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Abstract: Froth feature extraction plays a significant role in the monitoring and control of the flotation
process. Image-based soft sensors have received a great deal of interest in the flotation process
due to their low-cost and non-intrusive properties. This study proposes data-driven soft sensor
models based on froth images to predict the key performance indicators of the flotation process.
The ability of multiple linear regression (MLR), the backpropagation neural network (BPNN), the
k-means clustering algorithm, and the convolutional neural network (CNN) to predict the amount
of sulfur removal from iron ore concentrate in the column flotation process was examined. A
total of 99 experimental results were used to develop the predictive models. Extracted froth features
including color, bubble shape and size, texture, stability, and velocity were used to train the traditional
predictive models, whereas in the CNN model the froth images were directly fed into the model. The
results comparison indicated that the three-layered feedforward NN model (17-10-1 topology) and
CNN model provided better predictions than the MLR and k-means algorithm. The BPNN model
displayed a correlation coefficient of 0.97 and a root mean square error of 4.84% between the actual
data and network output for both training and the testing datasets. The error percentages of the CNN,
BPNN, MLR and k-means models were 10, 11, 15 and 18%, respectively. This study can become a key
technical support for the application of intelligent models in the control of the operational variables
for the flotation process used to desulfurize iron concentrate.

Keywords: column flotation; sulfur removal; iron ore; prediction; multiple linear regression; neural
network; k-means clustering; convolutional neural network

1. Introduction

Flotation is a significant industrial technology for separating valuable minerals from
tailings. It is a complicated physical-chemical separation method that takes advantage of
differences in the surface properties of valuable and gangue minerals [1]. Due to the deple-
tion of high-grade iron reserves and the need for very fine grinding to improve liberation,
flotation is the most effective way to remove impurities from iron ore concentrate [2,3].

Although the flotation process has been widely used over a long period of time, how
to evaluate the operational conditions, the automatic control and robust model of the
process are challenging issues and still have not been fully considered by academic scholars.
Furthermore, the weakness of sufficiently accurate and reliable process measurements
amplifies this difficulty [4]. The ultimate goal in the flotation process is to maximize the
separation between valuable minerals (concentrate) and gangue minerals (tailings) [5].
Technically, the performance of the flotation process is described by the concentrate charac-
teristics (grade and recovery). These are important economic and technical indexes needed
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for process control and optimization [6]. Accurate values of these parameters are obtained
only after sampling, filtration, drying, preparation and chemical analysis of samples, which
are time-consuming operations [7]. In industrial plants, the grade can be continuously
measured using an XRF analyzer and the recovery can only be calculated from a mass
balancing [8,9]. The online measurement of these parameters with a relatively low accuracy
using an X-ray analyzer generally requires the purchase and maintenance of costly and
sophisticated equipment [5,10,11], which justifies the execution of models for the prediction
of key performance indicators based on secondary variables.

Due to the nonlinear and complex nature of the flotation process, the large number
of variables involved, and the very limited understanding of the physicochemical rules of
the flotation process, accurate prediction of grade and recovery parameters is a difficult
task [12–15]. Therefore, data-driven approaches requiring less prior knowledge about the
system state variables (the input/output) are viewed as alternative strategies for modeling
the flotation process. In the past few decades, modelling and predicting flotation behavior
based on operational variables (such as reagent dosages) using numerical techniques
has been extensively studied by researchers [16–22], although there is no universally
accepted forecasting model. Most of these models only used relatively few operational
parameters as the input variables so that they failed to enable the capture of the strong
nonlinear relationship between the variables in a wide range of operating conditions. These
models still have challenges, such as needing a large quantity of data, and have a complex
configuration that limits their application.

In the last ten years, several studies have shown that the froth’s appearance contains
a lot of valuable information, which plays a pivotal role in raising the flotation process
efficiency [23]. The froth’s surface appearance reflects the changes in the flotation process
induced by those affecting the operational variables, such as air flow rate and dosage of
reagents [24]. Then, it can be directly used for flotation metallurgical performance estima-
tion [25,26]. Traditionally, in the flotation plant the froth state is observed by experienced
workers in order to control and make a decision for the working conditions [7]. However,
decision-making based on the monitoring of froth surface changes just by the naked eye
is inaccurate; that is, a time-consuming operation that limits the real-time control of the
process. Therefore, the combination of froth imaging analysis techniques and the predictive
mathematical models could provide the soft sensors for modelling the effects of operating
variables on flotation process performance.

In recent years, there has been a rapid development in computing technology with an
increased interest in machine vision applications for monitoring, analyzing and controlling
the output of processes for most engineering purposes [27,28]. Machine vision is an
automated, non-destructive and cost-effective alternative method used for the on-stream
estimation of the efficiency of the flotation process. Image processing methods have been
developed for the extraction and interpretation of froth appearance features such as color
and texture [29–32], velocity [33,34], mineral loading rate [35], stability [11,36], and bubble
size [25,37]. These studies showed that many methods can be used to extract and analyze
the froth features; thus, several extracted features should be addressed at the same time for
a better interpretation of froth behavior.

The performance of the reverse flotation of iron ores is largely governed by the interac-
tions between the operational variables, which are complex. The prediction of the amount
of sulfur removal in the reverse flotation of iron ore concentrate is an important issue to
enhance the process efficiency. When the sulfur content of iron concentrate increases, the
sulfur recovery and efficiency will reduce. In this situation, the operators at concentrators
try to identify the problem and find a way to fix it based on the froth surface appearance.
Visual assessments by operators are time-consuming and difficult tasks that can be carried
out only at a given time. An image-based soft sensor with a view to monitor and control
the operating conditions could be a great help for operators at flotation plants. Due to
a dearth of reports on the properties of flotation froth during the desulfurization of iron
concentrate [38], this research opted to combine the machine vision system and different
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statistical and intelligent techniques with a view to investigating the relationship between
column flotation performance (sulfur recovery) and the froth features under different
operating conditions.

