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Abstract: Coal is a complex, porous medium with pore structures of various sizes. Therefore, it is
difficult to accurately describe the characteristics of pore structure by using the traditional geometry
method. The results from the present investigation suggest that the porous media system of the coal
reservoir has obvious fractal characteristics at different scales. To study the complexity of the pores in
the coal reservoir, 27 coal samples from Guizhou, SW China were studied. The fractal dimensions of
coal pores were calculated, and the fractal dimension of a pore in a coal reservoir can be classified into
two types: percolation and diffusion. The comprehensive fractal dimension can be obtained using the
weighted summation method and the pore volume fraction of different fractal segments as the weight.
The percolation fractal dimensions (Dp) of coal samples are between 2.88 and 3.12, the diffusion
fractal dimensions (Dd) are between 3.57 and 3.84, and the comprehensive fractal dimensions (Dt)
are between 3.05 and 3.63. The Dd values of all coal samples are all larger than the Dp values, which
indicates that the random distribution and complexity of diffusion pores in coal are stronger than
those of the percolation pores. The percolation fractal dimension decreases as the maturity degree
increases, whereas the diffusion and comprehensive fractal dimensions increase. The diffusion pore
volume fraction and total pore volume are all highly correlated with the comprehensive and diffusion
fractal dimensions, respectively. The correlation between the comprehensive fractal dimension,
diffusion pore volume fraction, and coal reservoir porosity is negative exponential, whereas the
correlation between the total pore volume and coal reservoir porosity is positive linear. In comparison
with the percolation and diffusion fractal dimensions, the comprehensive fractal dimension is better
suited for characterizing the permeability of coal reservoirs. The fractal analysis of this paper is
beneficial for understanding the relationship between the fractal characteristics of coal pores and
properties.

Keywords: Southwestern China; coal pores; mercury injection experiment; fractal dimension;
petrophysical properties

1. Introduction

Coal is a disordered heterogeneous pore medium; the pore structure is directly related
to methane adsorption and fluidity [1,2]. The existing research shows that the composition
of coal is critical to determine the characteristics of coal reservoirs [3,4]. Southwestern China
owns one of the largest coal-producing fields in the country [5,6]. The Longtan Formation
of Guizhou province in this region contains abundant coal resources and extremely rich
coalbed methane (CBM) resources [7,8]. However, the complex geological conditions in
this area seriously restrict the development of coalbed methane production [9,10], with
one of the most significant factors being the structure of the pores [11,12]. The pores and
fissures of coal reservoirs are important spaces for coalbed methane adsorption, migration,
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and accumulation [13,14]. It plays an important role in controlling the adsorption capacity
and the permeability of coal [15].

The pore characteristics of coal are highly heterogeneous [16,17]. It is difficult to
accurately describe and analyze the complexity of the pore structure by using traditional
geometry methods [18,19]. Most scholars tend to use fractal mathematical methods to
describe its characteristics [20,21]. Different scholars have carried out significant research
on the selection of fractal scale, calculation of fractal dimension, and physical property
characterization of fractal geometric parameters of coal reservoir pores, but the conclusions
are quite different [22,23]. This is because the pore systems of coal reservoirs in different
areas are very different due to differences in metamorphic degree and reservoir physical
properties [24,25]. It further indicates the complexity and particularity of the pore system
in coal reservoirs [26,27].

In recent years, some scholars have studied pore characteristics, geological controlling
factors of coal reservoirs [1,28], and the fractal characteristics of pores on a certain scale in
some mining areas of the southwestern part of China [29–31]. However, comprehensive
fractal research of the reservoir is seldom involved. This paper uses typical bituminous
coal samples and typical anthracite samples in Southwestern China as the research object.
In this study, 27 coal samples were collected, and vitrinite reflectance (Ro) measurement,
coal proximate analysis, and mercury injection tests were performed on all samples. Based
on the results of the equipment, the fractal dimension was calculated. Afterward, the rela-
tionship between different parameters was studied. The primary goals of this study were:
(1) quantitatively study the fractal characteristics of different pore sizes in coal reservoirs
by using fractal theory, and calculate their fractal dimension in sections; (2) discuss the
internal relationship of fractal geometric parameters, such as piecewise fractal dimension
and comprehensive fractal dimension, and their effects on porosity and permeability. The
study is beneficial for better understanding the relationship between fractal characteristics
of coal pores and petrophysical properties.

