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Abstract: This paper focuses on researching the scientific problem of deep extraction and inference of
favorable geological and geochemical information about mineralization at depth, based on which a
deep mineral resources prediction model is established and machine learning approaches are used to
carry out deep quantitative mineral resources prediction. The main contents include: (i) discussing the
method of 3D geochemical anomaly extraction under the multi-fractal content-volume (C-V) models,
extracting the 12 element anomalies and constructing a 3D geochemical anomaly data volume model
for laying the data foundation for researching geochemical element distribution and association;
(ii) extracting the element association characteristics of primary geochemical halos and inferring
deep metallogenic factors based on compositional data analysis (CoDA), including quantitatively
extracting the geochemical element associations corresponding to ore-bearing structures (Sb-Hg)
based on a data-driven CoDA framework, quantitatively identifying the front halo element association
(As-Sb-Hg), near-ore halo element association (Au-Ag-Cu-Pb-Zn) and tail halo element association
(W-Mo-Co-Bi), which provide quantitative indicators for the primary haloes’ structural analysis at
depth; (iii) establishing a deep geological and geochemical mineral resources prediction model, which
is constructed by five quantitative mineralization indicators as input variables: fracture buffer zone,
element association (Sb-Hg) of ore-bearing structures, metallogenic element Au anomaly, near-ore
halo element association Au-Ag-Cu-Pb-Zn and the ratio of front halo to tail halo (As-Sb-Hg)/(W-Mo-
Bi); and (iv) three-dimensional MPM based on the maximum entropy model (MaxEnt) and Gaussian
mixture model (GMM), and delineating exploration targets at depth. The results show that the C-V
model can identify the geological element distribution and the CoDA method can extract geochemical
element associations in 3D space reliably, and the machine learning methods of MaxEnt and GMM
have high performance in 3D MPM.

Keywords: 3D mineral prospectivity mapping; quantitative mineral resources prediction model;
maximum entropy model; Gaussian mixture model; Zaozigou gold deposit

1. Introduction

The main task of quantitative mineral prediction is to conduct comprehensive analysis
of geological, geophysical, geochemical and remote sensing data and drilling engineering
data in the study area based on the research of the geological background and metallogenic
regularity, and then construct mathematical models to effectively extract and identify fa-
vorable information on mineralization, carry out data fusion of quantitative mineralization
information, construct mineral prediction models, perform potential mineral resources
quantitative assessment and exploration targets delineation [1–3].
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Quantitative mineral resource prediction is developing toward deep 3D quantita-
tive prediction. The framework of 3D quantitative mineral prediction has been basically
completed, among which the representative works include Xiao [4–10], who studied the
characteristics of large-scale three-dimensional mineralization prediction and summa-
rized the combined prediction process of mine concession structure, mineral exploration
model, metallogenic series and quantitative analysis methods, which laid the founda-
tion for three-dimensional mineral resource prediction; Chen [11–14] proposed the “cubic
prediction model” for mineralization prediction by 3D-comprehensive 3D modeling of
geology, geophysics, geochemistry and remote sensing [15–17]; Mao [18–22] proposed
a three-dimensional prediction process for deep mineral resources prediction, the three-
dimensional morphological analysis of geological bodies, geological anomaly extraction
and three-dimensional quantitative prediction methods [23]; Yuan [24,25] proposed a
“four-step” three-dimensional mineralization prediction method, which summarizes the
three-dimensional mineralization prediction work into four key steps: three-dimensional
geological database construction, three-dimensional geological modeling and mapping,
three-dimensional prediction information deep mining and three-dimensional geosciences
data fusion and prediction.

In this study, three-dimensional quantitative mineral resources prediction is executed
from a geological and geochemical perspective. It is a common understanding in the last
century that the distribution of rock geochemical elements follows normal or lognormal
distribution, based on which classical statistical theories and methods have been widely ap-
plied in the field of geochemical data analysis [26]. Since the 1990s, fractal and multifractal
methods have been developed rapidly, with representative achievement from Cheng’s team,
who proposed the content-area (C-A) model [26,27], the spectrum-area (S-A) model [28]
and Local Singularity Analysis (LSA) [26,29–32], and it is believed that the multifractal
distribution has the ability to simultaneously portray the normal distribution, lognormal
distribution, Zipf’s law, Pareto’s law, etc., and can be used as the basic law of geochemical
element distribution [26,29]. Based on the theoretical research of fractal and multifractal
methods, its application in geochemical spatial distribution pattern research is blossom-
ing [10,33–37]. The multifractal-related methods have achieved many successful cases in
regional geochemical anomaly extraction [32,38–45]. With the improvement of 3D software
and hardware performance, as well as the development of 3D modeling technology, fractal
models used in 3D data have made some progress [34,46,47]. Three-dimensional primary
halo geochemical survey is an effective tool for deep mineral resources prediction. In fact,
the spatial zonation pattern of primary haloes is the pattern of element clustering regularity
in 3D space, and the anomalous structure of elements is an intuitive indicator of deep
mineral prediction. Especially, Cheng [27] proposed that the distribution of geochemical
elements in either horizontal or vertical directions is consistent with the fractal distribution,
based on which Afzal [34] proposed the C-V model, which is a powerful tool to delineate
the nonlinear characteristics of element distribution in a 3D space.