For this, a dataset of images was first captured from froth surfaces at defined time
intervals. Afterward, the bubble size and shape, froth color, texture and dynamic features
(froth velocity and stability) were considered as good supplements for operating condition
recognition prior to an offline extraction of the images from the desulfurization of iron ore
concentrate using the in-column flotation. Finally, a comparative study was carried out
using multiple linear regression (MLR), the k-means algorithm, the backpropagation neural
network (BPNN) and the convolutional neural network (CNN) to predict the flotation
performance based on froth features.

The machine learning models, such as NN, are widely used as a powerful approach for
classification and prediction because of their non-linear learning ability. The NN is a com-
putational method developed by copying human brain behavior. The NN is able to extract
the complex nonlinear relationships existing between input and output variables through
a highly interconnected system of simple processing elements (neurons or nodes) [39].
Recently, the models based on BPNN have been widely used as rapid and reliable tools for
forecasting flotation performance [40,41]. Many studies in the literature specialized in the
integration of machine vision and machine learning systems for improving the flotation
process control. The proposed soft sensors were capable of extracting and analyzing the
froth image features and using them as the inputs to the machine learning models [42,43].

MLR is another estimation tool which can help to predict the flotation performance
based on a number of froth image features. The MLR model is presented based on fitting a
linear equation to observed data. The main advantage of MLR is its simple form and easily
interpretable mathematical expression [44]. The MLR is easy to formulate and has been used
in flotation research to obtain models as an alternative to other mathematical methods [4,19].

The use of clustering algorithms has been widely used in diverse fields of study to offer
a favorable alternative to traditional prediction methods [45,46]. Clustering is a process of
organizing a set of objects into groups of similar objects, based on their characteristics. The
k-means algorithm is one of the well-known unsupervised clustering techniques which is
mainly applied in image and signal processing, pattern recognition and data mining [47].
K-means clustering is an iterative algorithm that tries to minimize variation within the
clusters, and maximize variation between clusters [48,49]. In this research, the k-means
algorithm is proposed to classify the froth characteristics to estimate the sulfur recovery in
the column flotation process at different operating conditions.

The above-mentioned models concentrate on extracting specific froth features such as
bubble size, color, and stability for classification of froth images to evaluate the flotation
process performance. The big challenge of these models is that the prediction accuracy
remarkably relies on the capability of feature extraction methods. Furthermore, these
models are not sufficiently effective and reliable because they employ only low-level
features without having enough mid-level and high-level features [50]. To overcome
this problem and develop the classification accuracy, a deep learning method has been
developed to classify image features under different conditions.

The convolutional neural network (CNN), one of the fastest-growing deep leaning
algorithms, was developed for the classification of objects in the fields of engineering [51,52].
This method obviates the complexity of image modification and allows users to enter the
original image directly to the model.

CNN was first implemented for froth image feature extraction in 2018 by Fu and
Aldrich. They proved that the CNN model could generate more accurate results than the
traditional models in the processing of flotation froth images. Recently, many researchers
have employed CNN as a robust and efficient model for the evaluation of flotation in-
fluencing factors and the prediction of metallurgical performance parameters [5,53,54].
This article provides the application of CNN to categorize the collected froth images dur-
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ing the column flotation process. Then, its classification accuracy was compared to the
traditional models.

Despite the fact that the above-mentioned methods were all individually used to
forecast the mineral flotation performance, there is still a gap in identifying the best method
with the highest prediction accuracy, especially the amount of sulfur removal from iron ore
concentrate. Thus, the current study compared four methods of MLR, k-means, BPNN, and
CNN to predict the amount of sulfur removal in the desulfurization of iron ore concentrate.
The aim of this work was to elucidate if these predictive models could predict column
flotation performance for the desulfurization of the iron ore concentrate with high accuracy
based on the analysis of froth image characteristics. Such studies can make a remarkable
contribution towards the improvement of soft sensors on the basis of froth image analysis
for the real-time monitoring and control of flotation process.

In the following section, the reverse column flotation process of iron ore concentrate
and the image-acquisition device are presented. Then, the techniques for extraction of
froth features and the predictive models are briefly introduced. In the third part, the
prediction results obtained by k-means, MLR, BPNN, and CNN methods are discussed. In
the Section 4, the performances of these methods are compared.

2. Materials and Methods
2.1. Iron Ore Concentrate

The sample used in the present study was taken from the feed stream of the mechanical
flotation cells in an iron ore concentrate plant in Iran. In this plant, the iron ore after
comminution, gravity and magnetic separation, is fed to the flotation cells. The feed
flotation has high sulfur (pyrite) content. In general, pyrite is considered as a gangue
mineral creating problems during the steelmaking processes [55]. Sulfur causes brittleness
and frangibility of steel at high temperatures, reduces weldability, increases corrosion,
air pollution during the pellet-firing process, increases limestone consumption and slag
production in the steelmaking procedure [56]. Pyrite and pyrrhotite are paramagnetic
minerals and are attracted by the magnetic field in the vicinity of iron ores (magnetite and
hematite). Therefore, they are not completely recovered by magnetic separators [57]. In
this plant, the concentrate from the magnetic separation generally presents a sulfur content
of 0.4 to 0.6%, which value surpasses the allowable limit for steel production (0.1%). The
reverse flotation conducted at the end of the processing circuit enables a reduction of the
sulfur content in the magnetic separation concentrate.