2. Experiment and Methodology
2.1. Equipment and Materials

In order to study the fractal characteristics of coal pores and their impact on the
petrophysical properties, a total of 27 coal samples were collected from Longtan Formation
in Guizhou province, SW China. A total of 23 of the samples are bituminous coal and 4 are
anthracite. The collection process of the samples followed the Standard Method of China
(GB/T 19222-2003). All coal samples were obtained from CBM parameter wells or working
surfaces of underground mines from 8 coalfields. Some permeability values of coal beds
were acquired by an injection test. The statistical results show that the permeability of
the coal beds in this region ranges between 0.027 × 10−15 m2 and 0.573 × 10−15 m2; this
suggests that the permeability of coal beds in this region is relatively low [32–34].

Vitrinite reflectance (Ro) measurement, coal proximate analysis, and mercury injection
tests were performed on all samples. The measurement of Ro followed the National
Standards of China (GB/T 8899-2013), and the proximate analysis followed the test method
ISO 17246-2010. We used the mercury injection method to test the porosity of the samples.
The instrument was Autopore IV 9500, which was produced by Micromeritics. To avoid the
negative effects of mineral impurity and other factors in the sample preparation process,
the samples were crushed into particles with a dimension of 2–4 mm. The mercury injection
test shows the distribution of pores diameter in soil based on the fact that non-infiltrative
liquid will not flow into solid pores without pressure. The pressure required for liquid
injection into the pores is based on the Washburn equation [35,36]. The relationship between
the pressure and the volume of mercury was obtained from the mercury injection test.
The Washburn equation was used to find the corresponding equivalent diameter through
pressure, from which the pore distribution of coal was obtained [37,38]. Additionally, we
excluded the results with apertures larger than 100,000 nm as these obviously oversized
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pores are not the pore system of the sample itself. The porosity measurements followed the
Petroleum Industry Standard of China SY/T 6385-1999.

2.2. Methodology

Fractal dimension is an important parameter to describe fractal characteristics, which
describes the complexity or roughness of the coal surface. Many scholars have deduced
the fractal dimension of the pore volume of coal reservoirs according to the basic theory
of fractals [34,39,40]. Based on the mercury injection data, Equation (1) was utilized
to determine the relationship between mercury injection volume and mercury injection
pressure in coal samples [11,41,42] and is as follows:

lg
(

dVp

dP

)
∝ (D − 4)lgP (1)

where P is the external pressure in the process of mercury injection, in MPa; dVp is the
pore volume increment of the corresponding pressure increment dP, in cm3/g; and D is the
fractal dimension of coal pore volume, and is dimensionless.

Through the scatter plot of lg
(

dVp
dP

)
and lg P, one or more linear relationship segments

will appear in the graph using the mercury injection test data of coal samples. As long
as there is a linear relationship between lg

(
dVp
dP

)
and lg P, the pore distribution of the

corresponding segment conforms to the fractal characteristics, and the fractal dimension of
the segment D = 4 + K can be obtained, where K is the slope of the line [14,18,43].

Existing research on the fractal dimension of coal pores has shown that different pore
sizes in coal have fractal dimension characteristics in the subsection [3,23,44]. In the study of
mercury injection fractals of coal samples in the Bide–Santang Basin in Southwestern China,
it has been found that there are three kinds of pore systems in coal samples, namely large
pores between particles of coal matrix >6000 nm, transition pores in coal matrix particles
between 6000 and 73 nm, and small/micropores in coal matrix particles <73 nm [45]. They
correspond to three different pore fractions, which were called the fractal dimension of
large pores (D1), the fractal dimension of transitional pores (D2), and the fractal dimension
of small/micropores (D3) [45–47]. The mercury injection fractal of a large number of coal
samples collected from different regions of China in different geological times and coal
grades were studied based on the diffusion and percolation characteristics of coal bed
methane [1,48,49]. The aforementioned study divided the coal pores into percolation pores
(>65 nm) and diffusion pores (<65 nm). Jiang et al. studied the samples from West China
and found that there are two different fractal characteristics of coal reservoir pores, namely
the fractal dimension of the larger pore stage as the percolation fractal dimension and the
fractal dimension of the smaller pore stage as the diffusion fractal dimension [50]. The
fractal dimension of different pore sizes is related to the physical properties of the reservoir,
but it is difficult to represent the complexity of coal [51,52]. Ren et al. proposed a method to
study the fractal dimension of coal samples. In this method, the ratio of different pore sizes
was taken as the weight coefficient, and the comprehensive fractal dimension was obtained
by the weighted summation of the fractal dimension of different pore size segments. The
calculation equation is as follows:

