods such as color vector angle or two-
dimensional texture analysis [23,24]. Currently, predicting the chemical composition of
ore streams based on the analysis of visual data most often assumes the analysis of the
response in the light spectrum from the X-ray to the IR range. The physical phenomenon
mainly used here is fluorescence, which is the emission of electromagnetic radiation after
excitation of the medium (e.g., by means of ultraviolet light). The excitation of the material
is monitored by means of specialized sensors designed for this purpose, e.g., vision cameras
and a wide spectrum of recordings. These sensors contain data in various formats, such
as a 2D image in the form of a PNG file, a spectrum in the wavelength domain or a 3D
image. As a result of excitation, the material produces electromagnetic radiation at a
different wavelength from the light, causing excitation. This makes possible to use filters to
isolate the response of the rock material. From this response (regardless of the data format),
after appropriate processing, parameters are obtained, which are the input data to the
classifier. The methods found in the literature are mainly used in geology and are based on
multi-source and multi-type mineral datasets processed with the use of machine learning
techniques [25–27]. However, more and more often artificial neural networks are being
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used for this purpose. In the article in [28], the authors used a neuro-adaptive learning
algorithm for real-time classification of iron ore. A comprehensive recognition model for
12 types of rock minerals has been described in the article in [29]. The proposed approach
is based on deep learning and transfer learning algorithms. A solution based on neural
networks for sorting and classifying enriched iron, manganese and alumina particles was
presented in [13]. In publication [30], the authors presented a vision system for sorting
crushed aggregates. The wavelet analysis, the Canny edge detection method and the PCA
algorithm were used to extract the textural features. A similar solution for nickel ore can be
found in the article in [31].

1.3. Aim of the Article

The article was written as part of the development of innovative pre-concentration
technology on the example of a selected raw material using a Comex Poland sorting
machine equipped with a hybrid analysis system and artificial intelligence algorithms.
A novel analysis system was developed with a decision-making process based on neural
networks fed with data from multi-parameter X-ray and optical analysis in the ultraviolet
and infrared spectra. As a result, a demonstrator of a sorting line for the pre-concentration
of ingredients of useful raw materials was obtained. The article presents an example of
a neural network model for the automatic classification of sorted grains based on the
prediction of the percentage of useful components in the ore stream. For the purpose of
this article, only X-ray images were used. The integration of other sources of images into
product concentration estimation algorithms is planned in further stages of the project.

1.4. General Model Description

Artificial Neural Networks (ANN) are a group of machine learning algorithms inspired
by the structure of the human brain. ANNs allow for solving a number of analytical tasks
such as regression [32,33], classification, grouping and many others. The classic neural
network model (perceptron) consists of three types of layers: (1) input layer—the number
of neurons is equal to the number of input variables (e.g., the number of pixels in the
image), (2) the output layer—the number of neurons is equal to the number of classes
and (3) hidden layers—increase the possibilities of generalization (the more hidden layers,
the more complex dependencies the network is able to detect). The classification of visual
images is carried out using convolutional neural networks, the main idea of which is to filter
the images before they reach the remaining layers of the neural network. It is created through
the convolutional layers in which each neuron has one filter assigned to it. All filters are
user-defined and randomly initialized. The transformation of the signal when it reaches the
convolution layer consists in the operation of combining (convolution) the filter with the image.
Each filter detects one pattern, e.g., geometric filters detect straight lines, squares or circles.
As the network grows, the pattern detected by filters becomes more and more complex.

In this article, such an approach is tested in application to mineral processing, particu-
larly to initial filtration of the incoming ore. Compared with other similar articles dedicated
to ANN applications, we not only present here the proposed structure but also describe
our approach to structure optimization.

2. Materials and Methods
2.1. Data Description

This article uses two types of data: X-ray scans obtained using Dual-Energy technology
(RTX DE) and concentrations of zinc and lead obtained with X-ray fluorescence method
(XRF). Input data to the network were prepared on a real facility using the infrastructure
of COMEX Poland Sp.z o.o.. The ore comes from the Lovisa mine in Sweden. The Python
programming language was used for all calculations. The Tensorflow library was used for
model learning, while the Thalos library for model structure optimization.