The representative flotation feed sample consisted of 63.3% Fe, 1.48% FeO with a
significant sulfur content 0.50%. The particle size analysis of the representative sample
188 gave the d80 equal to 95 µm.

Mineralogical and liberation degree studies of the sample were conducted using
optical microscope (Axio Plan 2, Zeiss, Germany) and wild zoom stereo microscope (Zeiss,
Germany), respectively. The main iron minerals were hematite, magnetite and goethite.
Calcite, quartz, dickite, chlorite and pyrite were the main gangue minerals. The results of
X-ray diffraction pattern (XRD) analysis of the sample are shown in Figure 1. The XRD
analysis confirmed the microscopic findings. Mineral liberation studies showed that more
than 90% of pyrite particles were liberated at -105 µm.
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Figure 1. X-ray diffraction pattern of sample used in this work.

2.2. Column Flotation Test

The tests were carried out in a plexiglass cell column of 400 cm in height, and 10 cm
inside diameter in order to desulfurize the iron ore concentrate. To provide the initial
feed, a tank equipped with a stirrer was used to prevent the material from settling while
being prepared. Two peristaltic pumps were used: one for sending the feed to the middle
of the cell and the other for withdrawing the pulp at the bottom of the cell. During the
experiments, the pulp pH was continuously measured by a digital laboratory pH meter
and adjusted to the desired value by adding sulfuric acid or NaOH.

Since the purpose of the in-column flotation operation was to reduce the sulfur content
in the final product, potassium amyl xanthate (PAX) as a collector and MIBC as a frother
were used. After adjusting the pH and sufficient mixing with chemical reagents (five
minutes), the pulp was entered into the cell at a flow rate of 1.5–2 L/min and a defined air
flow rate provided by a compressor. No wash water was used during the experiments. The
gas flow rate was measured by a flow meter and manually regulated by a needle valve.
The froth height was determined by direct observation as well as pressure transducers. The
control system of the froth height changed the speed of the discharging pump based on
the position of the pulp–froth interface relative to the set point. Prior to the sampling of
concentrate and tailing, the pulp–froth interface was kept constant to ensure that column
flotation operated under steady-state conditions. The froth overflowed from the top of
the cell as tailing product, while iron concentrate was discharged from the bottom of
the column. The froth and concentrate were filtered and dried and their sulfur content
determined. Figure 2 shows a schematic diagram of the experimental apparatus.

The image-acquisition system included a fixed device, a 100 W LED lamp, a protective
cover, and a digital camera, as shown in Figure 2. The camera was placed inside a fixed
chamber and positioned 250 mm away vertically from the top edge of the cell so that the
camera lens center matched that of the cell. The target area was illuminated by the light.
The color rendering index and color temperature of the light source were greater than
80 and 5000 K, respectively.

The froth surface appearance was indirectly varied by changing the process operation
conditions. The data acquisition was performed for 2 min during each test. In this study,
the most important froth features including bubble size and shape, color, texture, bubble
burst rate and velocity were primarily extracted offline from the froth images in each run
through image processing techniques. Then they were fed into the k-means algorithm,
regression, and NN models. Since the froth appearance might frequently change, a single
image could not fully elucidate the froth characteristics during the sampling period, thus
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eight random images were individually analyzed, and the mean value of each feature was
measured. In the CNN algorithm the froth images were directly fed into the model.

Figure 2. The flotation column and froth image-acquisition system.

The average of the gray, RGB, HSB (hue, saturation and brightness) and lab values
were extracted from images to describe the froth color descriptors. Furthermore, based
on each gray level co-occurrence matrix (GLCM), four texture features (entropy, contrast,
inverse different moment (IDM), and angular second moment (ASM) or energy) were
selected to describe the froth surface textural characteristics. A watershed technique was
applied to measure the bubble size distribution, roundness (circularity) and aspect ratio
(AR) (Figure 3a). The bubble burst rate (stability) and froth velocity (transport rate) which
are dynamic descriptors were extracted from an image pair. The pixel tracing algorithm was
applied to quantify the froth speed (pixel/s) between the consecutive frames (Figure 3b).
The bubble burst rate was computed by finding the difference between two consecutive
frames (Figure 3c). The particular implementation of the image processing techniques to
extract the froth features offline was presented by Nakhaei et al. [38].

Figure 3. (a) The initial image after contrast enhancement and watershed algorithm; (b) froth
transport rate measurement by the pixel tracing technique; (c) bubble burst rate measurement.
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Since the purpose of this study was to find a valid model to describe the relationship
between sulfur recovery and froth surface characteristics, the flotation experiments were
performed on a wide range of operational variables. Therefore, the most important opera-
tional variables including aeration rate, solid percentage, froth height, chemicals dosage
and pulp pH were changed for each run. A total of 99 experiments were designed and
performed. The technical parameters of the reverse in-column flotation experiments are
given in Table 1. The values of sulfur recovery spread out over a large range, as shown by
the high values of the standard deviations, due to the different conditions applied in the
flotation process (Table 2).

Table 1. Variables and levels used in column flotation experiments.

Variable Range

Collector concentration (g/t) 40–220
Frother concentration (g/t) 60–230

Froth height (cm) 10–40
Air flowrate (cm/s) 1.3–1.9

Solids (%) 10–35
Pulp pH 2.5–8

Table 2. The statistical measures of sulfur recovery (the output variable).

Metallurgical Factor Maximum Minimum Average SD

Recovery (%) 85.08 6.53 49.28 18.56

Table 3 summarizes the values of the input dataset (froth characteristics) for the k-
means algorithm, regression, and BPNN models. This dataset was extracted offline by
applying a wide range of operational conditions to form a robust predictive model for
sulfur recovery estimation.