Dt = ∑ DiTi (2)

where Dt is the comprehensive fractal dimension of coal, Di is the fractal dimension
corresponding to the pore size segment, Ti is the pore size ratio corresponding to the pore
size segment, and i is the pore size segment code.
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3. Results
3.1. Results of Conventional Coal Test

Table 1 shows the results of the experiments. The Ro of bituminous coals ranges from
1.05% to 1.95%, with an average value of 1.60%. The results of the proximate analysis
show that the moisture content (ad), ash yield (Ad), and volatile matter (daf) range from
0.69 to 1.680% (average 0.94%), 12.53 to 28.62% (average 22.18%), and 15.94 to 33.48%
(average 22.90%).

Table 1. Test results of coal samples.

Sample Nos. Coal Rank Ro/%
Proximate and Ultimate (wt%) Porosity

(%)
Total Pore Volume

(mL/g)Mad Ad Vdaf

M1

Bituminous coal

1.05 0.75 16.28 33.48 4.01 0.0284

M2 1.07 1.68 25.17 31.80 3.85 0.0236

M3 1.13 1.52 24.83 30.85 5.68 0.0412

M4 1.09 0.95 20.48 32.97 3.27 0.0244

M5 1.10 0.88 19.34 29.18 4.22 0.0251

S1 1.45 1.06 21.87 23.98 3.74 0.0261

S2 1.22 1.14 19.27 24.59 4.02 0.0248

S3 1.43 1.28 21.39 22.48 3.84 0.0257

S4 1.24 1.85 20.14 24.26 3.97 0..0277

F1 1.67 0.95 18.67 21.87 3.78 0.0191

F2 1.54 1.25 19.38 20.89 3.68 0.0210

F3 1.68 0.85 21.08 18.92 3.47 0.0199

F4 1.42 1.33 19.38 19.46 4.89 0.0223

W1 1.81 0.71 26.15 19.38 9.25 0.0538

W2 1.85 0.98 28.62 18.89 9.14 0.0634

W3 1.93 0.69 12.53 15.94 5.37 0.0402

W4 1.84 0.78 18.78 17.96 6.47 0.0581

W5 1.79 0.93 20.96 20.39 7.25 0.0495

W6 1.92 0.73 14.69 18.88 5.77 0.0513

G1 1.95 0.71 28.14 17.82 3.64 0.0227

G2 1.85 0.92 18.98 20.68 5.87 0.0428

G3 1.92 1.24 24.39 17.11 4.26 0.0328

G4 1.89 0.85 20.64 20.47 5.84 0.0215

H1

Anthracite

3.31 2.30 21.38 7.88 3.41 0.0213

H2 3.24 2..14 20.86 10.96 4.95 0.0328

H3 3.14 2.02 17.39 12.85 3.99 0.0259

H4 3.30 1.95 20.18 8.89 4.12 0.027

Ro: vitrinite reflectance, %; Mad: moisture (air-dried basis); Ad (dry basis); Vdaf (dry ash-free basis).

3.2. Results of Mercury Intrusion

The mercury intrusion curves for different samples are shown in Figure 1. All curves
show the hysteresis loop phenomenon. The mercury injection curves in the study area were
divided into two types. Type I (Figure 1a) shows that when low pressure is increased the
mercury intake increases significantly with the increase in mercury injection pressure, and
shows obvious hysteresis, indicating that there are more open pores and good connectivity.
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Type II (Figure 1b) shows that with the continuous increase in mercury intrusion pressure,
the mercury intrusion curve continues to rise, indicating that the pores of all scales are
distributed and open.
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Figure 1. Mercury intrusion curves for different samples. (a) Sample M1 & Sample S1; (b) Sample F1.

