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Abstract: Sizing High-Pressure Grinding Rolls (HPGR) requires a large quantity of material, making
it not attractive and costly to be considered for new mining projects regardless of their energy
consumption reduction benefits. Ongoing efforts are being made at the University of British Columbia
to predict the behaviour of the HPGR using a low quantity of material on a piston-and-die press
apparatus. Although the energy requirements and size reduction predictive models are already
developed, there is still a need to predict the HPGR throughput on a small-scale test. This paper
presents a new model to predict the HPGR throughput based on the previously developed model to
predict the operational gap by using less than 2 kg of sample. The throughput model was developed
using machine learning techniques and calibrated using pilot-scale HPGR tests and piston press tests.
The resulting model has an R2 of 0.91 with an average prediction error of ±4.2%. The developed
methodology has the potential to fill the gap of the missing throughput model. Further pilot-scale
HPGR testing is required to continue validating the model.

Keywords: HPGR; comminution; piston press test; throughput; machine learning

1. Introduction

The high-pressure grinding rolls (HPGR) technology is increasingly being considered
for hard ore comminution due to its significant benefits in energy consumption compared to
conventional semi-autogenous grinding (SAG) mill circuits. It has been shown that HPGR
circuits can reduce the energy requirements by 10 to 40% [1–4]. Additional downstream
benefits of the HPGR comminution include enhanced mineral liberation from the ore
and reduction of the particles’ strength due to the generation of micro-fractures [5]. To
size/scale up an HPGR, a large quantity of material is required to conduct pilot-scale tests,
which are usually not readily available for early-stage projects [6]. There is also a lack of
industry-approved methods to size/scale up the HPGR using laboratory-scale equipment.
Manufacturers conduct a series of pilot-scale HPGR tests to obtain the required information
to scale-up the parameters to an industrial standard [7]. Other studies have investigated
the use of the piston-and-die press to predict and validate pilot-scale HPGR studies [8,9].
Due to these limitations, the HPGR technology has not been able to be widely considered
in greenfield projects.

Several models have been developed previously at the University of British Columbia
(UBC) to predict the energy and size reduction of the pilot-scale HPGR. Predictions can
be made using a piston-and-die press test (PPT) apparatus and a low quantity of material
to size the HPGR [10–13]. The throughput prediction is still undeveloped in the area
providing a research opportunity.

The HPGR throughput is directly related to the roll’s speed and operational gap (space
between the rolls) [14] occurring during the compression of the material, indicating a
volumetric flow dependency, while the material passes through the rolls, it generates a
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counter-force to the pressure applied by the HPGR as resistance to compression resulting in
the operational gap [15]. The material passing through the rolls will compress until there is
a force equilibrium. Equation (1) represents a volumetric flow of material passing through
the operational gap based on plug flow through the rolls [16]. A strong assumption is that
the material does not slip at the gap to be able to use the roll’s velocity as the material’s one
in the flux equation.

QH = 3600 · L · vr · ρg · Xg (1)

where: QH [t/h] is the calculated HPGR throughput, L [m] is the roll length, vr [m/s] is the
roll speed, ρg [t/m3] is the density of the compressed material in the operational gap, and
Xg [m] is the HPGR operational gap.

The most challenging parameter to estimate is the compressed density of the material
passing through the rolls [17]. Although it is possible to measure the flake density and
thickness of the intact compacted ore pieces collected after the HPGR operation, the mea-
surements are not completely representative of what is happening inside the gap. As soon
as the material is expelled from the HPGR it expands such that the flakes are thicker and
less dense than inside the HPGR.

The operational gap is related to the material properties having a significant impact
on the specific throughput constant. The ore hardness and density and the particle size
(feed top size and fines content) will have a great impact on how the material will com-
press [18,19]. The moisture content will impact how the material will be grabbed into the
rolls due to the changes in friction and adhesion between the particles. High moisture
content can also lead to slippage of the material in the rolls, reducing the performance of
the HPGR [20–22]. In previous work, the authors developed a methodology to predict the
operational gap of the pilot-scale HPGR by conducting several PPTs [23]. The methodology
consists of simulating the HPGR compression by compressing several volumes of material
at different pressing forces, indicating the material’s compressibility. The results from
these compressions allow for predicting the operational gap in the HPGR and supplying
important information for the throughput modelling.