Table 3. Descriptive statistics of the froth features obtained at different operating conditions as inputs
for the k-means algorithm, regression and BPNN models.

Features Maximum Minimum Average Features Maximum Minimum Average

Gray level 112 74 86.36 Energy (0º) 1 × 10−3 2.5 × 10−4 5.2 × 10−4

R 136 79 95.3 Contrast (0º) 260 45.81 128.5
G 111 78 89.03 IDM (0º) 0.39 0.15 0.23
B 101 63 76.01 Entropy (0º) 10.05 7.75 8.50

Hue 0.36 0.11 0.25 Bubble size 50.97 5.6 30.80
Saturation 0.41 0.19 0.28 Aspect ratio 1.75 1.10 1.43
Brightness 0.53 0.33 0.39 Circularity 0.81 0.34 0.51

L 45.4 33.66 37.68 Speed 26.01 10.77 16.41
a 10.44 −6.3 −0.17 Stability 85.02 57.88 74.31
b 15.71 4.62 9.2

According to the expert experiences, the process conditions (sulfur removal) can be
sorted into six groups: A–F (Table 4). Each group stands for a specific process condition. A
large number of froth images under various operating conditions were collected and directly
fed into the CNN model. The training and testing of the CNN model were performed using
2079 and 891 froth images, respectively.
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Table 4. Different froth classes in CNN model under various operating conditions.

Type Sulfur Recovery (%) Class Label Number of Images

Very low ≤20 A 180
Low 20–30 B 300

Low–medium 30–40 C 390
Medium 40–50 D 480

Medium–high 50–65 E 1140
High ≥65 F 480

2.3. Models

In a flotation plant, the sulfur content of the concentrate needs to be sampled in the
laboratory for analysis and this takes several hours. Consequently, when unexpected
events happen, the sulfur content in the iron concentrate may increase with a decrease in
the process efficiency. The late detection may lead this phenomenon to last for a long time
resulting in economic losses. A soft sensor based on mixed image analysis and mathematical
methods can predict the amount of sulfur removal in real-time and thus enable workers to
quickly tackle these problems. In this study, the applicability of k-means, MLR, BPNN, and
CNN methods for predicting the sulfur removal was compared. The general purpose of
using different methods is to find which model most accurately discovers the relationship
between inputs and output.

2.3.1. K-Means Clustering

Clustering is an unsupervised learning technique in the area of machine learning,
which categorizes objects with high similarity into the same cluster according to a certain
distance metric [45,58]. Thus, a cluster is a collection of similar data which are not similar
to the data located in other clusters [59,60]. The more similar the objects in the cluster, the
better the clustering effect [45]. Among various types of clustering methods, k-means is one
of the most widely used clustering algorithms. In this work, the k-means algorithm was
employed because of its high efficiency and simplicity in pattern recognition of massive
data. The k-means algorithm splits a dataset into K discrete non-overlapping clusters. The
clustering is performed by minimizing the sum of squares of distances between the center
and the data in each cluster [61]. Details of the k-means algorithm procedure are presented
in [47,61].

The simplest procedure of the k-means algorithm can be described as follows [48,62]:
(1) Choose random initial clusters centroids. (2) Compute the Euclidean distance between
each object to each cluster centroid according to Equation (1):

D =

√
∑n

i=1 ∑m
j=1

∣∣Xij − Cj
∣∣2 (1)

where D is the Euclidean distance; n is the number of data; m is the number of dimensions;
Xij is stated as the j dimensionality of the i-th data; Cj is the j dimensionality of the cluster
center [48].

(3) Assign data points to one of the clusters on the basis of the proximity to the centers.
(4) Assign new centroids for each cluster by averaging the data of each cluster. (5) Return
to step 2 and repeat the process until convergence is obtained.

In the current study, the k-means algorithm was applied to cluster the froth features’
dataset into specific groups (based on a given k value) depending on the flotation recovery
(low to high). The algorithm described above was implemented based on the code in
Python software (3.1, Python Software Foundation manufacturer).
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The efficiency of each cluster is evaluated using the accuracy criterion. The accuracy
of each cluster is the percentage of observations of the dataset that is correctly classified by
the model used. This can be written as:

Accuracy =
CN

CN + FN
× 100 (2)

where CN is the number of correct responses, FN is the number of false responses.

2.3.2. Multiple Linear Regression

MLR is one of the mathematical methods used to describe the linear relationship
between the independent variables and dependent variables [63]. MLR is used when the
value of a specific variable can be estimated based on the values of other variables. In MLR,
the model is fit by minimizing the sum of squares of the difference between the observed
and fitted values. The linear equation is as follows [64]:

Y = C0 + C1x1 + C2x2 + · · ·+ Cnxn + ε (3)

where Y corresponds to the output variable, Xi is the independent variables, Ci is the
regression coefficients, and ε represents the error term.

The froth features were taken as input variables for the MLR model to predict the
sulfur recovery. In the MLR modeling, 85% of data was randomly used for computing the
equation (84 runs) and 15% for testing (15 runs). The MLR analysis was performed using
the SPSS 27 software (Property of IBM Corp.).

2.3.3. Backpropagation Neural Network

NNs are nonlinear computational methods that have been successfully used in various
fields of science and technology over the past decade [65–67]. The main feature of the NN
is its ability to learn the complex relationships between input and output data. The main
advantages of the NN models are as follows: (1) It only considers the input and output
data without referring to the process phenomenology; and (2) it has a generalization ability
to accurately estimate the outputs corresponding to a new dataset that were not applied for
training of the model [39,68].