3.3. Results of Fractal Dimension Calculation

According to Equation (1), the relation diagram of lg(dVP/dP) and lgP was drawn
from mercury injection data of coal samples (Figure 2). The fractal curve can be divided
into two different linear sections: a low-pressure section and a high-pressure section. The
linear regression correlation coefficients of each section are all above 0.90. This indicates
that there are two different pore systems in the coal samples. The low-pressure section
corresponds to a large pore diameter section, and the high-pressure section corresponds to
a small pore diameter section. In this paper, the fractal dimension of the larger pore section
is called the percolation fractal dimension (Dp), and the fractal dimension of the smaller
pore section is called the diffusion fractal dimension (Dd).

It can be observed in Figure 2 that the graph from lgP and lg(dVP/dP) shows two distinct
lines and lgP of the yielding points is between 1.1 and 1.4. The corresponding coal pore
radius is between 54 and 85 nm, with an average of 65 nm. This phenomenon is consistent
with the study of Fu et al. (2005) which has been shown in the methodology. In this study,
we followed the classification scheme of Fu et al. (2005) and set 65 nm as the boundary of
percolation pores and diffusion pores.
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Table 2 lists the fractal dimension, correlation coefficient, and pore size ratio of some
coal samples with different pore sizes. According to Equation (2), the comprehensive fractal
dimension (Dt) of each coal sample is obtained as a weighted average.

Table 2. Calculation results of fractal dimension of some coal samples.

Sample
Nos.