The PPT can capture the material’s compressibility, allowing the results to be re-
lated to the HPGR. Several authors have used the PPT to predict the HPGR throughput.
Qiu et al. [24] focused on predicting Metso’s HRC™ by using strain gauges on their pro-
prietary piston and die setting (Metso’s Packed-Bed Test) and relating to industrial HPGR
plant survey data for calibration. At UBC, Nadolski [25] developed a regression model
based on PPT, pilot-scale HPGR, and shear box tests. The challenge with these mod-
els is that the strain and shear values measured are low compared to those seen in the
HPGR. Additionally, a standalone PPT without needing HPGR calibration has not yet
been developed.

This paper aims to develop a throughput prediction model for the HPGR using data
science techniques. Data obtained from the piston press tests will be used as predictors
alongside other important operational parameters that define the HPGR throughput. Sev-
eral pilot-scale HPGR tests using different ores will be used to initially calibrate the model.
Regardless, an alternative to not using HPGR pilot-scale testing is also presented.

2. Methods
2.1. Pilot-Scale HPGR

A Köppern HPGR was used to conduct the pilot-scale tests (Figure 1). This machine
has Hexadur rolls with a diameter of 750 mm and a width of 220 mm, a variable speed
drive, and a hydraulic system that can apply a pressing force of up to 8 N/mm2. The
system can record power draw, operating gap, roller speed, and operating pressure. Each
test is a single pass of 250–300 kg of material crushed to −32 mm which is choke-fed from
the top before the machine starts. This pilot machine can achieve a throughput of 25–35 t/h
depending on the material characteristics and machine settings.
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Figure 1. Köppern pilot-scale HPGR at UBC used to run the tests.

The material is discharged to a conveyor belt with a splitter that allows the collection
of the centre and edge products separately. The product is collected only when the machine
is operating in a steady state (∼15–20 s after 5 s that the machine started), while the rest
is discarded into the waste bin. The data for analysis is collected during this period as
well. The moisture and roll speed are both maintained constant during the operation. The
throughput is calculated from the weight of the collected product.

2.2. Piston Press Test

An MTS hydraulic press was adapted to incorporate a piston that can compress
material inside a die with a removable base to discharge the compacted material (Figure 2).
The machine can apply forces up to 1399 kN while recording the displacement and force
in time data. A die of 86 mm diameter and 60 mm height is used, which translates into a
maximum applied pressure of 240.5 MPa, close to the pressure that the HPGR can apply on
the centre of the rolls.Piston-die press testing rig and spec

Die

86 mm

6
0

 m
m

Piston at seating load 

of 2.5 kN

Die

Piston at end force of 

65-1399 kN

Displacement

2018-05-31 The University of British Columbia 1

• Rock mechanics press (fully instrumented MTS unit)

capable of applying up to 1399 kN force

• Displacement measurement of minimum of 0.01 mm

• Loading rate of 200 kN/min

• 150 mm maximum stroke

Figure 2. MTS Hydraulic Press at UBC used for the study with the piston and the die installed.
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The PPT requires around 10–20 kg of a sample crushed to −12.5 mm. Using shaking
screens, a sub-sample is taken to obtain the feed particle size distribution (PSD). The
moisture is then adjusted to the desired level, and the bulk density is measured by filling a
two-litre beaker with 2 kg of sample and then applying mechanical vibration for 10 min.
The regular PPT conducted at UBC uses sub-samples of 240 mL for each compression. The
bulk density is used to calculate the required mass for testing, and the samples are stored
in bags to preserve moisture.

Figure 3 is a schematic showing the PPT compression process. From the data obtained
during the test, a force-displacement curve is generated that is used to determine the energy
input. The obtained displacement is corrected by the strain of the machine’s parts which
can account for up to 1.5 mm at 1400 kN.