Geochemical data are typically compositional data, which gives rise to the problem
of “closure effects” due to the lack of scale consistency in the covariance matrix of the
compositional data [48–50], and, in practice, classical geostatistical methods that ignore
the compositional properties of geochemical data often yield poor results [51–60]. Since
the introduction of Aitchison geometry and the application of additive log-ratio transfor-
mation (alr) [61], the theory and methods of log-ratio transformation of compositional
data have been gradually improved, making the application of classical statistical methods
more reasonable [33,35]. The geochemical elemental association extraction method based
on Sequential Binary Partition (SBP) [50] can design elemental associations based on the
geological background and mineralization knowledge, which is easy to interpret, and pro-
vides solutions for geochemical inference of lithology, tectonics, alteration, mineralization,
etc. Therefore, the CoDA method provides new ideas for analyzing the relationship of
geochemical data and extracts geochemical associations for evaluating mineral resources
rapidly [51,55,62–67].
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Geosciences is a data-intensive science, and geological survey and mineral explo-
ration have accumulated a large amount of multi-source geosciences data, and the in-
troduction of big data and its application of machine learning-related methods can ef-
fectively support mineral resources exploration [26,68–73]. During the past decade or
so, a large number of achievements related to machine learning have been published in
geosciences [37,57,74–85]. For example, based on metallogenic regularity, an intelligent
geology and intelligent mine model is established on a big data platform combined with
high-performance computers [70,86]; big data methods are used to realize the automatic
collection of geological prospecting thematic data, machine learning- and deep learning-
related methods development for deep mining of geological data, intelligent prospecting,
etc. [37,87–89]; and three-dimensional prediction methods of hidden orebodies can be based
on deep learning [17,72,90–98]. Numerous studies have shown that big data and machine
learning have good performance in mineralization prediction, and machine learning-related
algorithm research has greatly enriched the approaches of geological data processing and
analysis. Meanwhile, data cleaning, data screening and deep mining of geological big
data can enrich the information sources for mineralization information inference and
quantitative mineral prediction at depth.

This study focuses on the scientific problems of deep extraction and inference of
favorable geological and geochemical information about mineralization at depth and
quantitative mineralization prediction at large depth. Specifically, the C-V model will
be used to extract the spatial distribution pattern of primary halo geochemical element
anomalies, and the CoDA will be employed to identify and infer the element associations
for tracing the extension of deep ore-controlling information. Moreover, the machine
learning methods of the MaxEnt model and GMM will be carried out for mineral resources
prediction at the large depth of the Zaozigou gold deposit.

2. Geological Setting and Datasets
2.1. Geological Setting

West Qinling is located at the western part of the Qinling orogenic belt, with the Qilian
orogenic belt to the north, the Qaidam block to the west and the songpan block to the south
(Figure 1a) [99–102].

The geotectonic position of the Xiahe–Hezuo area is located at the northwestern part of
the West Qinling orogenic belt and at the western extension of the Qinling–Qilian–Kunlun
central orogenic belt, whose complex geological structure creates a superior mineralization
environment [103].

The Zaozigou gold deposit is located within the West Qinling fold belt and is a typical
epithermal-type gold deposit in the Xiahe–Hezuo area (Figure 1a). The main controlling
factors for mineral resources formation within the region are tectonic movement and
magmatism [104], with the regional tectonics spreading in a NW direction with developing
folds and fractures. Complex geological structure and magmatism are dominated by
Yanshan period intermediate-acid intrusive rocks, which are widely distributed in the form
of the batholith, stock, apophysis and veins [104] (Figure 1b).

The Triassic strata are the main stratigraphy for gold deposits. The genesis and spatial-
temporal evolution of the intermediate-acidic dike is closely related to gold mineralization
in the area, and during the mineralization process, the magmatic rocks not only provide
the mineralized material, but also their internal environment is very suitable as an ore-
bearing space, which can be regarded as a significant mineralization indicator for gold
mineralization [105].

The spatial distribution of mineral deposits is directly controlled by the geotectonic
position in the Xiahe–Hezuo area, which plays a major role in the formation of different
types of gold deposits and is the boundary of the belt from a spatial perspective. The
most important types of mineral-controlling structures are fractures and folds in this
area [106,107]. The main orebodies of the Zaozigou deposit are produced in NE, NW
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and near-SN oriented fracture zones, with two apparent mineralization periods, and post-
formation fractures have modified and destroyed the orebodies [108–112].
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Figure 1. (a) Geotectonic location of the study area. NQL: North Qinling tectonic belt; SDS: Shangdan
suture zone; CBS: Caibei suture zone; AMS: A’nyemaqen suture zone. (b) Geological map of
Xiahe–Hezuo area (modified from [104]). 1. Quaternary; 2. Neogene; 3. Cretaceous; 4. Upper Triassic
Huari group; 5. Middle-Lower Triassic Daheba group; 6. Lower Triassic Jiangligou group; 7. Lower
Triassic Guomugou group; 8. Upper Permian Shiguan group; 9. Lower Permian Daguanshan group;
10. Upper Carboniferous Badu group; 11. Intermediate-acid intrusive rocks; 12. Fracture; 13. Angular
unconformity; 14. Gold deposit; 15. Copper deposit; 16. Lead deposit; 17. Antimony deposit;
18. Mercury deposit; 19. Iron deposit; 20. Iron-copper deposit; 21. Copper-molybdenum deposit;
22. Copper-tungsten deposit.

The Zaozigou gold deposit is a typical representative of gold deposits associated
with intermediate-acid dike rocks in the south of the Xiahe–Hezuo fracture. It is located
approximately 9 km southwest of Hezuo city, Gansu Province, with convenient access to
the mine site (Figure 2a). The main ore-bearing position is between Gully 1 and Gully 4,
with a total area of approximately 2.6 km2 (Figure 2b).
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Figure 2. (a) Regional location of study area. QLA = Qilian tectonic belt; WQL: West Qinling tectonic
belt; NQL: North Qaidam tectonic belt; SF1: Wushan–Tianshui–Shangdan suture zone; SF2: Maqu–
Nanping–Lueyang suture zone; SG: Songpan–Ganzi tectonic belt; YZ: Yangtze block. (b) Geological
map of Zaozigou gold deposit (modified from [113]). 1. Quartz diorite porphyrite; 2. Granodiorite-
porphyry; 3. Plagioclase granite porphyry; 4. Gold orebody; 5. Fracture; 6. Mineral exploration line;
7. Drilling Hole.