Percolation Pore Segment Diffusion Pore Segment
DtLinear Fitting

Equation R2 Dp
Pore Size
Ratio/%

Linear Fitting
Equation R2 Dd

Pore Size
Ratio/%

M1 Y = −0.948x − 2.675 0.96 3.05 44 Y = −0.267x − 3.457 0.92 3.73 56 3.43

M2 Y = −0.962x − 2.688 0.88 3.04 35 Y = −0.157x − 3.627 0.90 3.84 65 3.56

M3 Y = −0.958x − 2.635 0.81 3.04 41 Y = −0.257x − 3.659 0.87 3.74 59 3.46

M4 Y = −0.922x − 2.578 0.84 3.08 39 Y = −0.195x − 3.561 0.82 3.81 61 3.52

M5 Y = −0.968x − 2.458 0.80 3.03 42 Y = −0.281x − 3.486 0.84 3.72 58 3.43

S1 Y = −0.937x − 2.757 0.89 3.06 37 Y = −0.348x − 3.585 0.96 3.65 63 3.43

S2 Y = −0.952x − 2.582 0.81 3.05 38 Y = −0.385x − 3.518 0.91 3.62 62 3.40

S3 Y = −0.901x − 2.747 0.85 3.10 35 Y = −0.315x − 3.685 0.82 3.69 65 3.48

S4 Y = −0.978x − 2.638 0.88 3.02 41 Y = −0.341x − 3.725 0.84 3.66 59 3.40

F1 Y = −1.124x − 2.735 0.91 2.88 32 Y = −0.161x − 3.752 0.96 3.84 68 3.53

F2 Y = −1.114x − 2.582 0.88 2.89 39 Y = −0.158x − 3.857 0.84 3.84 61 3.47

F3 Y = −1.125x − 2.758 0.81 2.88 35 Y = −0.181x − 3.581 0.86 3.82 65 3.49

F4 Y = −1.117x − 2.856 0.84 2.88 37 Y = −0.178x − 3.893 0.90 3.82 63 3.47

W1 Y = −1.117x − 2.117 0.90 2.88 76 Y = −0.435x − 3.172 0.99 3.57 24 3.05

W2 Y = −1.101x − 2.333 0.91 2.90 69 Y = −0.211x − 3.578 0.92 3.79 31 3.17

W3 Y = −1.027x − 2.480 0.92 2.97 48 Y = −0.386x − 3.468 0.96 3.61 52 3.31

W4 Y = −1.146x − 2.500 0.90 2.85 65 Y = −0.582x − 3.573 0.87 3.42 35 3.05

W5 Y = −1.085x − 2.581 0.88 2.92 58 Y = −0.379x − 3.458 0.80 3.62 42 3.21

W6 Y = −1.055x − 2.494 0.82 2.95 49 Y = −0.375x − 3.483 0.96 3.63 51 3.29

G1 Y = −0.877x − 2.824 0.89 3.12 34 Y = −0.235x − 3.788 0.89 3.77 66 3.55

G2 Y = −0.925x − 2.458 0.87 3.08 38 Y = −0.285x − 3.581 0.89 3.72 62 3.47

G3 Y = −0.895x − 2.594 0.81 3.11 42 Y = −0.246x − 3.673 0.85 3.75 58 3.48

G4 Y = −0.880x − 2.765 0.79 3.12 36 Y = −0.249x − 3.657 0.90 3.75 64 3.52

H1 Y = −0.955x − 2.764 0.96 3.05 22 Y = −0.207x − 3.355 0.91 3.79 78 3.63

H2 Y = −0.924x − 2.724 0.90 3.08 38 Y = −0.182x − 3.278 0.81 3.82 62 3.54

H3 Y = −0.975x − 2.681 0.85 3.03 32 Y = −0.214x − 3.281 0.86 3.79 68 3.54

H4 Y = −0.968x − 2.588 0.80 3.03 29 Y = −0.193x − 3.589 0.90 3.81 71 3.58

The results in Table 2 show that the percolation fractal dimensions (Dp) of coal samples
are between 2.88 and 3.12, the diffusion fractal dimensions (Dd) are between 3.57 and 3.84,
and the comprehensive fractal dimensions (Dt) are between 3.05 and 3.63. The Dd of all coal
samples are all larger than Dp, which indicates that the random distribution and complexity
of diffusion pores in coal are stronger than that of the percolation pores.

4. Discussion
4.1. The Validity of the Calculation Results

According to the theory of fractal geometry, the fractal dimension of a porous solid
should be between 2.0 and 3.0 in general; however, some fractal dimensions in Table 2
exceed 3. Some scholars have found that if the compression deformation of a porous solid
occurs under high pressure, the results of the fractal dimension may be larger than 3.0 [51,53].

Yang et al. (2021) and Cai et al. (2018) studied the compressibility of the coal matrix
and its impact on the results of MIP. They provided a semi-empirical Tait equation to correct
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the results of MIP [54,55]. However, the coal rank and proximate of the samples tested in
this work are multiple, which indicated that the compressibility of different samples varies
greatly. Therefore, it is difficult to correct the fractal dimension by a unified method. Many
scholars have repeatedly obtained the result that the fractal dimension is larger than 3.
Therefore, although the calculation results of partial fractal dimension are greater than 3,
under the same test conditions, a fractal dimension greater than 3.0 is an effective index to
characterize the physical properties of the reservoir.

4.2. Relationship between Fractal Dimensions and Vitrinite Reflectance

By comparing the relationship between the fractal dimension of samples and the
degree of maturity, it can be found that the Dp decreases gradually with the increase in the
maturity degree (Figure 3), while the Dd and Dt increase with the increase in the maturity
degree (Figures 4 and 5). This phenomenon happens because, with the increase in the
metamorphic degree, the percolation pores with a larger pore size in the coal are gradually
compacted and homogenized, and many irregular diffusive pores with a small pore size are
formed during the process of structural compression and compaction of percolation pores.
The comprehensive fractal dimension (Dt) increases with the metamorphic degree, which
has the same trend as the diffusion fractal dimension (Dd), indicating that the complexity
of the coal pores mainly depends on the complexity of diffusion pores (Dd).
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4.3. Relationship between Volume Fraction of Diffusion Pores and Fractal Dimensions

The investigation of each fractal parameter shows that the diffusion pore volume
fractions are poorly correlated with percolation fractal dimension (Figure 6), while it has a
good positive linear correlation with diffusion fractal dimension and comprehensive fractal
dimension, especially when the linear regression number of diffusion pore volume fraction
and comprehensive fractal dimension reaches 0.951 (Figures 7 and 8). It shows that the coal
with a smaller volume fraction of diffusion pores has less complexity in the pores. This
phenomenon preliminarily shows that the diffusion pore volume fractions are important
geometric parameters that indirectly characterize the complexity of coal.
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4.4. Relationship between Fractal Dimensions and Total Pore Volume