NN is a complex network structure consisting of three or more layers to learn the
nonlinear relationship between input and output data. The layers are processed with a
large number of interconnected neurons. Each neuron, has an associated weight and bias.
Figure 4 shows the NN structure, where X1 and Xn are the inputs. W is the corresponding
connection weight, b is the bias and Y is the output.

Figure 4. (a) The schematic of a three-layer NN; (b) signal-flow graph of a perceptron.

The modelling process is as follows: The first stage consists of choosing the network
configuration and the number of nodes in the layers, and giving the random value of the
weight and the bias matrixes. In the second stage, the input and the output matrixes are
entered. In the third stage, the hidden layer output matrix and the output matrix of the last
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layer are calculated; The next step is to compute the difference between the output of the
model and the actual output; if the error value is within the specified range, the training
ends; otherwise, the fifth stage is continued. In the fifth stage, the error is back-propagated
and the data are forwarded and the weight and bias matrixes are updated.

The dataset of the flotation tailing froth features is applied to train the network for
predicting the amount of sulfur removal from iron ore concentrate in the column flotation
process. In this study, 74 of 99 (75%) items in the dataset were used in training and the rest
25 (25%) in the test and validation of the network. The training process was carried out by
applying the backpropagation algorithm with the Levenberg–Marquardt training method.
The neural net fitting toolbox from MATLAB program, version R2022, was used to make
the code for the NN. The tansig, and purelin activation functions were used in the hidden
layer and the output layer, respectively. These complex functions offer the NN model the
ability to learn both linear and nonlinear relationships between the inputs and the outputs.

The proper choice of the number of neurons in the hidden layer is an important
task. According to the literature, as long as the number of neurons in the hidden layer
is appropriately specified within reasonable limits, a three-layer BPNN can be effectively
applied to model a wide range of complex problems [69]. Too many neurons may result
in increasing the computational time or overlearning so that the NN loses its ability to
generalize the patterns present in the training dataset. On the other hand, very few numbers
of neurons may cause underfitting so that the model is not complex enough to capture
patterns in the data [70,71].

In general, it is not possible to comment definitively on the number of neurons required
for a proper network execution. The best number of hidden neurons was determined by
trial and error, based on the evaluation of the mean square error (MSE). An empirical
formula has been proposed [72] to find the number of hidden neurons:

nh =
√
(ni + no) + c (4)

where nh, ni and no are the number of neurons in hidden, input and output layers, respec-
tively. c is an adjustment constant ranging from 1 to 10. In this article, based on Equation (4),
the number of hidden neurons was examined from 6 to 16 to determine the optimal value.

Performance Evaluation of the NN and the MLR Models

Three statistical indexes, including correlation coefficient (R2), root mean square error
(RMSE) and error percentage (E), were applied to assess the performance of the developed
NN and MLR models in order to find whether there was any significant difference in their
performance. These three performance indicators are calculated as follows [73,74]:

R2 =

[
n(∑ XY)− (∑ X)(∑ Y)√

(n ∑ X2 − (∑ X)2)(n ∑ Y2 − (∑ Y)2)

]2

(5)

RMS =

[
1
n ∑ (X − Y)2

] 1
2

(6)

E =
1
n ∑

∣∣∣∣Y − X
X

∣∣∣∣ (7)

In these equations, X represents the measured values, Y is the estimated values, and n
is the number of data. The correlation coefficient can determine how the network output
changes according to the actual values, and when it is equal to one, there is a complete
correlation between the estimated and the measured values. The lower RMSE and error
percentage values represent the more accurate estimation results.
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2.3.4. Convolutional Neural Network

CNN is considered to be one of the most popular NNs for image classification prob-
lems. Basically, a CNN is a kind of feedforward NN which comprises two main sections:
The first section (feature extraction) comprises input layer, convolution and pooling layers
and the second section (classification) consists of a dense (flattened) layer, fully connected
layers and an output layer [75]. Figure 5 illustrates the architecture of a typical CNN.

Figure 5. The structure of the CNN model.

The convolutional layer (CL) is the main part of a CNN which extracts features by
convoluting the kernel (filter) over an original image (matrix). The filter works by moving
a window from left to right and top to bottom to multiply and sum each position of the
source pixel (Figure 6). Each convolution layer adopts a 3 × 3 filter with a stride of 1.
ReLU (rectified linear unit) is used as an activation function after each CL. ReLU is always
levelled as 0 and 1. The pooling layer decreases the dimension of feature maps while
keeping the most important information to avoid overfitting [76]. It is generally situated
between consecutive CLs. The maximum pooling function adopts a matrix of size 2 × 2
(Figure 7).

Figure 6. Schematic diagram of image convolution operation.

Figure 7. The maximum pooling function operation (2 × 2 filter and stride 2).
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After the pooling layer, the output feature maps are flattened in the dense layer
by transforming the input from multidimensional space to a one-dimensional array of
numbers to smooth the connection of nodes in the fully connected layer. The classification
of the input image is performed in the classification layer with the ability to adjust weights.
The number of nodes in the classification layer corresponds to the number of classes in
the output.

Many popular CNN architectures have been developed such as LeNet, GoogleNet,
VGG16, ResNet, and AlexNet to solve machine vision-based problems [65]. In this study,
ResNet18 was selected. MATLAB 2021a (The MathWorks, Inc. protected by U.S and
international patents), with Machine toolbox deep neural network designer, was used in
this experiment.

3. Results and Discussion
3.1. Correlation between Froth Features and the Process Metallurgical Performance

The predictive model performance depends on the data nature, and the variable
selection [77]. Feature selection should be considered to find the best set of variables to
build useful predictive models.