There are only Triassic and Quaternary strata exposed in the Zaozigou gold deposit
(Figure 2b). The strata of the area are mainly the lower part of the Gulangdi group (T2g1) of
the Middle Triassic formation, and the Quaternary (Qh

alp) is developed in the intermountain
valley. The lower part of the Gulangdi group (T2g1) is the main ore-bearing rock, which
is a set of fine clastic rocks consisting of siliceous slate, clastic feldspathic fine sandstone
with interbedded siltstone slate and argillaceous slate. The formation is composed of a
large sedimentary cycle from bottom to top consisting of siltstone→ argillaceous slate→
calcareous slate [108,114].

The fractures are well developed and have a complex morphology, forming an in-
tersecting trend, indicating that the area has experienced multiple phases of geological
activity. Fractures strictly control the distribution of orebodies and vein rocks within the
deposit. They can be classified into five groups of orientations, namely NW, N-S, NE, E-W
and NNE [115,116]. Fracture structures are the structural surfaces of mineralization and
these structural surfaces control the spreading characteristics of the orebodies [117].

Intermediate-acid dike, including fine crystalline diorite, diorite porphyrite, biotite
dioritic porphyrite and quartz diorite porphyrite densely produced with a porphyritic
structure, spreads in NNE direction, turning to a nearly N-S direction in the western part of
the deposit and a few NW directions. Influenced by the regional multi-period deep fracture
activity, the multi-period magmatism has overlapped on multi-phases mineralization
within the deposit [118].
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There are 147 gold orebodies that have been found in the Zaozigou gold deposit, of
which 17 orebodies are main orebodies with gold reserves greater than 1 tonne and the total
gold reserves amount to more than 100 tonnes [113]. According to the spatial distribution
and combination of the mineralization, the Zaozigou deposit can be divided into eastern
and western ore groups.

The eastern ore group is mainly located between Gully 1 and Gully 3 with the strike
of NE orientation, containing Au1 controlled by F24, Au9 controlled by F21 and Au15
controlled by F25. These orebodies extend over 1000m long and 300m wide, with a NW
direction tendency and steep dip near the ground surface, locally nearly upright. In
the deep, these orebodies have been staggered by a gently dipping fracture, causing the
tendency to change to a SE orientation (Figure 2b). In addition, orebodies M4 and M6 are
laying underground, with the strike of NWW orientation, the tendency of SW orientation
and a dip of 8◦~26◦. These orebodies cross the NE-striking orebodies obliquely, staggering
them, and their own mineralization behavior occurs simultaneously [119].

The western ore group is mainly distributed between Gully 3 and Gully 4, spreading in
a nearly N-S direction, with Au29~Au31 as the main orebodies. The orebodies extend over
1000 m long and are wider than 500 m, with a strike of 350◦~10◦, varying tendency and
dips greater than 75◦, locally subvertical. These orebodies extend, and the mineralization is
weaker in the steeper parts and stronger in the shallower parts.

2.2. Datesets Description

Historical geological and geochemical data were completed, including geological
reports, geological exploration maps, drills geochemical data, etc., from the Development
Research Center of China Geological Survey and No. 3 Geological and Mineral Exploration
team, Gansu Provincial Bureau of Geology and Mineral Exploration and Development; the
coordinate system used in the mine-scale is Gaussian Kruger projection coordinates.

This study collects data from 72 drillings in the Zaozigou gold deposit and estab-
lishes a drilling location database, an assay database, an inclinometry database and a
lithology database. The 3D model of drillings is constructed based on the drill hole data
database (Figure 3).
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The primary geochemical halo data from the drillings are collected from the “Zaozigou
gold successive resources exploration project in Hezuo city, Gansu Province”, with a total
of 72 drillings and 5028 samples with 12 elements of Ag, As, Au, Cu, Hg, Pb, Zn, Sb, W,
Bi, Co and Mo (the element detection methods can be seen in the literature [113]). The
sampling method was the continuous picking method with sample intervals generally
within 10m. Some orebodies or strongly altered areas were sampled at decreased intervals.

3. Methodology
3.1. Concentration-Volume (C-V) Model

Geochemical anomalies are a concept relative to geochemical background, and the mul-
tifractal approach provides an effective tool to separate anomalies from the background. For
hydrothermal mineralization processes, multi-phase mineralization is common, which will
result in multi-phase superposed element spatial distribution [38,120,121]. The C-V model
can process the nonlinear primary geochemical halo data with the following equation:

V(ρ < v) ∝ kv−D1 V(ρ ≥ v) ∝ kv−D2 (1)

where V(ρ < v) and V(ρ ≥ v) are the volumes of the element content less than v and
greater than v; D1 and D2 are the fractal dimension values, also called the singularity index;
k is a constant coefficient, which can be calculated by the least square method; v is the
threshold value of element contents, and several element content intervals are divided by v.
The curves V(ρ < v) and V(ρ ≥ v) of the volumes corresponding to different v follow a
power-law relationship. Taking the natural logarithm of both sides of the equation, the lg-lg
plots have a linear relationship in different v intervals. The fractal dimensions in different v
intervals can be calculated by the least square method. The geochemical anomalies and
backgrounds can be extracted by different fractal dimensions [39].

In practice, the C-V model is used on the primary geochemical halo data volume
model for anomaly identification, where the threshold of fractal dimensions may indicate
the boundary between different mineralization.

3.2. Compositional Data Analysis

Geochemical data, as typical of compositional data, should be properly transformed
before data analysis [122–125] to eliminate the effects of “closure effects”. The “opened
(transformed)” data can often be analyzed by classical statistical methods to obtain perfor-
mance improvements [36,53,61,122].