The following figures illustrate that the total pore volume is poorly correlated with the
percolation fractal dimension (Dp) (Figure 9), and inversely proportional to the diffusion
fractal dimension (Dd) (Figure 10) and comprehensive fractal dimension (Dt) (Figure 11),
indicating that increasing total pore volume is beneficial in reducing the complexity of
coal pores and making the pore surface of coal, especially the diffusion pore surface,
smoother. By comparing the correlation coefficients of the fractal parameters, it is found
that the comprehensive fractal dimension has the highest correlation coefficients with each
geometrical parameter, the correlation coefficient between diffusion fractal dimension and
geometrical parameters is smaller, and the correlation coefficients between percolation
fractal dimension and geometrical parameters were very low (less than 0.1) (Figure 9). The
correlation between the percolation fractal dimension and the single geometric parameter
is not significant. This indicates that the factors affecting the surface roughness of the
percolation pore are very complex, and any single geometric parameter is difficult to
effectively characterize the complexity of the percolation pore.
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4.5. Relationship between Fractal Parameters and Porosity

Porosity is an important parameter to describe the petrophysical properties of coal
reservoirs. In this study, almost all of the samples were below 5%. The comprehensive
fractal dimension of coal samples has a negative power exponential correlation with
porosity (Figure 12). This phenomenon can be the result of an increased pore network
complexity that leads to poor pore connectivity, which results in lower porosity values.
According to the previous analysis, the volume fraction of diffusion pores and total pore
volume correlate with the comprehensive fractal dimension. Therefore, they are important
fractal geometric parameters in order to characterize the complexity of coal reservoirs. By
analyzing the correlation between these three parameters and porosity, the pore volume of
fraction diffusion decreases with the increase in porosity (Figure 13). This shows that the
comprehensive fractal dimension and the volume fraction of diffusion pores can indirectly
characterize coal porosity.
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4.6. Brief Summary

According to the research above, this paper studied the advantages of the compre-
hensive fractal dimension of coal pores in detail. The fractal characteristics of coal pores
were discussed. Through the establishment of the comprehensive fractal dimension, the
petrophysical properties of coal were analyzed.

The result of the research shows that the comprehensive fractal dimension can better
reflect the complexity of coal pores. This conclusion is consistent with the conclusions
of other scholars [18,20]. Additionally, the result also shows that the diffusion fractal
dimension has a greater reflection on the pore complexity of coal pores than the percolation
fractal dimension. This phenomenon can also be supported by other scholars [2,8,56].

The shortage of this paper is the lack of study on the permeability, as the complexity
of coal pores has an important effect on the permeability of coal reservoirs [27,57,58].

5. Conclusions

Based on the fractal geometry and mercury injection test data, the complexity of pores
in collected samples from the Longtan Formation in Guizhou province, SW China, was
studied. The pore fractal dimension of the coal reservoir is divided into the percolation
fractal dimension and the diffusion fractal dimension. In addition, the comprehensive
fractal dimension of the coal sample can be obtained by the weighted summative method.

The percolation fractal dimension decreases as the metamorphic degree increases,
whereas the diffusion fractal dimension and comprehensive dimension both increase, and
the complexity of diffusion pores has a greater effect on the complexity of pores in coal.

Indirectly, the complexity of coal pores can be determined by the fractal boundary,
volume fraction of diffusion pores, and total pore volume. Correlation coefficients between
the parameters and the comprehensive fractal dimension are greater than those between
the parameter and the diffusion fractal dimension, and there is no obvious correlation
between the parameters and the percolation fractal dimension.

The comprehensive fractal dimension, fractal boundary, diffusion pore volume frac-
tion, and total pore volume can all quantitatively reflect the porosity of the coal reservoir.
The comprehensive fractal dimension, fractal boundary, and diffusion pore volume fraction
all decrease with the increasing porosity of coal. The total pore volume increases linearly in
proportion to the coal reservoir porosity.
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