The correlation coefficient is a statistical measure that is commonly used to calculate
the strength of the relationship between two variables [78]. In order to select the appropriate
variables and minimize the required dataset, the Pearson correlation coefficients between
the froth features and the sulfur recovery were implemented. The values of the correlation
matrix between the froth images features and the recovery are shown in Figure 8. As
shown in the heatmap, color features obtained from the froth images except H and b
were strongly associated with the amount of sulfur removal, showing almost similar
correlation coefficients. As a result, these parameters were suitable for the sulfur recovery
estimation. Furthermore, there were very weak correlations between the H, b and the
recovery. Therefore, these two features were excluded from the model predictors due to
having a low contribution rate.

Figure 8. Pearson correlation matrix between the inputs and output. (a) color; (b) size and shape;
(c) dynamic; (d) textural properties.
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The color characteristics of the froth images are more related to the process perfor-
mance than to the geometric properties of the bubbles. Figure 8d shows the correlation
values between the textural properties of the froth images and the process performance
factor. There was a significant correlation between the textural features and the recovery.
Among the textural properties, the entropy and energy had a higher correlation with the
sulfur removal values. According to the heatmap, both geometric features and dynamic
factors were most associated with the recovery. The froth stability relative to the velocity
had a higher correlation with the process output variable.

Although the results of the correlation matrix between the amount of sulfur removal
and the froth visual properties showed that these features are somewhat in line with
expectations, the interaction between the factors may obscure the results. Therefore, the
use of nonlinear models for process modelling is justifiable. The input and output variables
of the proposed models for prediction of the output parameter are shown in Figure 9.

Figure 9. The structure of the inputs and output of the proposed models.

3.2. Sulfur Removal Estimation Based on K-Means Algorithm

In this study, the k-means algorithm was applied to cluster the froth image features
using Python software. The effect of the number of clusters (five and six) was examined.
According to the results of this study, a model with six clusters was optimal. The clusters
of samples based on k-means algorithm are visualized in Figure 10. The samples were clas-
sified into the different clusters with different colors. It is clear that the k-means algorithm
was able to classify the dataset. The number of samples in each cluster is given in Table 5.
It can be seen that clusters 3 and 2 had the highest and lowest populations, respectively.

Figure 10. K-means clustering (K = 6) applied to froth feature dataset in order to group the sulfur
removal value.
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Table 5. The number of samples in each cluster.

Cluster Number of Samples in Cluster

1 10
2 5
3 41
4 16
5 18
6 9

The statistical results obtained by applying the k-means method are shown in Table 6.
According to the results of the flotation experiments, the sulfur recovery was split into
six clusters, which were too low, low, low–medium, medium, medium–high and high, as
shown in Table 6. For example, cluster 5 was characterized by the highest level of sulfur
recovery (average = 73.74%). Clusters 3 and 2 were characterized by the medium–high and
the very low level of recovery, respectively. In other words, the average of sulfur recovery
in cluster 3 was higher than the average of the corresponding recovery in cluster 2.

Table 6. Statistical results of predicted values in each cluster.

Cluster Max. Min. Average SD Type Sulfur Recovery (%)

1 37.97 27.91 32.00 3.39 Low–medium 30–40
2 20.57 10.92 15.88 4.14 Very low ≤20
3 66.42 44.06 56.40 6.06 Medium–high 50–65
4 52.62 35.05 42.05 5.42 Medium 40–50
5 87.28 63.73 73.74 6.56 High ≥65
6 29.22 17.08 24.34 3.65 Low 20–30

The accuracy measure clarifies how well the k-means algorithm was able to group the
samples with similar features in the same cluster. To evaluate the errors, it was necessary to
check the members of each cluster to see if they were properly classified. The efficiency of
each cluster was evaluated using the accuracy criterion (Equation (1)). As shown in Table 7,
the results of the k-means algorithm almost matched the results of the actual classification.
Results demonstrated that the relationships between the froth characteristics and recovery
were successfully modelled using the k-means method with rational errors. In general, the
clustering results confirmed the principle that sulfur recovery is greatly affected by froth
features. The froth features classification could estimate the sulfur recovery more accurately
than human workers, avoiding the large fluctuation caused by the personal decisions of
different workers. The proposed classifier could be used to cluster other data whose class
label is not specified.

Table 7. The accuracy of each cluster.

Metallurgical Factor
Cluster

1 2 3 4 5 6

Misclassification 2 0 7 6 2 1
Classification accuracy (%) 80 100 83 63 89 89

3.3. Sulfur Removal Estimation Based on MLR

To predict the amount of sulfur removal from iron ore concentrate, the MLR model was
obtained by processing the full data, as shown in Figure 9. The data were split 85:15 into
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training (to constitute the regression equation) and test data sets. The results of ANOVA for
the regression model are shown in Table 8. The model is shown in the following equation:

SE = 212.04 + 0.204(Grey)− 1.25(Red)− 1.23(Green) + 0.30(Blue)− 106.71(S)
+361.62(I) + 0.66(L)− 1.35(a) + 62, 409.34(ASM)− 0.133(Contrast)

−164.25(IDM)− 5.99(Entropy)− 0.58(Buble size)− 13.34(AR)
(8)

Table 8. Results of ANOVA for regression model.