The sample includes 2 size fractions (approximately 20–40 mm and 40–70 mm),
31 pieces of ore each. For each ore piece, low-energy and high-energy scans are made.
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For smaller fractions, the resolution of images is 64 × 64 pixels, while for larger fractions it
is 76 × 76 pixels. In order to prepare a single model for both fractions, the smaller images
are padded with minimum value (6-pixel padding from each side). In order to increase
the number of samples, and thus improve model performance, several scans with different
orientations of the grain were performed. For smaller fraction, 5 scans were made, while
for the larger one 7 scans were performed.

In the next step, the low- and high-energy scans were stacked vertically. As a result,
377 images with a resolution of 76 × 152 pixels were obtained. Finally, during the model
training phase, the data were augmented with images rotated over 90, 180 and 270 degrees.
An example of original images and rotated images is shown in the Figure 1.

Figure 1. An example of four two-layer X-ray images prepared for analysis based on low- and
high-energy scans of a single ore grain.

For each grain, the concentrations of zinc and lead were defined using X-ray fluores-
cence method. The concentrations defined this way were then used as labels during the
training of a neuron-network-based model for estimation of the concentration based on the
scans described above.

2.2. Model Description

Convolutional neural networks have shown themselves as a perfect solution for image
analysis, thus such a model was chosen for this problem. The overall architecture of the
tested models is shown in Figure 2.

Figure 2. Overview of the model architecture.

The model consists of two main blocks: convolutional and dense [32–34]. The convo-
lutional block includes convolutional layers and pooling layers. After the convolutional
block, a dropout layer is included in order to eliminate the overfitting effect. Then, a
flatten layer is applied. Finally, a dense block consisting of consecutive dense layers is
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added to the model. An output layer is another dense layer with 2 neurons: the first one
represents the zinc concentration, while the second one represents lead concentration. The
exact number of particular layers, as well as model hypermarameters, such as activation
functions, learning rate, optimizers, etc., were defined during the optimization procedure,
which is described in the next section.

2.3. Structure Optimization Procedure

Although neural networks in many cases give very promising results, choosing an
appropriate structure and defining optimal hyperparameters of the model is always a
challenge. In this article, the Talos library [35] was used in order to define the optimal
structure. The algorithmic scheme of the optimization procedure is shown in Figure 3.
The models were trained for 51,840 sets of network structures and training parameters
listed in Table 1.

Figure 3. The description of the algorithm used for optimization of model hyperparameters.

Table 1. A list of optimized hypermarameters of the developed model.

Optimized Parameter Value Range

Number of filters in the first convolutional layer 64, 128, 256, 512

Pooling layers type MaxPooling, AveragePooling

Pooling size 2 × 2, 4 × 4

Dropout 0.1, 0.2, 0.3

Optimizer Adam, Stochastic Gradient Descent, RMSProp, Ftrl

Loss function Mean Squared Error, Mean Squared Logarithmic Error, Cosine
Similarity, Huber, LogCosh

Number of neurons in the first dense layer 1024, 512, 256

Number of dense layers 2, 4, 6

Dense layers divider 2, 4

Dense layers activation function ReLU, Sigmoid, Tanh

The data were divided into training, validation and test sets in the proportion 3:1:1. In
addition to the parameters shown in Table 1, the following static values were used: learning
rate at 0.001. The value of the assumed learning rate resulted from the optimization of the
hyperparameters procedure at an earlier stage of the research. Finally, each model included
2 convolutional layers, the second one had two times less filters then the first one.

In the first step, every model was trained once. The detailed procedure of this step
is presented in Figure 3. Based on the values of validation of the mean absolute error,
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the ten best structures were selected and then assessed from robustness, underfitting and
overfitting perspectives.

3. Results

Figure 4 shows a box plot obtained from the network structure optimization procedure.
The results presented in the figure are mean absolute values calculated for the best ten
structures. These structures were considered as potentially optimal. The details of these
ten models are presented in the Table 2. The identification of the optimal structure was
performed according to the procedure described in detail in [34]. The usefulness of this
method in practical applications is described and proven in [32–34]. The method is also in
use in the Comex Poland Sp. z.o.o. company.