3.2.1. Central Log-Ratio Transformation (clr)

The calculation of this method is: (i) calculate the geometric mean of all compositional
subvectors; (ii) divide each subvector by the geometric mean separately; (iii) take the
natural logarithm. Its calculation formula is shown as follows.

clr(x) =

ln
x1

D
√

∏D
i=1 xi

, ln
x2

D
√

∏D
i=1 xi

, · · · , ln
xD

D
√

∏D
i=1 xi

 (2)

3.2.2. Sequential Binary Partition (SBP)

The common isometric log-ratio transformation (ilr) is difficult to interpret. Egozcue [50]
proposed the sequential binary partition (SBP) technique based on the ilr transformation,
which can provide geochemical interpretation reasonably [66,123,124].

The sequential binary partition technique performs non-overlapping dichotomous
classification continuously by the relative information between variables. In practice,
positive (+) and negative (−) signs are used to represent two different classifications of
compositional variables, and ‘0’ is used to represent the unconcerned variables in one
time. By performing continuous non-overlapping dichotomy in a simplex space, a basis
vector is formed and then transformed. The results, called compositional balance, can be
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geologically interpreted according to dichotomy clusters. Especially, the technique provides
an important tool to identify element associations [66,123,124,126].

The relevant formula is [50]:

Bi =

√
risi

ri + si
ln

(∏+ xj)
1
r

(∏− xk)
1
s

i = 1, 2, . . . , D− 1; j = 1, 2, . . . , r; k = 1, 2, . . . , s (3)

where Bi denotes the new compositional vector defined by the standard orthogonal basis,
∏+ xj is the product of the variables labeled (+) involved in the ith binary partition and
∏− xk is the product of the variables labeled (−) involved in the ith binary partition.

3.2.3. Geochemical Compositional Data Analysis Framework Based on CoDA

The log-ratio transformation of geochemical data can solve the problem of the “closure
effect” caused by the lack of scale consistency in the covariance matrix of the compositional
data. The clr-biplot and compositional balance methods developed based on the clr and SBP
have their advantages in the geochemical associations’ extraction, especially in inferring
lithology, faults, alteration and mineralization, and the corresponding frameworks have
been well applied [65,66,124].

This study uses a data-driven and knowledge-driven framework of compositional
data analysis to identify the geochemical associations of the primary halo. The data-driven
framework infers the data characteristics by measuring elemental statistical correlations
to gain the element associations, while the knowledge-driven framework is based on
geological and geochemical understanding to design the element associations (Figure 4).
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In Figure 4, the closure and centering are necessary preprocess steps, which can can be
seen in the literature [51]. The data-driven framework in this study used clr transformation
to “open” geochemical data, and the factor analysis and correlativity methods are used to
explore the relationship among elements and extract element associations. Meanwhile, the
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knowledge-driven framework designs the element associations through deep research of
the geological features, such as the element concentrations in different rocks, the primary
geochemical halo associations, and so on. Then, the SBP is performed to quantitatively
extract the value of corresponding geochemical associations. Eventually, the results of the
CoDA can be employed to infer metallogenic information in an unknown area.

3.3. Machine Learning-Based Quantitative Mineral Prediction Methods

Machine learning algorithms could highlight hidden details in datasets without ex-
plicit search and have the ability to identify complex spatial patterns [127]. Given this,
scholars have attempted to use machine learning algorithms to extract mineralization infor-
mation by integrating multi-source geosciences data for identifying mineralization-related
anomalies and their variation that cannot be detected by traditional methods [128–135].
Machine learning algorithms can be roughly categorized as supervised learning algorithms
and unsupervised algorithms. For better validating the suitability of 3D MPM, this study
discusses the application of the supervised algorithm MaxEnt model and unsupervised
algorithm GMM.

3.3.1. MaxEnt Model

The principle of MaxEnt is a criterion of probabilistic model learning for making
predictions based on incomplete information. The main idea is that, when predicting
the probability distribution of a random event, all known constraints need to be satis-
fied without subjective assumptions so that the probability distribution is most uniform,
the prediction risk is minimal and the entropy value of the probability distribution is
maximum [136].

Let T = {(x1, y1), (x2, y2), . . . (xn, yn} be the training dataset and fi(x, y), i = 1, 2, . . . , n
be the eigenfunction, and the learning process of the MaxEnt model is equivalent to the
constrained optimization problem:

max
P∈C

H(P) =−∑x,y P̃(x)P(y|x )ln(P(y|x ))
s.t. EP( fi) =EP̃( fi) i = 1, 2, . . . , n

∑
y

P(y|x ) = 1
(4)

where EP̃( fi) = ∑x,y P̃(x, y) fi(x, y) is the expected value of n eigenfunction fi(x, y) related
to the empirical distribution P̃(x, y); EP̃( fi) = ∑x,y P̃(x)P(y|x ) fi(x, y) is the expected value
of n eigenfunctions fi(x, y) related to the P(Y|X ) with the empirical distribution P̃(X).

Following the custom of optimization problems, the problem of finding the maximum
value is rewritten as the equivalent problem of finding the minimum value:

min
P∈C
−H(P) =∑x,y P̃(x)P(y|x )ln(P(y|x ))

s.t. EP( fi)− EP̃( fi) =0 i = 1, 2, . . . , n

∑
y

P(y|x ) = 1
(5)

The solution resulting from solving the constrained optimization problem is the so-
lution learned by the MaxEnt model. However, the empirical distribution expectation
is usually not equal to the true expectation but will be approximate to the true expec-
tation. If the solution is solved strictly according to the above constraints, it is easy to
cause overfitting of the training data during the learning process. Therefore, the con-
straints can be appropriately relaxed in practice, such as replacing the above equation with
EP( fi)− EP̃( fi) ≤ βi, βi is the modulation multiplier, which is a constant.
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3.3.2. Gaussian Mixture Model (GMM)

GMM is a quantified model which generated through Gaussian probability density
function fitting. This model decomposes objective distribution into several Gaussian proba-
bility density functions. By using enough Gaussian functions and tuning the parameters,
the model can generate a very complex probability density to approximate to almost any
continuous probability. Theoretically, any objective distribution can be fitted by a combi-
nation of multiple Gaussian density functions, and the higher the number of probability
density sub-functions, the more closely it approximates to the actual data distribution.
GMM has the advantages of good flexibility, is not limited by the sample size and can
accurately describe the data structure.