Sums of
Squares Regress

df
Regress

Sums of Squares
Residual df Residual Mean Squares

Regress
Mean Squares

Residual F P-Level

25,256.54 17 3772.41 66 1485.69 57.16 25.99 0.00

The relationship between measured and calculated values using the proposed math-
ematical model in Equation (8) is presented in Figure 11. The multivariable regression
equation predicted the sulfur recovery with a correlation coefficient of 0.92. The comparison
of the actual values and the estimated values for sulfur recovery in the validation stage is
presented graphically in Figure 12.
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Figure 12. The comparison of measured values and predicted values for sulfur recovery using MLR.

According to Figure 11, the R values in the training and validation data set for sulfur
recovery were 0.91. The descriptive statistics of the differences between the measured
and estimated values for the evaluation data are given in Table 9. Although the MLR has
been stated as a capable tool for data modelling, it could not accurately describe the sulfur
recovery within the entire process variables space (RMSE = 6.82). This may be due to the
complexity of the selected data covering a wide range of operational conditions. Thus, the
ANN model was examined as an alternative method and is discussed in the next section.
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Table 9. Descriptive statistics of errors between actual and BNN predicted values for the test data.

Variables Minimum Maximum Mean RMSE Error Percentage

Prediction error −11.02 12.14 1.04 6.82 15.4

3.4. Sulfur Removal Estimation Based on BPNN Model

The desulfurization of iron ore concentrate by the column flotation process is highly
nonlinear and complicated [34]. The main objective of the current study was to combine
image analysis methods with an intelligent predictive model such as NN to forecast the
amount of sulfur removal from the iron ore concentrate.

As stated, the visual properties of the flotation froth were included in the input layer
and the sulfur recovery in the output layer. The total 99 experimental data were randomly
divided into three subsets as training, testing and validation. The training data (74 runs)
were used by BPNN to learn how to map the inputs to the output by updating the network
weights. The validation data (10 runs) were applied to assess the quality of the model. The
ultimate check on the performance and generalization ability of the trained model was
performed using testing data (15 runs).

BPNNs with at least one hidden layer are able to effectively estimate any function with
the appropriate approximation, as long as the number of hidden neurons is appropriately
determined. In the hidden layer, only the number of neurons determines the structure of
the network and plays a major role in a network capability. Thus, if the number of neurons
is small, the model does not accurately reflect the nonlinear mapping between inputs and
outputs. On the other hand, if the number of middle layer neurons is too large, the model
becomes overtrained and loses its generalizability [79,80]. To choose the best structure, the
number of neurons in the hidden layer was changed to achieve minimum MSE.

The training settings of the BPNN model in this study are summarized as follows:
number of input nodes: 17, number of hidden neurons: from 6 to 16, number of output
nodes: 1, number of epochs: 1000. As stated in the literature [81], unlike changing the
number of hidden nodes, changing the activation function does not have a significant effect
on the model performance and results with similar MSE and R. The tangent sigmoid and
linear activation functions were used in the hidden and output layers, respectively.

The BPNN model consisting of 10 neurons in the hidden layer gave the lowest MSE
error among all the models studied. The network’s performance in the training stage is
shown in Figure 13. In the training stage, Mu first increased and then dropped, then fell to
0.01, and remained stationary, which shows that the model had reached its optimum state.
The number of validation checks, which describes the number of consecutive iterations that
the validation performance fails to reduce, was equal to six. In other words, if the number
of validation checks reaches six, the training phase will stop.

Figure 13. Training state and performance of the generated BPNN model.
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Figure 13 shows the MSE variation of the training, validation and testing stages versus
the iteration number. As shown in this figure, the large values for the MSE gradually
reduced to a smaller value as the weights were updated. Training stage stopped at the
seventh epoch, i.e., after epoch seven, there was no significant improvement in the per-
formance of the model. The best validation performance was 48.98 at epoch seven, and
after six error iterations (validation checks), the process stopped at epoch thirteen. In epoch
seven, the MSE values for training and testing phases were 18.87 and 31.83, respectively,
implying a good stable network behavior.

The comparison between the actual and predicted values of the sulfur recovery during
training, validation, and testing stages is displayed in Figure 14. The dashed line shows the
perfect result, i.e., outputs are equal to targets, while the solid line represents the best fit
linear regression.

Figure 14. The regression plot of the data used in the training, validation and testing phases.

In the training stage, the predicted data obtained from the BPNN modeling were close
to the actual data with a correlation of R = 0.98. Figure 14 shows the good fit attained in both
the validation and testing of the proposed model (R values above 0.96). Despite the high
variability and wide range of the output data, the overall R of the model was 0.97, which
showed the appropriateness of the training, testing, and validity. From these comparison
plots, it can be concluded that the BPNN is appropriately trained and shows consistency
in forecasting sulfur recovery. The R values obtained from this BPNN model are higher
than those reported in other studies in the literature for the prediction of metallurgical
performance of the flotation process [19,36,82]. The novelty and superiority of the proposed
BPNN model are its highest accuracy compared to the previously reported models to
predict the metallurgical performance parameters of the flotation process.

The BPNN error histogram (differences between actual and predicted values) for the
prediction of sulfur removal is illustrated in Figure 15. It can be observed that most of the
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errors were distributed between −1.43 and 2.54. Furthermore, the validation set and test
set had similar behavior with no occurrence of overfitting. The comparison of the predicted
recoveries with the measured values in the testing phase is shown in Figure 16. The values
estimated by utilizing the BPNN model were very close to the actual measurements. The
descriptive statistics of the errors in the testing stage (Table 10) confirmed that the BPNN
model based on selected froth features was able to estimate the sulfur recovery quite
precisely and satisfactorily. In the testing phase, the R, RMSE, and percent error values
were obtained as 0.97, 4.84 and 11.29%, respectively, which confirmed a precise and robust
prediction of the experimental data.