As can be seen in Figure 4, the structures with indices 1, 3, 4, 5, 7 and 9 show a
strong influence of randomly initiated initial conditions of the learning process, which
proves that despite the implementation of dropout layers inside the structures, there
is a high probability of overfitting phenomena occurrence. Structures 6 and 8 show a
significantly lower variability of MAE than in the case of all the structures mentioned above.
However, on the other hand, the average value of MAE for them is much higher than the
corresponding values for structures 2 and 10. Thus, these two structures (2 and 10) are
taken into account as potentially optimal.

Figure 4. Boxplots of the mean absolute error values from tests stage, obtained for the 10 best
structures selected from the result of the optimization procedure.

Table 2. Main characteristics of 10 potentially optimal models.

Structure
Number Conv. Layers Pooling Type Dropout Dense Layers Activation

Function Optimizer

1 64, 32 Max, (4, 4) 0.2 1024, 512, 256, 128, 64, 32 ReLU RMSprop

2 256, 128 Max, (4, 4) 0.2 1024, 512 ReLU Adam

3 64, 32 Max, (4, 4) 0.2 256, 128, 64, 32, 16, 8 ReLU RMSprop

4 64, 32 Max, (4, 4) 0.1 1024, 256, 64, 16, 4, 2 ReLU Adam

5 128, 64 Max, (4, 4) 0.3 512, 256, 128, 64 ReLU RMSprop

6 64. 32 Max, (4, 4) 0.2 512, 256, 128, 64 ReLU RMSprop

7 256, 128 Average, (2, 2) 0.2 1024, 256, 64, 16 ReLU Adam

8 64, 32 Max, (4, 4) 0.3 512, 128 ReLU RMSprop

9 64, 32 Max, (4, 4) 0.1 256, 64 ReLU RMSprop

10 256, 128 Average, (4, 4) 0.1 256, 128, 64, 32 ReLU Adam
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Figures 5 and 6 present the calculation results of the network regression coefficients
and their qualitative indicators resulting from the conducted learning process. The results
shown in Figure 5 refer to the best network with index 10. In turn, those shown in Figure 6
refer to the best network with index 2.

Figure 5. Best results obtained by the network structure with index 10. The top two rows represent
the scatter plots with true values of metal concentrations on the x-axis and predicted values of metal
concentrations on the y-axis. the first row corresponds to zinc, while the second row corresponds to
lead. Results for test validation, training and full dataset are presented in the first, second, third and
fourth columns, respectively (counting from the left). Finally, in the bottom row, the values of mean
absolute error, mean squared error, cosine similarity and general model structure are shown.

At first glance, the results shown in Figures 5 and 6 indicate that both of the taught
networks are usable. Based on the results for the network test stage, it can be seen that
in the case of zinc content in the rock, the neural network with index 10 obtains much
better convergence than the network with index 2. In the case of the network with index
10, the Pearson regression coefficient obtained value is 0.944, while for the network with
index 2, the value of this coefficient is 0.896, which is over 5% less. This means also that the
structure of the neural network with the index 10 more effectively links the value of the
zinc concentration from the chemical analysis with the features resulting from the X-ray
scans of the grains. On the other hand, the network with index 2 has slightly higher values
of Pearson coefficient for lead, but this difference is lower than in the case of zinc.
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Figure 6. Best results obtained by the network structure with index 2. The top two rows represent
the scatter plots with true values of metal concentrations on the x-axis and predicted values of metal
concentrations on the y-axis. The first row corresponds to zinc, while the second row corresponds to
lead. Results for test validation, training and full dataset are presented in the first, second, third and
fourth columns, respectively (counting from the left). Finally, in the bottom row, the values of mean
absolute error, mean squared error, cosine similarity and general model structure are shown.