When the dataset X = (X1, X2, . . . , XT) of the training data can be divided into k
classes and each class obeys Gaussian distribution, the k order probability distribution of
the GMM is

P(X|θ ) = ∑k
i=1 wiP(X|θi ) (6)

P(X|θi ) =
1

(2π)
D
2 |∑i|

1
2

exp
(
−1

2
(X− µi)

T ∑−1
i (X− µi)

)
(7)

∑k
i=1 wi = 1, wi > 0 (8)

where P(X|θi ) is the probability density of the ith Gaussian model, wi is the weight of
the ith model in the whole GMM, µi is the mean vector and ∑i is the covariance matrix.
After the parameter initialization, the Expectation-Maximization (EM) algorithm based on
the maximum likelihood estimation is often chosen for the parameter estimation of the
GMM [137].

In the geological point of view, the GMM is an unsupervised machine learning algorithm;
it divides the data into two categories (mineralization and non-mineralization) and then
makes category judgments on samples by learning information about unlabeled samples.

As for the dataset D = {x1, x2, . . . , xm}, which contains k Gaussian mixture compo-
nents, the algorithm steps are as follows.

1. Initializing the k multivariate Gaussian distributions and their weights.
2. Estimating the posterior probability of each sample generated by each component

according to Bayes’ theorem.
3. Updating the mean vector, covariance matrix and the weights according to the step 2.
4. Repeating steps 2–3 until the increase in the likelihood function has been less than the

convergence threshold, or the maximum number of iterations is reached.
5. For each sample point, calculating its posterior probability of belonging to each cluster

according to Bayes’ theorem and classifying the sample into the cluster with the
largest posterior probability.

4. Results
4.1. Three-Dimensional Primary Geochemical Halo Anomaly Data Volume Modeling Based on the
C-V Model

This section adopts the multifractal C-V model to analyze the spatial anomalous
structure of elements and provides single-element anomaly signatures for the subsequent
deep prediction.

Taking the ore-forming element Au as an example:
Using the ordinary kriging interpolation method [138–140], with the experimental

variogram fitted to build a 3D data volume model of Au (Figure 5), the Au content value
observably does not obey the normal distribution (Figure 6a). Therefore, the multifractal
C-V model was carried out to identify Au anomalies.

Through counting the variation of volume with Au content, the lgAu-lgV scatter
diagram was generated and lg-lg lines were fitted by the least square method (Figure 3b).
Meanwhile, the fractal dimension can be obtained as follows:
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The slopes of the lines correspond to fractal dimensions, and the inflection points are
threshold values of geochemical abnormal intensity as shown in Table 1 and Figure 6b.
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Figure 6. (a) Histogram of the frequency distribution of Au. (b) lgAu-lgV curve of the 3D data
volume model.

Table 1. Fractal characteristics of 3D Au data volume model.

Anomaly Classes Fractal Dimension R Square (R2) Inflection Point Au (ppb)

Background area 0.2375 0.7304 1.0876 12.2349
Outer anomalies 2.6262 0.9816 2.5137 326.3623
Middle anomaly 10.697 0.9878 2.9049 803.3411
Internal anomaly 59.571 0.9707 3.0202 1047.6108

The orebody is compared with the outside anomalies, central anomaly and internal
anomaly area by superposition, as shown in Figure 7b,c, and the three show a good spatial
correlation with the orebody.
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Figure 7. Three-dimensional model of Au anomaly data volume in Zaozigou gold deposit. (a) outer
anomalies of Au. (b) Middle anomalies of Au. (c) Inner anomalies of Au.

The middle and inner anomalies are mainly distributed inside and around the orebody,
which accurately reflects the spatial spreading of the orebody and its trend.

On this basis, this study analyzed and visualized the 3D anomalous structures of the
remaining 11 elements using the above model (Figure 8; Table 2).
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Table 2. Fractal characteristics of remaining elements in 3D data volume model.

Element Anomaly Classes Fractal Dimension R Square (R2) Inflection Point Cut-Off Value

As

Background area 0.7877 0.9742 1.8621 72.7949
Outer anomalies 2.5417 0.9944 2.5595 362.653
Middle anomaly 7.1778 0.9316 3.5762 3768.486
Internal anomaly 7.1332 0.8924 3.6731 4710.524

Sb

Background area 2.8084 0.9906 2.0003 100.091
Outer anomalies 1.3802 0.9977 2.6022 400.0882
Middle anomaly 2.1265 0.9732 −0.4559 3500.06
Internal anomaly 9.7587 0.8478 −0.1079 7800

Hg

Background area 0.3416 0.7344 0.9318 8.5462
Outer anomalies 3.0623 0.9985 1.5123 32.5296
Middle anomaly 3.9887 0.9814 2.4599 288.3531
Internal anomaly 2.1553 0.7624 2.6814 480.2207

Ag

Background area 0.1975 0.7174 −1.5708 0.0289
Outer anomalies 3.8416 0.9923 −1.0079 0.0982
Middle anomaly 8.8291 0.9867 −0.0403 0.9114
Internal anomaly −3.1223 0.8456 0.0287 1.0683

Cu

Background area 0.4997 0.7448 0.864 7.312
Outer anomalies 7.8425 0.9744 1.6271 42.372
Middle anomaly 2.995 0.9921 1.9266 84.444
Internal anomaly 1.7321 0.9297 2.4374 273.768