Figure 15. Error histogram with 20 bins for the training, validation and testing of BPNN for sulfur
recovery prediction.

Figure 16. Comparison of measured and predicted values in the BPNN testing phase.

Table 10. Descriptive statistics of errors between actual and BPNN predicted values for the test data.

Variables Minimum Maximum Mean RMSE Error Percentage

Prediction error 8.06 −7.59 0.57 4.84 11.29

It was demonstrated that a well-trained BPNN model based on froth features could
be used to predict sulfur recovery from iron ore concentrate by column flotation without
needing more experimental study requiring much time and high experiment costs.

3.5. Sulfur Removal Estimation Based on CNN

To classify the six groups of froth data, the ResNet18 deep learning classification
method was used. The CNN has 71 layers containing input, convolutional, pooling, fully
connected, ReLU, batch normalization, softmax and output layers. The layer structure of
the proposed CNN is given in Figure 17.
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Figure 17. Layer structure analysis for the CNN model training.

Figure 18 illustrates the confusion matrices of the CNN model in the classification
process. A confusion matrix explains the estimation results of a classifier. The diagonal
elements represent the number of correct predictions, while the off-diagonal elements repre-
sent incorrect estimations. This figure shows that the classification accuracy of the CNN for
six froth classes was high, indicating that the model could provide an accurate prediction
of the flotation performance (the amount of sulfur removal). The bottom and right values
display the overall accuracy of the classification model. The prediction accuracy using this
deep learning model was 90% which was much higher than the k-means algorithm.

Figure 18. Confusion matrix of the CNN classifier.
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The results showed that the CNN model was suitable for finding the process conditions
of the column flotation in desulfurization of iron ore concentrate with high accuracy and
efficiency. For example, if the froth images are categorized in Class A, Class B, or Class C,
it is a sign that the current condition is abnormal. In this circumstance, the plant workers
need to regulate the operating factors to achieve the desired performance.

3.6. Comparison of MLR, K-Means, BPNN and CNN Models

The results showed that all the proposed models, k-means, MLR, BPNN, and CNN,
could be considered for sulfur removal prediction in the desulfurization of iron ore con-
centrate using flotation froth images. However, when different statistical results such as R,
RSME, and percent error were examined, it was clear that the BPNN and CNN predicted
values were more accurate than those of the MLR and k-means models.

The total accuracy of the CNN and k-means algorithms were 91% and 82%, respectively.
In the k-means algorithm, regression and BPNN models, the froth features were firstly
extracted offline through image analysis techniques and then they were entered into the
models, whereas in the CNN model the froth images were directly fed into the model. Since,
the traditional predictive models were built based on off-line feature extraction techniques,
the training time for evaluation of the models was ignored. So, it can be concluded that the
CNN and BPNN were able to categorize the froth images with high performance.

The BPNN and CNN models were found to be more successful where nonlinear and
complex relationships were involved in the system, such as the desulfurization process of
iron ore concentrate using the column flotation process. Thus, it was possible to establish a
complex relationship between sulfur recovery and froth flotation features using the BPNN
and CNN models with an excellent accuracy level.

It is important to note that sometimes BPNN does not represent the most cost-effective
solution. In some cases, the interpretability of the network and weights may be difficult,
the determination of the optimum structure and parameters may be troublesome, and the
convergence of the training algorithm may be endless [81]. In these situations, MLR models
can have advantages in terms of accuracy, variability, and model creation; therefore, its
choice is preferred [83].

4. Conclusions

In the iron reverse flotation process, the amount of sulfur removal and the quality of
flotation concentrate are usually judged according to the froth’s surface appearance. Visual
assessments by workers are challenging tasks and often inaccurate; in practice, they can
only be performed at a given time. A machine vision system for monitoring and control
of the operating conditions of the flotation process can be a great help for workers and
iron and steel producers. Therefore, to forecast the amount of sulfur removal from the iron
concentrate in the flotation process, soft-sensor models based on extracted froth features
were proposed.

A total of 99 flotation column experiments were conducted in a wide range of different
operating conditions and the froth features were extracted for each run. In this study,
the abilities of four algorithms, including multiple linear regression (MLR), the k-means
algorithm, the backpropagation neural network (BPNN), and the convolutional neural
network (CNN) to predict the sulfur recovery, were examined and compared. In the first
three models, the different froth features such as color, bubble shape and size, texture, froth
stability, and velocity were primarily extracted offline through image processing techniques
and then they were fed into the models, whereas in the CNN model the froth images were
directly fed into the model.

The results showed that among the four algorithms implemented, the three-layer BPNN
and the CNN models outperformed the MLR and k-means techniques when predicting sulfur
recovery. The best NN model was a backpropagation network (topology 17-10-1) using a
Levenberg–Marquardt algorithm for the training step, showing R = 0.97, RMSE = 4.84 and
percent error = 11.29%. The total accuracy of the CNN and k-means algorithms were 91% and
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80%, respectively. Therefore, the sulfur recovery, which is the most important parameter
for control purposes of the flotation process, can be accurately predicted from the froth
surface appearance by the BPNN and CNN models. Considering the accuracy and time
consumed in measuring the metallurgical parameters of the flotation process, with the use
of BPNN and CNN models, satisfactory results can be predicted rather than measured
in the laboratory which thereby reduces the testing time and cost. As a result, it can be
confirmed that such modelling studies pave the way to find an alternative to the on-stream
analyzer, such as XRF, which is costly and not widely available.

In the future, the performance of the proposed models can be improved if more
machine learning techniques are tested on larger datasets. Finally, future studies should
concentrate on the validation and generalization of the proposed models in an industrial
flotation process.
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