Compressed
Thickness (Xp)60 mm

Piston before 
the 

compression
starts

Load of 
2.5 kN

Piston at the 
end of the 

compression

Load of 
500‐1399 kN

86 mm

Total
Displacement

0 mm

Figure 3. PPT procedure scheme

2.3. Ore Samples

Ore from eight different deposits was used for the study. These ores were composed
principally of metal sulphide minerals where the main gangue mineral phase was primarily
silicates. The samples were crushed to −12.5 mm achieving a F80 from 6 to 9 mm. Table 1
shows the characteristics of the various ores used for HPGR and PPT testing. The origin of
each sample must be kept confidential.

Table 1. Ores used for HPGR and PPT testing.

Sample Metal Ore Type Axb BBWi
[kWh/t] Moisture

1 Gold Ore Gold 22–35 12.3–17.2 2.5%
2 Nickel Ore Nickel-Copper 25–33 15.6–24.2 2.4%
3 Iron Ore Hematite - - 3%
4 Iron Ore Hematite - - 6%
5 Copper Ore Copper-Moly 31 18.0 3%
6 Copper Ore Copper-Gold-Silver 23–40 18.0–22.0 2.5%
7 Copper Ore Copper-Gold 23–40 18.0–24.0 3.5%
8 Copper Ore Copper-Gold 23–40 18.0–24.0 3.5%

2.4. Testing Methodology

A total of 66 pilot-scale HPGR tests were performed. Each of the samples was com-
pressed at different specific force settings ranging from 2 to 5 N/mm2. Different roll speeds
were also used throughout the testing ranging from 0.35 to 0.76 m/s. For each test, the
specific energy consumption, operational gap, and throughput were recorded to be used
for the study. Table 2 shows a summary of the operation parameters that can be varied in
the test program.
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Table 2. Summary of operation parameters.

Equipment Parameter Units Operation Range

HPGR
Specific Force [N/mm2] 2–5

Roll Speed [m/s] 0.35–0.76
Moisture Content [%] 2.4%–6%

PPT Pressing Force [kN] 1400
Volume [ml] 180, 240, 300

For each sample, PPTs were performed differently than the regular testing described
by Davaanyam [11]. For energy-size reduction predictions, 240 mL of sample is required
to be compressed on the PPT. Due to the throughput being dependent on the volumetric
flow of material, it makes sense to use different volumes of material to provide data points
for the modelling. Three volumes of material are tested on the PPT for the throughput
prediction: 180 mL, 240 mL, and 300 mL. These volumes are chosen arbitrarily to cover
the same range that the HPGR operational gap prediction methodology uses [23]. Each
sample will be compressed to 1400 kN to obtain the full force-displacement curve. That
force-displacement curve will be used to extract data points for modelling. Figure 4 shows
an example of compressed material on the PPT.

(a) (b)

(c)

Figure 4. Material compression on the PPT: (a) Uncompressed material in die; (b) Material after
compression; (c) Unloaded compressed material.

3. Modeling
3.1. Model Predictors

The throughput model is developed using machine learning techniques incorporating
different predictors such as HPGR operational targets and PPT results. The operational
predictors are HPGR variables that will directly affect the throughput. The predictors
originating from the PPT results characterize the material’s compressibility under differ-
ent pressures. To maintain the model’s generality, the predicted response is the specific
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throughput (also called m-dot or ṁ). The specific throughput is the capacity of an HPGR
with a roll diameter of 1 m, a width of 1 m and a roller speed of 1 m/s. This parameter
is widely used in the industry to compare the throughput of different HPGRs built with
different dimensions. It can also be used to upscale the HPGR from pilot to industrial scale.
Table 3 shows the variables used and their descriptions.

Table 3. Variables used for modeling.