Pb

Background area 0.1789 0.5279 0.1436 1.392
Outer anomalies 5.0613 0.9921 1.3684 23.356
Middle anomaly 11.571 0.9881 1.7353 54.364
Internal anomaly 3.4226 0.9896 1.8362 68.576

Zn

Background area 0.0352 0.6439 0.2996 1.993
Outer anomalies 0.7062 0.8446 0.7904 6.172
Middle anomaly 12.592 0.978 1.9663 92.538
Internal anomaly 43.05 0.9284 2.0954 124.577

W

Background area 0.2629 0.8334 0.3484 2.2303
Outer anomalies 1.5296 0.984 0.8215 6.6297
Middle anomaly 3.0193 0.9973 1.343 22.0275
Internal anomaly 7.7309 0.9441 2.175 149.6098

Mo

Background area 0.3775 1 −0.3907 0.4067
Outer anomalies 1.5056 0.9729 −0.1184 0.7614
Middle anomaly 8.1548 0.9923 1.1745 14.9466
Internal anomaly 25.728 0.9634 1.4696 29.4864

Bi

Background area 0.7603 1 −0.3087 0.4913
Outer anomalies 3.2299 0.9943 −0.0116 0.9737
Middle anomaly 3.0016 0.9905 1.2518 3.8681
Internal anomaly 1.7831 0.8475 1.5919 17.8579

Co

Background area 0.1171 0.6058 0.1909 1.5524
Outer anomalies 2.3832 0.9903 1.2625 18.3011
Middle anomaly 1.2849 0.9527 1.4756 29.8963
Internal anomaly 7.2045 0.9606 1.8749 74.9889

Note: The cut-off value unit of Hg and Ag is ppb, others are ppm.

Figure 9 shows that the middle anomalies of As and Sb are mainly distributed near the
elevation of 1700~1900 m. The middle anomalies of Ag, Cu, Pb and Zn have close relation-
ship to the orebody. W, Mo, Co and Bi have two concentrations, the first one is located near
the surface and the second one is distributed near the elevation of 2500 m. The Zaozigou
gold deposit has multi-phase mineralization, forming a complicated spatial distribution of
elements, while the C-V model can better identify the anomaly for recognizing the pattern
of the primary geochemical halo in the Zaozigou gold deposit.
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4.2. Data-Driven CoDA and Its Based Element Association Extraction
4.2.1. Correlation Analysis

The primary halos were processed by cluster analysis (Figure 10). The elements can
be roughly divided into two groups: Au, As, Sb, Ag, W, Hg and Cu, Zn, Bi, Pb, Co, Mo.
Among them, the elements most closely associated with Au are As, Sb and Ag; the Au, As,
Sb and Cl are moderate volatile elements [141] often associated in gold mineralization like
Hg (indicator of volcanism). Ag is often associated to gold as electrum. Hg should be the
front halo indicating element of the gold orebody; the correlation coefficient between Au
and As reaches 0.8, and most of the As exists within arsenopyrite, which is an important
gold-bearing mineral. Therefore, this Au-As-Sb should be the element association of
mineralization reflecting a middle- and low-temperature metallogenic environment.

4.2.2. Element Associations Identification Based on clr-Biplot

Geochemical data are typically compositional data, and if traditional multivariate
statistical methods (e.g., principal component analysis, factor analysis, etc.) are applied
directly to the raw geochemical data, it may lead to erroneous results. Therefore, the raw
data should be properly transformed before data analysis is performed.

Data from 12 geochemical elements were clr-transformed, and the skewness values
of the clr-transformed data were statistically obtained (Figure 11). Compared with the
raw data, clr-transformed data has the lower skewness value around zero, indicating
that the data distribution after clr transformation tends to be more normal in character
(Figures 11 and 12).
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Factor analysis (FA) is used to extract element associations. Four factors are extracted
as element associations to indicate different geological and geochemical meanings. From
the view of the loadings of FA, factor F1 (34.95%, five variables) represents Cu, Pb, Zn,
Ag and Bi, which are a group of medium-temperature elements; factor F2 (12.83%, three
variables) is the element association of Au, As and Sb, representing the Au-polymetallic
sulfide phase, which is the most dominant phase of gold mineralization; factor F3 (11.13%,
one variable) indicates Mo, which is a high-temperature element and may be related to
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magmatism; factor F4 (9.26%, two variables) is Sb and Hg association, where Sb mainly
exists within the form of stibnite within the quartz-stibnite veins and Hg is closely related
to fractures (Figure 13). The distribution of each factor in the three-dimensional space is
shown in Figure 14a.
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To analyze and show the geological meaning of each factor more clearly, the 85# profile
was selected for analysis by profile cutting (Figure 14). It can be intuitively understood that
the F2 factor is closely related to mineralization, and its spatial distribution is well matched
with the known orebodies in the exploration profile. The F4 factor is closely related to
ore-bearing fractures, so that the Sb-Hg element association could be used as evidence of
deep fracture extension.

4.3. Knowledge-Driven CoDA and Its Based Element Association Extraction

From the anomaly data volume model based on the C-V method in this paper, it is
clear to recognize the distribution of each element in a three-dimensional space.

1. In the mid-shallow part and the deeper part of elevation at 2500 m, As, Sb and Hg are
concentrated as the front halo of the orebodies. The anomalies of Au, Ag, Cu, Pb and
Zn linked to sulphurs (pyrite, arsenopyrite, galena and covelline) and are superposed
with the orebodies and can be regarded as the near-ore halo elements. At the shallow
position of 2500 m, the anomaly locations of W, Mo and Bi linked to magmatism are
at the tail of the orebodies, which can be regarded as the tail halo element association.

2. In terms of Au, its anomalies are controlled by fractures observably, and observable
fractures certainly cross-cut orebodies. Especially, the abnormal intensity is larger
along the depth indicating the deep mineralization.