When analyzing the structures of the network with indices 2 and 10 (the description of
which is in the lower right part of Figures 5 and 6), it can be noticed that the complexity of
the convolutional layers is the same. That is, both the first and second conv2d layers have
the same configuration. The same goes for the dropout layer. However, the only difference
in the design of the convolution filter concerns the use of the condense feature extraction
tool [36]. In the case of the network with index 10, the averagepooling2D technique was
used, while for network with index 2, the technique of maxpooling2D was used. This
means that in the proposed network model (Figure 2), the configuration of conv2d and
dropout layers is optimal.

It should be noted that depending on the condense feature extraction techniques used
in the networks with indexes 2 and 10, the complexity of the dense layer parts differs.
In the analyzed case, the situation in the dense layer is natural, and it manifests smaller
dense layers in the network with averagepooling2D layer compared with the network
with maxpooling2D layer. However, the averagepooling2D case needs a deeper dense
layers network.

Additional assessment of the network convergence was performed on the basis of
errors made by the network [32]. This assessment was made thanks to the error histograms,
which are presented in Figures 7 and 8. These histograms were drawn separately to identify



Minerals 2022, 12, 1480 9 of 13

the zinc and lead content in the ore grain using its scan. Figure 7 shows error histograms
for the network with index 10, while Figure 8 relates to the network with index 2.

Figure 7. Histogram of mean absolute errors calculated for training, test and validation data sets for
structure number 10. (Left) panel shows results for zinc and (right) panel for lead.

Figure 8. Histogram of mean absolute errors calculated for training, test and validation data sets for
structure number 2. (Left) panel shows results for zinc and (right) panel for lead.

On the error histogram for zinc content in the grain plotted for the network with the
index 10 (Figure 7), it can be seen that the maximum error made by the network is 0.3.
However, such high error occurs for a marginal number of cases on both training and
testing stages. The analyzed histogram shows that in most cases (samples > 25) this error
fits in the range of values between 0 and 0.05.

In turn, the error histogram for the lead content in the grain for the network with the
index 10 shows that the maximum error made by the network is 0.52. It occurs only for the
network testing stage and is also of a marginal nature. It is noteworthy that in most cases
(samples > 25) the error occurs in the range between 0 and 0.06.

On the error histogram for zinc content in the grain plotted for the network with
the index 2 (Figure 8), it can be seen that the maximum error made by the network is 0.7.
This error occurs for a marginal number of cases on the validation stage. The analyzed
histogram shows that in most cases (samples > 25) this error occurs in the range of values
between 0 and 0.1.

The error histogram for the lead content in the grain for the network with the index 2
(Figure 8) presents that the maximum error made by the network is 0.64. As for the network
with index 10, it occurs only for the network testing stage and is also of a marginal nature.
Ultimately, it can be said that the network with index 2 in most cases (samples > 25) has
errors in the range between 0 and 0.06.
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4. Discussion

In order to chose the best structure for the described problem, the results presented
in the previous section were analyzed thoroughly. The analysis of regression results for
networks with indexes 2 and 10 showed that:

1. In the case of identifying the value of the zinc content in the grain, the network with
the index 10 is characterized by a better convergence to the results with the values
obtained from the chemical analysis. The improvement in convergence in this case is
at the level of 5%.

2. When identifying the value of the lead content in the grain, the network with the index
2 has a slightly better convergence than the network with the index 10. However, this
disproportion is not as significant as it was in the case of zinc content for the network
with the index 10.

The regression analysis showed that the network structure with the index 10 has
optimal settings for the data assigned to the learning process. Nevertheless, it was nec-
essary to evaluate the value of network errors using error histograms in order to make a
final decision.

The analysis of error histograms for networks with indexes 2 and 10 showed that:

1. In case of identifying the value of the zinc content in the grain:

• The network with the index 10 is characterized by more than a twice lower
maximum error. The number of occurrences of this error for both networks is so
marginal that the situation is negligible.

• The network with the index 10 in relation to the network with the index 2,
for most of the analyzed cases, has twice the convergence of the output values
with respect to the targets.

2. In the case of identifying the value of the lead content in the grain:

• The network with index 10 is characterized by a smaller maximum error com-
pared with the network with index 2. The occurrence of this error for both
networks takes place at a level so marginal that it is negligible.