Variable Units Description Min Max

H [%] Test moisture content 2.4 6.0
Vr [m/s] HPGR rollers speed 0.35 0.76
ESP [kWh/t] HPGR specific energy consumption target 1.2 3.1
FSP [N/mm2] HPGR specific pressing force 2.0 5.0
ρB [g/l] Sample bulk density 1.39 1.90

FV1 [kN] PPT force required to obtain the required specific energy using a 180 mL sample 826 3356
FV2 [kN] PPT force required to obtain the required specific energy using a 240 mL sample 897 3400
FV3 [kN] PPT force required to obtain the required specific energy using a 300 mL sample 952 3838
Xp1 [mm] PPT compressed thickness when applying FV1 37.3 43.7
Xp2 [mm] PPT compressed thickness when applying FV2 30.3 38.4
Xp3 [mm] PPT compressed thickness when applying FV3 20.9 31.5

m-dot [ts/m3h] HPGR specific throughput 170 366

The moisture, roller speed, and specific pressing force are selected for the HPGR
operation. The specific energy consumption used for the modelling was obtained directly
from the HPGR pilot-scale testing. It is preferable to get specific energy consumption
directly from pilot-scale testing since it will provide an accurate result. Regardless, if
no pilot-scale tests are available for a material, the specific energy consumption can be
predicted by performing PPTs following the procedure developed by [26]. The sample bulk
density is measured from the sample crushed to −12.5 mm before performing PPTs.

The forces required for the model are calculated from the force-displacement curve for
each compression performed on the three volumes. The HPGR specific energy consumption
target is searched on each curve to obtain the force that generates that specific energy
consumption on the PPT. The compressed thickness at that force level is also recorded to be
used in the model. If the specific energy consumption value exceeds what was recorded
on the force-displacement curve, it is necessary to extrapolate the force and compressed
thickness from it.

The forces and displacements from the PPT represent the compressibility of the sample
at different volumes when applying the same specific energy that the material would have
seen in the HPGR operation. Three volumes are used to address any curvature that could
happen with the change of the sample volume in the die (adds robustness).

3.2. Model Selection

Several machine learning regression models were tested to fit and predict the data.
Due to the small number of pilot-scale HPGR tests available with associated PPT data, care
must be taken to select a model that will not overfit the data. For example, neural network
models work well to predict the behaviour of the specific throughput, but if there is little
data available, they can overfit the model. To avoid overfitting, the k-fold cross-validation
technique was used, which consists of dividing the dataset into k number of sets and
sequentially removing one of them to test the model fit with the other k − 1 sets [27,28]. In
this study, a 5-fold cross-validation was performed to evaluate each of the models.

Table 4 shows a summary of the tested models. The coding and training of the models
were performed using MATLAB and its integrated data science package under academic
licensing. The shown scores are the coefficient of determination (R2), root mean squared
error (RMSE), mean absolute error (MAE), and mean relative error (MRE). As well, the
cross-validation R2 and RMSE are shown.
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Table 4. Tested algorithms to fit the specific throughput model.

Model R2 RMSE MAE MRE Validation
R2

Validation
RMSE

Interactions Stepwise Regression 0.91 12.80 9.96 4.2% 0.84 17.24
Multi-linear Regression 0.80 19.32 15.63 6.8% 0.66 25.01

Linear Stepwise Regression 0.92 11.81 8.59 3.7% 0.25 37.27
Neural Network 1.00 0.5 0.43 0.2% −0.83 33.68

Gaussian Process Regression 1.00 0.03 0.02 0.1% 0.59 27.53
Support Vector Regression 0.91 12.66 5.28 2.6% 0.82 18.21

Tree Ensemble 0.96 8.40 5.72 2.5% −0.2 33.80

The neural networks (NN) resulted in almost a perfect fit, but the validations indicated
an overfit model, so it has to be discarded. The tree ensemble model was also discarded
due to poor performance in cross-validation. Although the Gaussian Process Regression
(GPR) is a good model for when a small amount of data is available, and it resulted in a
perfect fit, it performed poorly in the cross-validation, so it was decided to be discarded
as well.

The linear stepwise regression model performed poorly at the validation stage and
worse than the other linear models. The linear stepwise regression model also removed
several of the variables considered for modelling. It is desired to keep the selected variables
since they have a proven influence on the HPGR throughput. Although the multi-linear
regression model performed worse over the data, it has a better performance over the
cross-validation, indicating that maintaining the predictors increases the robustness of
the model.