Based on the analysis above, the knowledge of the element associations of the front
halo, near-ore halo and tail halo can be summarized. Moreover, corresponding element
associations are quantitatively extracted as compositional balances by the knowledge-
driven CoDA framework (Figure 4), that is, the front halo association is B1 (As-Sb-Hg vs
Au-Ag-Cu-Pb-Zn-W-Bi-Co-Mo), the near-ore halo association is B2 (Au-Ag-Cu-Pb-Zn vs
As-Sb-Hg-W-Bi-Co-Mo), and the tail halo association is B3 (W-Bi-Co-Mo vs As-Sb-Hg-Au-
Ag-Cu-Pb-Zn) (Figure 15).
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4.4. Geological and Geochemical Quantitative Prediction Model at Depth of Zaozigou Gold Deposit

The mineral resources prediction model is usually summarized as text, diagrams,
and tables by integrating comprehensive metallogenic information, such as orebodies,
ore deposits, ore fields and even metallogenic zones. Establishing a mineral resources
prediction model is an effective way to discover potential deposits and has significantly
important meaning for guiding mineral exploration [142].

Orebodies are strictly controlled by fractures in the Zaozigou gold deposit. The 30 m
buffer zone of the fractures can effectively reflect the influence range of the fracture, which
can be used as a mineral prediction indicator. Factor F4 is an element association of Sb-Hg,
which has close relationship with fractures, and can be used as a favorable indicator for
inferring deep fractures [143–146] (Figure 14a).

Geochemical element distribution, association and zonation are favorable indicators
for mineral resources prediction. The geochemical anomalies are extracted by the multiple
fractal C-V model in Section 4.1, among which the middle anomaly of Au can well reflect
the spatial distribution of orebodies (Figure 7b) and should be used as an important
quantitative indicator. Near-ore halo element association B2 is extracted by the knowledge-
driven CoDA and also can express the location of orebodies well; it should be another
mineral prediction indicator (Figure 15). The ratio of front halo to tail halo is an important
geochemical parameter for predicting orebodies, and B1/B3 is regarded as a prediction
indicator accordingly [143] (Figure 16).
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Table 3. Geological and geochemical quantitative mineral resource prediction model at depth of
Zaozigou gold deposit.

Ore-Forming Factor Description Prediction Indicator Variables

Geology Fracture
Influence range of fracture 30 m buffer zone

Element association of fracture Hg-Sb (F4)

Geochemistry
Ore-forming element Geochemical anomaly Au

Primary geochemical halo Element association of near-ore halo Au-Ag-Cu-Pb-Zn (B2)
Geochemical parameter (Front

halo/tail halo) As-Sb-Hg(B1)/W-Bi-Co-Mo (B3)

4.5. Three-Dimensional MPM Based on Machine Learning

To address the scientific problem of quantitative mineralization prediction at large
depths, the previous section quantitatively extracted the deep geochemical mineralization
signatures and constructed a geological and geochemical quantitative mineral resource pre-
diction model at depth. In this section, the MaxEnt model and GMM are applied to carry out
the 3D MPM to quantitatively predict deep mineral resources, and the uncertainty evaluation
of the two models is performed for improving the accuracy of mineralization prediction.

4.5.1. Training Sample Construction

The MaxEnt model is a supervised machine learning algorithm, which requires learn-
ing an optimal model from a given training dataset and using this model to output the
corresponding result for classification.

For mineralization prediction, the target variable of supervised learning (i.e., the
label of training samples) is either mineralized or nonmineralized (denoted by 1 and 0,
respectively). A total of 39,306 positive samples were extracted from known orebodies
and 49,686 negative samples were extracted from the nonmineralized position confirmed
by drillings, and these were used as the training dataset. In contrast to mineralization,
which generates in a concentrated way in a limited space, the non-mineralization is a
widespread phenomenon, and negative samples are selected to be distributed as randomly
and uniformly as possible in the wall rock without mineralization and alteration throughout
the study area [33] (Figure 17).
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4.5.2. Three-Dimensional MPM and Uncertainty Evaluation of MaxEnt Model

The MaxEnt method originated from statistical mechanics and was developed by
Phillips et al. using JAVA. This study uses version 3.4.1 of MaxEnt software (https://
biodiversityinformatics.amnh.org/open_source/maxent/, (accessed on 15 June 2022)) to
carry out the 3D MPM.

The MaxEnt method estimates the probability of the target variable with the maximum
entropy value and is controlled by a set of constraints representing incomplete informa-
tion about the target distribution. In mineralization prediction, the best interpretation of
unknown occurrences by the model is to maximize the entropy value of the probability
distribution for estimating the location of orebodies, and many scholars have achieved
better results in this regard [65,76,147]

When modeling with MaxEnt software, if the model parameters are not set properly,
it may lead to overfitting or redundancy [148]. The overfitting can be controlled by the
modulation multiplier β [149], and the best performance of the model is obtained by setting
the β value 2~4 [148,150]. Therefore, the study tested different values to find the best
β value of 2 for the model to reduce the influence of model overfitting.

Five prediction indicators are integrated into the MaxEnt model as input parameters,
and data were randomly selected from the dataset during simulation, with 75% of the
dataset as the training data and 25% as the test data. To reduce the randomness of the
simulation results, the model is repeated 50 times with a maximum convergence threshold
of 0.00001. A maximum background points value of 10,000 is selected, and a logical value
format output is chosen for a more favorable interpretation of the results.

The final prediction result of the MaxEnt model is evaluated using the average value of
50 iterations of the simulation, with the contribution rate of each mineral indicator shown
in Table 4.

Table 4. Contribution rate of prediction indicators.