• Network errors with indexes 2 and 10 for most of the analyzed cases are in the
range between 0 and 0.06.

Based on the above assessment, it is concluded that the network with the index 10 is
optimal for the data assigned to the learning process in the scope of the structure shown in
Figure 2.

Although in the past ANNs have been used in several use cases, the direct comparison
of proposed models with them is tricky for two reasons. The first one is related to the
large number of parameters for such models, which have to be fine-tuned for every use
case. Thus, neither direct application of the previously developed models to our data
nor the vice-versa approach will give satisfactory results. That is why we believe that
the described network architecture optimization procedure is particularly important and
potentially valuable for future applications of ANNs in problems related to mining and
mineral processing.

The second reason is related to the selected machine learning approach. In most
cases, the classification framework is chosen, which means that every data point has a
class label assigned to it, and the model tries to predict this label. Usually, there are a very
limited number of these classes, while the model performance is assessed based on accuracy
metrics, i.e., the percentage of data points that were classified correctly. In this article, we
solve the problem from a regression perspective, which means that the model is trying to
predict the exact values of zinc and lead concentrations in each ore grain. Such an approach
gives more flexibility in further application of the model because an arbitrary threshold can
be used on the further steps of the process to separate waste and product fractions.

Although the values of accuracy and Pearson coefficient cannot be compared directly,
they both fit into the [0, 1] interval; thus, we estimate how each model performs com-
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pared with a perfect scenario. In the most recent work, where a similar problem was
considered [37], a Deep Neural Network model obtained an accuracy of 0.97 for the ore
classification problem. This is comparable to the 0.944 Pearson coefficient obtained by our
network in the case of zinc concentration prediction. Such difference can be explained by
the difference in the input data for the model. In the above-mentioned article, the electrical
resistivity, chargeability and magnetic susceptibility of each sample were measured in
laboratory conditions and then used as features for model training. Such a small number
of features makes it easier to train the model on a limited number of samples. We use X-ray
scans, which result in a much higher number of features for model learning. At the same
time, they are easier to collect, thus the ore classification can be performed in real time for
material moving on the belt conveyor.

Several limitation should be taken into account. In this article, only relatively shallow
network architectures were taken into consideration. It was dictated by two reasons: the
first one is the model execution time limitations, and the second one is the limited amount
of data available. Due to the nature of the industrial process, where the technology is going
to be applied, the concentration estimation should be performed for multiple grains in
fractions of a second, thus the complexity of the model structure should be adjusted to
available computational capacity. At the same time, in order to train more complex models,
a larger volume of input data might be needed to avoid model overtraining. If these two
issues can be overcome in particular applications, more complex structures can be tested,
which may further improve the results.

Despite these limitations, it was possible to obtain high correlation between regular
X-ray scans and the results of XRF spectroscopy, which may be useful in industrial ap-
plications. In the future, it is planned to conduct similar investigations for other image
acquisition technologies (infrared and visible light images and multi-energy X-ray scans)
and study the possibilities to combine models developed for those sources together.

5. Conclusions

Ultimately, this publication presents both the complete process of the structure opti-
mization and the assessment of selected network architectures, leading to the identification
of the optimal network structure. The authors of the study did not find similar research
in literature; therefore, they treat the presented results and conclusions as something that
may direct other researchers to achieve better results in this field of study. The choice of the
network structure optimization method turned out to be very beneficial in the studied case.
Deeper analysis of the ten best structures chosen based on a single iteration of learning
allowed to filter out 8 of 10 structures. The eight eliminated structures were either unstable
or had a significantly higher mean absolute error. This means that choosing an optimal
structure based only on a single run of training is not reliable enough for industrial appli-
cations. Importantly, the two best structures had the same complexity of convolutional
filter, and the large differences between them resulted from the use of a different feature ex-
traction technique. The application of the network structure optimization method showed
that out of the four network training methods, two were characterized by satisfactory
performance. They were RMSprop and Adam, which are the only two that appear among
the ten best structures. The achieved accuracy of the selected models is sufficient for their
further implementation and testing in industrial environment, which will be carried out in
the later stages of the project.
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