The best results were obtained using an interactions stepwise regression (ISWR) model
and a Support Vector Regression (SVR) using a third-order polynomial kernel function.
The ISWR considered interactions between the predictors and quadratic terms. The linear
terms were not excluded from the ISWR model and only one interaction was kept which
was desired.

4. Results

The SVR [29] and ISWR [30] models performed well for both the data fit and the
cross-validation. Figure 5 shows the predicted versus true response of the two models,
which indicates how well they perform on the observations.

The graph shows three outlier points for each model; the predicted ṁ values are
greater than the measured values ṁ of 170.2, 183.6, and 190.2 [ts/hm3]. Interestingly, these
three points are from the same deposit (sample 5 from Table 1) and correspond to HPGR
tests that yielded a lower throughput than expected indicating the limits of the model.
Mineral samples that result in a specific throughput lower than 200 [ts/hm3] usually have
material characteristics that do not allow the HPGR operational gap to expand and thus
may not be amenable for HPGR comminution.

The SVR is a “black box” regression model that can perform very well with little data.
Regardless, it is not trivial to report and analyze. Additionally, some data points do not
perform well with the SVR model, as shown in Figure 5a.
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(a) SVR (b) Stepwise Regression

Figure 5. Specific throughput predicted vs. true response plots for the selected models.

For simplicity and explainability, the chosen model is the ISWR considering the
variables’ first-order interactions. This model can be explained and written as an easy-
to-understand formula. The predictor candidates with a p-value over 0.05 are removed
from the model. As well, linear dependent terms are removed regardless of their p-value.
No quadratic terms were kept on the model, and only one interaction was not removed.
The model significantly improved the linear model by adding the moisture and roll speed
interaction.

The following is the linear regression model obtained through this methodology
(following Wilkinson notation [31]):

ṁ ∼ 1 + H + VR + ESP + FSP + ρB + FV1 + FV2 + FV3 + XP1 + XP2 + XP3 + H · VR (2)

Table 5 shows each predictor’s estimated intercept and coefficients and their standard
error.

Table 5. Linear regression coefficients.

Predictor Coefficient SE

Intercept 961.14 225.95
H −189.19 27.02
VR −927.79 124.71
ESP −102.53 23.30
FSP 5.02 10.67
ρB 341.47 58.55

FV1 −0.02 0.03
FV2 −0.02 0.02
FV3 0.09 0.03
Xp1 −43.65 12.54
Xp2 −10.03 8.90
Xp3 55.13 9.76

H·VR 333.72 47.87

The resulting model has a R2 of 0.91 and an adjusted R2 of 0.884 with a root mean
squared error of 12.8 and an average relative error of ±4.2%. The results of the 5-fold
cross-validation are shown in Table 6 and Figure 6, which indicate good performance and
reliability of the model.
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Table 6. ISWR k-fold cross-validation results.

k-Fold R2 RMSE

1 0.59 18.20
2 0.86 15.78
3 0.76 16.95
4 0.83 16.29
5 0.88 19.42

(a) Fold 1 (b) Fold 2 (c) Fold 3

(d) Fold 4 (e) Fold 5

Figure 6. ISWR k-fold cross-validation plots.

5. Conclusions

A specific throughput model was developed for the HPGR, which uses several opera-
tional parameters and the results from compressing three different volumes on the piston
press test. Using this model, it is possible to size the capacity without performing new pilot-
scale HPGR tests with a high confidence level. The piston press tests performed to predict
the throughput follow a volumetric approach allowing for assessing the compressibility
change of the material when using different volumes.

If pilot-scale tests are available, it is possible to make an accurate prediction for the
specific throughput of the HPGR. This is due to the availability of the specific energy
consumption of the HPGR and the possibility of interpolating these values for a new
prediction. In the absence of pilot-scale HPGR tests, it is possible to predict the specific
energy consumption of the HPGR following the database methodology developed at the
University of British Columbia.

A stepwise regression model was used to fit the data where the interactions and
quadratic terms of the variables are also considered. All the linear variables and only the
moisture interaction with the HPGR roll speed were kept on the model. The resulting model
is a very good fit for the data with a high R2 value, and a low root mean squared error.
The average relative error for the predictions is under 5%, indicating the high accuracy of
the model.
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