Prediction Indicator Rate of Contribution (%)

Au 77.6
30m buffer zone 13

Au-Ag-Cu-Pb-Zn (B2) 7.7
Hg-Sb (F4) 0.9

As-Sb-Hg(B1)/W-Bi-Co-Mo(B3) 0.8

The AUC value of the test dataset is 0.844 and the AUC value of the training dataset
is 0.848, so the MaxEnt model has high accuracy in mineral resources prediction at depth
(Figure 18).

The output logical probability of the MaxEnt model is in the range of 0.000804~0.927941,
which is mapped to 0 and 1, and then the 3D MPM is formed (Figure 19).

Although the mineral prospectivity map shows a good relationship between high
probabilities and known gold orebodies (Figure 19), it is difficult to determine a certain
logistic probabilities value as the prediction threshold value.

We take the ratio of prediction volume to orebodies occupied volume as a parameter.
Observably, it must be that reverse variation of this parameter follows the greater logistic
probabilities (Figure 20). The high potential area (logical probability > 0.525) is defined by
the logistic probability of 0.525, which covers 80% of the known orebodies; the medium
potential area (0.3 < logical probability < 0.525) is defined by the logistic probability of
0.3, which is another inflection point and covers all the known orebodies (Figure 20). The
spatial distribution of mineralization potential areas by the MaxEnt model are shown in
Figure 21a, based on which two mineral exploration targets are circled (Figure 21b).

https://biodiversityinformatics.amnh.org/open_source/maxent/
https://biodiversityinformatics.amnh.org/open_source/maxent/
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Figure 21. (a) The distribution of mineralization potential areas. (b) MaxEnt model-based explo-
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4.5.3. Three-Dimensional MPM and Uncertainty Evaluation of GMM

When training and testing the model, the labeled data (which is used only in the
evaluation) is divided into 75% for the training dataset and 25% for the test dataset, and
the GMM is used to learn the information of the training dataset, and then the ROC curve
is used for performance evaluation of the training dataset and test dataset, respectively.
The AUC value of the test dataset is 0.75 and the AUC value of the training dataset is
0.75 (Figure 22).
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From the point of the AUC value, 0.75 is not a high value, which may indicate that
unsupervised training methods have a shortage in prediction with big data.

However, from the mineral prospectivity map point of view, the prediction area has
covered orebodies well, and it still has a certain indication function in the mineralization
prediction. Finally, two mineral exploration targets are delineated at depth (Figure 23).
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5. Discussion

This study employed the geostatistical interpolation method to build a 3D geochemical
model and geochemical anomaly model. In addition to deterministic modeling of 3D
geology and geochemistry [151,152], geostatistical techniques also include uncertainty
modeling of spatial distribution of subsurface heterogeneous structures and dynamic
processes of fluid migration [153]. In view of the 3D heterogeneous structure, the multi-
point geostatistical method can be used to overcome the shortage of traditional geostatistical
simulations in delineating the geometric continuity of geological structures [154–159].
Meanwhile, traditional geostatistical simulation has the limitations of large computation,
complicated parameterization and difficult to characterize multi-scale data. The application
of machine learning and deep learning methods to reconstruct geological and geochemical
structures can improve the simulation efficiency and can accurately express complex
heterogeneous spatial structures [160,161], which deserves further research work.

The machine learning methods of the MaxEnt model and GMM are carried out for 3D
MPM in the Zaozigou gold deposit in this study. Compared with the GMM, the MaxEnt
model has a higher precision in detection of ore-induced anomalies, which demonstrates
a higher reliability of 3D MPM (Figures 18 and 22). The prediction results of the two
methods express a high correlation with the known orebodies, based on which two mineral
exploration targets are circled (Figures 21 and 23).

Target I of the MaxEnt model is located at an elevation of 1600~2000 m, belonging to
the NE-orientation orebody group, which should be the extension of the Au1 orebody. The
Au and Sb concentration in this position (Figure 9) and the ratio of front halo to tail halo
has been increasing (Figure 16). Additionally, it appears that the high logical probability
calculated by the MaxEnt model and GMM at this position indicates the Au1 orebody may
extend deeper or a concealed orebody exists therein. Meanwhile, the Target I of GMM is
located at the elevation of about 1300 m, reflecting the weak anomaly in the deep drill.

Target II of the two methods is similarly located at the NW-orientation orebody group
at the elevation of about 2500 m, where the fractures distribute complexly and the anomalies
of tail halo elements and front halo elements overlapped (Figure 9).

6. Conclusions

In this paper, the three-dimensional primary halo anomaly data volume model is built
based on the multifractal C-V model, which fully considers the nonlinear characteristics
of the primary geochemical data. The C-V model is a three-dimensional extension of the
two-dimensional multifractal method, according to which the geochemical concentrations
are clearly illustrated at depth. The 3D geochemical anomaly data volume model provides
an important element distribution indicator to the 3D MPM.

The data-driven CoDA method was performed in this paper by using clr transfor-
mation and factor analysis, among which factor F4 is selected as a prediction indicator.
The knowledge-driven CoDA method used the SBP approach to extract the element as-
sociations of front halo, near-ore halo and tail halo, and the association of near-ore halo
and the ratio of front halo to tail halo are selected as the other two prediction indicators.
These selected geochemical association indicators are reliable for their good reflection in
metallogenic regularity.

From the results of this paper, the MaxEnt model and the GMM are efficient machine
learning methods in 3D MPM. By comparing the spatial distribution of the orebodies and
the indication of the metallogenic regularity, the delineated mineral exploration targets can
be considered as the mineral potential areas for further investigation. However, it must be
mentioned that machine learning algorithms have fast and accurate calculation in the case
of small data but lack generalization ability compared with deep learning algorithms in
big data. As the amount of data gradually increases, the prediction ability of the MaxEnt
model and the GMM usually reach the bottleneck, while deep learning can use more
parameters to continuously optimize and improve the detection ability of the models. Deep
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learning-based 3D Mineral Prospectivity Mapping of the Zaozigou gold deposit should be
paid more attention in the further research.
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